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Abstract: Scenario identification plays an important role in assisting unmanned aerial vehicle (UAV)
cognitive communications. Based on the scenario-dependent channel characteristics, a support vector
machine (SVM)-based air-to-ground (A2G) scenario identification model is proposed. In the proposed
model, the height of the UAV is also used as a feature to improve the identification accuracy. On
the basis, an improved scenario identification method is developed including dataset acquisition,
identification model training, and height-integrated model feedback. The shooting and bouncing
ray/image (SBR/IM) method is used to obtain the datasets of channel characteristics, i.e., root-mean-
square delay spread (RMS-DS), K factor, and angle spread (AS) under five typical scenarios: over-sea,
suburban, urban, dense urban and high-rise urban. SBR/IM is a symmetry-based ray tracing (RT)
simulation method. After the identification model is trained, a height-integrated feedback scheme is
used to increase the identification performance. The simulation results show that the identification
accuracy of improved method is about 14% higher than the method without height feature, which
reaches nearly 100% under the over-sea and suburban and over 80% in urban, dense urban, and
high-rise urban.

Keywords: scenario identification; air-to-ground (A2G) communication; channel characteristics;
support vector machine (SVM); unmanned aerial vehicle (UAV)

1. Introduction

Unmanned aerial vehicle (UAV) communication can be used to provide effective and
efficient telecommunication facilities and service with low cost [1], and is expected to play
an important role in the air-space-earth-sea integrated sixth generation (6G) communi-
cation network [2,3]. The authors in [4] proposed an UAV integrated HetNet for smart
dense urban, and the improved methods of the UAV integrated HetNet were proposed
in [5–8]. Even the deployment of UAV on Mars was proposed in [9]. However,due to the
mobility and flexibility, the UAV would experience dynamic communication scenarios and
the channel characteristics are proven to be scenario-dependent [10,11]. Therefore, it is
necessary to identify the communication scenarios and further optimize the communication
system by adopting different channel models. Different from the traditional terrestrial com-
munication, the air-to-ground (A2G) communication shows more obvious 3D scattering
space and height variance. According to the accurate identification model, the commu-
nication scenarios can be identified in real-time. Furthermore, the scenario-dependent
channel models, transmission modes, and optimization algorithms can be used to improve
the performance and reliability of A2G communication systems. Therefore, it is vital to
propose an efficient and accurate scenario identification method for A2G to assist the UAV
cognitive communication.
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To date, scenario identification has attracted a lot of attentions since it is a key technol-
ogy of communication perception integration. The authors in [12] pointed out that there
are mainly two scenario identification methods, i.e., visual-inspection-based identification
and machine learning (ML)-integrated identification. For example, the authors in [13]
identified line-of-sight (LOS)/non-line-of-sight (NLOS) scenarios manually based on the
video stream. A visual inspection identification method for the high-speed railway commu-
nication system was proposed in [14] based on the geographic information system (GIS).
However, visual inspection identification method is laborious and has poor robustness.
Therefore, the ML-integrated identification model has been widely applied, where the
image/video and channel characteristics are normally used. For example, the authors
in [15] used the satellite image with labeled pixel to identify different scenarios by using
convolutional neural network (CNN) method. However, the camera is used to record the
images or videos in these methods, which would achieve poor performance in the weather
with poor visibility.

Recently, the channel characteristics have also been widely used to identify the commu-
nication scenarios. For example, the authors in [16–19] identified LOS/NLOS scenarios by
using channel characteristics such as receive power, K-factor and delay spread based on ML
method like SVM and back propagation neural network (BPNN). However, these methods
did not involve the identification of specific geometric scenarios. A CNN-based identifica-
tion method was proposed in [20] to identify vehicle-to-vehicle (V2V) scenarios according
to the channel characteristics. The authors in [21] used measured channel characteristics to
identify vehicular communication scenarios by using BPNN. A multi-feature fusion and
deep neural network combined method was proposed in [22] to identify the scenarios of
high-speed train communication. Furthermore, the authors in [23] proposed an identifica-
tion method based on the measured channel data and weighted K-nearest neighbor tech-
nology for indoor scenario identification. A BPNN-based scenario identification method
was proposed in [24] to identify vehicular scenarios according to the channel characteris-
tics. However, these research works were mainly aimed at the terrestrial communication
scenarios, which cannot be applied in the A2G scenario identification directly. Moreover,
the channel characteristics of A2G communication are normally height-dependent. It is a
valuable identification feature but is not considered in the aforementioned works.

To fill these gaps, the main novelties of this paper are summarized as follows:
(1) A SVM-based scenario identification model for A2G communication is proposed

by using the channel characteristics. In this model, the height of the UAV is also used as a
new feature to improve the identification accuracy.

(2) An improved identification method is developed including dataset acquisition,
identification model training, and height-integrated model feedback. The datasets of
channel characteristics obtained from the RT simulation are used to train the identification
model. Then the height-integrated feedback scheme is introduced into the trained model to
improve the identification accuracy.

(3) The proposed scenario identification method is verified by the obtained validation
dataset. The performances of different set of channel characteristics for scenario identi-
fication are compared and analyzed. The confusion matrix is also used to evaluate the
performance of proposed scenario identification method.

The remainder of this paper is organized as follows. Section 2 proposes a channel-
characteristic-based scenario identification model. Section 3 develops an improved SVM-
based scenario identification method. In Section 4, the performance of proposed scenario
identification method is validated and analyzed. Finally, Section 5 draws the conclusions.

2. Channel-Characteristic-Based Scenario Identification Model

The A2G communications normally experience diverse and time-varying scenarios as
shown in Figure 1 [25–27]. If these scenarios can be accurately identified, the corresponding
channel models can be adopted to optimize the A2G communication systems. Consid-
ering that channel characteristics are scenario-dependent, the scenarios can be identified
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according to the relationship between channel characteristics and corresponding scenario.
However, it is difficult to manually find the complicated inner relationship. It should be
mentioned that the UAV channel characteristics including path loss (PL), root mean square
delay spread (RMS-DS), K factor, the mean angle of arrival (AOA), and Angular Spread (AS)
with flight height can be accurately extracted from the cellular signals [28,29]. Therefore,
we propose a channel-characteristic-based scenario identification model combined with
SVM method.

Figure 1. UAV-aided A2G communication scenarios.

The SVM has been proven to be an effective classification and regression model,
which is widely used in pattern recognition, nonlinear regression and so on. In the SVM
method, hyperplane is used to separate different classification of data, where support
vectors represent different data points with approximate distance to the hyperplane. The
optimization approach is normally used to find the optimal hyperplane by maximizing the
sum of the distances between the hyperplane and support vectors. As shown in Figure 2, the
blue and yellow points are two types of data samples, the solid line represents hyperplane
and the dotted lines represent support vectors.The hyperplane equation can be expressed
as w · x + b = 0, where w is the normal vector and b is displacement. The data on both
sides of the hyperplane are defined as positive samples and negative samples, i.e., w · x + b
equals to 1 and −1, respectively, Ref. [30]. To obtain the optimal hyperplane, we need to
find the maximum value of 2

‖w‖ .
Assuming that the labeled indexes are denoted as I, and the channel characteristics

of target scenario are denoted as C, the proposed scenario identification model can be
expressed as {

w · C + b ≥ 1, I = 1
w · C + b ≤ −1, I = −1

(1)

Considering that the channel characteristics of A2G communication are normally
height-dependent, which is a valuable feature for scenario identification. In this paper, the
height of UAV is introduced into the scenario identification model as{

w · C′(h± ∆h) + b ≥ 1, I = 1
w · C′(h± ∆h) + b ≤ −1, I = −1

(2)

where C′ is the channel characteristic after height adjustment, h is the height before adjust-
ment and ∆h is the scale for the height change.

Moreover, the kernel function is also crucial to determine the hyperplanes in the
training process. The typical kernel functions include logistic regression (LR), linear and
Gaussian kernel function [31]. When the number of channel characteristic is large, LR or
Linear kernel function is more appropriate. Otherwise, the Gaussian kernel function can
be applied. In this paper, since small number of channel characteristics is considered, the
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Gaussian kernel function is used to train the SVM. The Gaussian kernel function can be
expressed as

K(xm,xn) = exp(−γ‖xm − xn‖2) (3)

where xm,xn mean two datapoint and γ is a hyper parameter represents Gaussian fil-
ter width.

Figure 2. Basic idea of SVM classification.

3. Improved Identification Method
3.1. RT-Based Acquisition of Channel Characteristics

Ray tracing (RT) is an accurate channel parameter calculation method based on field
superposition principle and uniform theory of diffraction theory. The shooting and bounc-
ing ray/image (SBR/IM) method is a symmetry-based RT method and it is applied to
obtain channel characteristics in this paper due to its high accuracy and low computa-
tional complexity. The SBR/IM method includes four steps : scatterer reconstruction, ray
decomposition, ray tracking and channel characteristics calculation.

Due to the high complexity of the realistic scenario, a scatter reconstruction method is
used in this paper to reduce the complexity and computational time of the SBR/IM method.
The reconstructed scenario is composed of reconstructed the surface of the terrain and
buildings. Firstly, the flat surface of terrain can be reconstructed by regular triangle faces
and the non-flat surface can be approximated reconstructed by irregular triangle facets.
Then, the surface of buildings can also be reconstructed by regular triangle facets due to
they are assumed to be rectangles. Finally, material of surfaces will be configured after all
scatterer shapes are reconstructed.

The ray decomposition method is as shown in Figure 3a, a regular icosahedron is
placed inside a wave-front ball. The wave-front ball is divided to generate the ray tubes,
where each tube is represented by a ray from the center of the vertex. Considering that
the section of the ray tube increases with the increasing distance, which would affect the
accuracy of ray tracking. Therefore, the wavefront division of the regular dodecahedron
is necessary as shown in Figure 3b. Each equilateral triangle is uniformly divided into N
wave fronts. The expression of N is defined as N = 20× n2, where n is the number of ray
tube splits. In Figure 3b, the number of ray tube splits is set as n = 4.
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(a) (b)

Figure 3. (a) Icosahedron determination and (b) wavefront division for ray decomposition.

For the ray tracking, the reflection, scattering, and diffraction propagations are tracked
by using geometric optics theory, where the intersection operation is a key step. The
intersection operation is used to determine whether the ray intersects with the triangle
facets of scatterers, and then to determine the reflection or scattering points. It is also
necessary to determine whether diffraction occurs. Taking the receiver as a receiving
sphere, the signal is considered being able to arrive at the receiver if the ray intersects with
the sphere.

The path to the receiver can be divided into the direct ray or reflected ray. For the
direct ray, the electric intensity and power gain can be calculated by

EDirect = E0 ·
e−jkd(t)

d(t)
(4)

PDirect = 10log10(G
rxGtx(

λ0

4π
)2
∣∣∣∣EDirect

E0

∣∣∣∣) (5)

where E0 is the electric intensity of the initial ray tube, k = 1/λ0 is the wave number, and
d(t) is the distance between the transmitter (TX) and receiver (RX), Pdirect is the power of
the direct ray, and Grx are Gtx antenna of the receiver and transmitter, respectively.

The electric intensity of the reflected ray can be calculated as

ERe f lect = E0 · {ΠRi} · {ΠTi} · {Πe−riai} · SF (6)

PRe f lect = 10log10(G
rxGtx(

λ0

4π
)2

∣∣∣∣∣ERe f lect

E0

∣∣∣∣∣) (7)

where E0 is the electric intensity of the initial ray tube, {ΠRi} and {ΠTi} are union vector
of reflection and refraction coefficients for the entire ray path, respectively, ri and ai are the
phase shift and power attenuation of the ray from the reference position, respectively, SF is
diffusion factor , PRe f lect is the power of the reflected ray, Grx and Gtx are antenna gain of
the receiver and transmitter.

In this paper, the inter-path delays and angles are calculated in a deterministic method.
Denote the location of signal source as Q and the location vector of RX as R . The adjacent
reflection points are set as the centroid and the position vector is denoted as P̄n . The delay
of m-th ray is defined as adding the intra-path delay offset ∆τn,m to the mean ray delay
τ̄n(t) as

τn,m(t) = τ̄n(t) + ∆τn,m (8)
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where τ̄n(t) can be expressed as

τ̄n(t) =
‖Q− P̄n‖2 + ‖P̄n − R‖2

c
(9)

where c is the speed of light.
The azimuth AOA αrx

n,m(t) and elevation AOA βrx
n,m(t) of mth ray can be obtained

as the same way. Furthermore, the mean ray angle ᾱrx
n (t) and β̄rx

n (t)) can be expressed
as (10) and (11), respectively.

ᾱrx
n (t) =


arccos( |P̄x

n−Rx |√
|P̄x

n−Rx |2+|P̄y
n−Ry|2

), P̄x
n − Rx ≥ 0

π − arccos( |P̄x
n−Rx |√

|P̄x
n−Rx |2+|P̄y

n−Ry|2
), P̄x

n − Rx < 0
(10)

β̄rx
n (t) = arcsin(

|P̄z
n − Rz|

‖P̄n − R‖2
) (11)

where (·)x , (·)y and (·)z represent the x, y, z component, respectively. After the channel
parameter are obtained, we can further calculate the channel characteristics.

The RMS-DS is used to describe the channel dispersion phenomenon in the delay
domain which is caused by the small-scale fading of multipath effect. The definition of
RMS-DS can be expressed as

στ =

√√√√√ L
∑

l=1
(τl − τ̄)Pl

PR
(12)

where τl and Pl are the delay and power of each propagation path, respectively, PR rep-
resents the received power, L represents the number of paths, and τ̄ represents the mean
delay which can be further expressed as

τ̄ =

L
∑

l=1
Plτl

PR
(13)

The K factor, also known as the Rice factor, is the power ratio of the dominating
multipath component to the summation of other multipath components. The dominating
multipath component usually is a direct path in A2G communication. The K factor can be
expressed as:

K =
Pm
L
∑

l=1,l 6=m
Pl

(14)

where Pm is the power of the dominating multipath component.
In the angle domain, the multipath effect will cause angle spread. The AS is used to

characterize the magnitude of the angular dispersion, which can be expressed as

σθ =

√√√√√ L
∑

l=1
(θl − θ̄)Pl

PR
(15)

where θ̄ can be expressed as:

θ̄ =

L
∑

l=1
Plθl

PR
(16)
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It should be mentioned that the AS of azimuth angle of arrival (AAOA), azimuth angle
of departure (AAOD), elevation angle of arrival (EAOA), and elevation angle of departure
(EAOD), respectively.

3.2. Training Dataset of Height-Dependent Channel Characteristics

Different from the scenario identification of terrestrial communications, the influence
of UAV height should be considered in the scenario identification of A2G communications.
In this section, the channel characteristics at different height are obtained and analyzed
by using the calculation method in Section 3.1 under five typical A2G communication
scenarios including over-sea, suburban and urban scenarios. The urban scenarios are
further divided into urban, dense urban and high-rise urban.

The simulation carrier frequency is set as 2.6 GHz, and the transmitting power is set as
20 dBm. Both the transmitters and receivers are equipped with a half-wave dipole antenna
with vertical polarization. We set ten groups of transmitters and receivers in each scenario.
In each group, the transmitter is placed at the height of 1.7 m, and the receivers are placed
at the height between 10 m to 210 m with 2 m intervals. Moreover, we place three receivers
at each height, so each scenario has 3000 receivers.

To obtain the needed digital map, the standardized scenario models recommended by
International Telecommunication Union-Radiocommunication Sector (ITU-R) are adopted
in this paper [32]. The scenario models are related with three parameters α0, β0, γ0, which
are defined as follows

• α0 indicates the proportion of the building area to the total area;
• β0 indicates the average number of buildings per unit area (buildings/km2);
• γ0 indicates the height of the building according to the Rayleigh distribution, where h

can be calculated by

P(h) =
h

γ2
o

exp(
−h2

2γ2
o
) (17)

The detailed simulation parameters and the parameters of scenario models for the
suburban and three urban scenarios are summarized in Table 1. Note that there are no
buildings in the over-sea scenario, we just reconstruct several ships for simplicity. The
digital maps of five reconstructed scenarios are shown in Figure 4, and the average heights
of the scatterers in each scenario are 4 m, 9.44 m, 18.83 m, 24.31 m and 64.43 m. The size of
all digital maps is 1 km × 1 km. The material of ship is defined as metal, and the material
of buildings is concrete, and the land is defined as dry ground.

Table 1. Simulation parameters.

Parameter Value

Scenario Over-sea, Suburban, urban, dense urban, high-rise urban
Area ration of scatters 0.005, 0.1, 0.3, 0.5, 0.5

Number of scatters (km2) 50, 750, 500, 300, 300
Height of scatters 4 m, Rayleigh distribution of 8, 15, 20, 50

Size of scatters 20 m × 5 m, 11.6 m × 11.6 m, 24.5 m × 24.5 m,
40.5 m × 40.5 m, 40.5 m × 40.5 m

Frequency 2.4 GHz
Bandwidth 100 MHz

Antenna type Half-wave dipole antenna
Transmitting power 20 dBm

Height of TX 1.7 m
Number of TX 10
Height of RX Between 10 m to 210 m with 2 m intervals

Number of RX 3000
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(a) (b)

(c) (d) (e)

Figure 4. Digital maps of (a) over-sea, (b) suburban, (c) urban, (d) dense urban, and (e) high-rise
urban scenario.

Based on the calculation method in Section 3.1, the channel characteristics are calcu-
lated at different height. For simplicity, only the RMS-DS and AS of AAOA of one group
are shown in Figures 5 and 6, respectively. The y-axis of Figures 5 and 6 are the height of
the UAV, and there are 30 data points per height. The x-axis of Figures 5 and 6 are the index
of each data point, ranging in size from 1 to 30. Furthermore, there are significant changes
around a certain height, which are marked with red lines in the figure, respectively. This is
due to the difference in the average height of scatters of scenarios, which leads to different
channel characteristics distribution with height. Furthermore, the exact mean values of
different channel characteristics under different scenarios are presented in Table 2. It can be
found that the channel characteristics, i.e., RMS-DS, K factor, ASs vary a lot under different
scenarios and at different height, which makes it possible to identify the scenarios based on
the channel characteristics.

(a) (b)

(c) (d) (e)

Figure 5. RMS-DS of (a) over-sea, (b) suburban, (c) urban, (d) dense urban, and (e) high-rise
urban scenario.
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(a) (b)

(c) (d) (e)

Figure 6. AAOA of (a) over-sea, (b) suburban, (c) urban, (d) dense urban, and (e) high-rise urban scenario.

Table 2. Mean average of parameters of scenarios.

Scenario στ(ns) K σ◦
AOAA σ◦

EAOA σ◦
AAOD σ◦

EAOD

Over-sea 4.6127 6.6838 0.9793 2.1590 2.1805 76.53
Suburban 102.3164 6.3169 0.7497 1.059 1.065 77.9331
Unbran 127.4503 5.3237 16.1668 18.1029 21.7193 68.5246

Dense Urban 143.4544 5.2331 14.2822 18.3465 19.0873 63.8681
Highrise Urban 125.8363 5.3187 37.6931 31.4001 43.3032 43.0069

Based on the above discussion, in this paper we use the channel characteristics, i.e.,
RMS-DS, K factor, ASs and the height of the UAV as the identification features. The dataset
of i-th scenario is denoted as xi = (στ,i, σAAOA,i, σAAOD,i, σEAOA,i, σEAOD,i, Ki, hi, li), where
li ∈ {1, 2, . . . , L} denotes the scenario label and L is the number of scenarios.

3.3. Height-Integrated Scenario Identification Method

The proposed height-integrated scenario identification method is shown in Figure 7.
It includes three steps, i.e., dataset acquisition and preprocessing, identification model
training, and height-integrated model feedback. The details are shown as follows.

Step 1: Data acquisition and preprocessing.

Based on the calculation method in Sections 3.1 and 3.2, the datasets of height-
dependent channel characteristics are obtained. Note that the weight of different channel
characteristic is different. In order to achieve better identification performance, it is required
to preprocess the dataset before training. In this paper, we normalize the data by using
z-scores and it can be expressed as

xj
i =

xj
i − x̄j

σxj
(18)

where x̄j and σxj are the mean and variance of the input j-th dimension data, respectively.
Furthermore, dimensionality reduction for high-dimensional input data can prevent

the method from slipping into the local optimum and improve the training performance.
Therefore, the principal component analysis (PCA) is adopted for dimensionality reduction.
The core idea of PCA is to use orthogonal transformation to replace a set of potentially re-
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lated variables with a set of linearly unrelated principal components [33]. Low-dimensional
principal components can be generated by reasonable selecting eigenvalues. The Gaussian
Kernel function in Formula (3) is employed as the core of PCA in this paper.

Figure 7. The basic idea of SVM classification.

Step 2: Identification model training.

Then the datasets are divided into two parts, i.e., training data set and testing data set
in the proportion of 3:2 as shown in Table 3. Although SVM is a binary classifier, we can
use a decomposition methods of multi-class SVM by reconstructing a multi-class classifier
from binary SVM-based classifier. For j-th binary SVM classification, it takes the scenario
with j-th label as positive class and the rest of others as negative class, where 1 ≤ j ≤ N.
The results of new samples are determined by combing the labels which is predicted from
all the SVM classifiers. Assuming that the multiple binary SVM classifiers are f1, f2, · · · , fN ,
the final identification result of a sample x is determined by

s(x) = arg max
i

fi(x) (19)

where s is scenario label and “arg max” is to find the scenario label with the highest
probability of the multiple binary SVM classifiers.

Table 3. Validation layout parameters.

Data Sets Datapoints Number

Total data sets 3000/3000/3000/3000/3000
Training data 1800/1800/1800/1800/1800
Testing data 1200/1200/1200/1200/1200

Step 3: Height-integrated model feedback.

After obtaining the trained scenario identification model, the new channel character-
istics can be input into the model for scenario identification. If the posterior probability
f is greater than the threshold ε, the scenario label will be output directly, otherwise the
height of the UAV is changed slightly to get a new dataset and repeat the identification
procedure. It should be mentioned that whether the height of the UAV is raised or lowered
depends on the first scenario label. When the posterior probability is greater than the
threshold or the height of the UAV exceeds the height limitation, the model outputs the
predicted label of the scenario. In the scenario identification method, the threshold ε should
be properly determined.

4. Simulation Results and Validation

The selection of identification features is essential to the accuracy of the scenario
identification method [34,35]. To validate the rationality of channel characteristics selected
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in the paper, we compared the performance of three typical groups of channel characteristics
in this section as shown in Table 4. They are Feature Set 1 (K factor + RMS-DS), Feature
Set 2 (K factor + RMS-DS + AS), Feature Set 3 (K factor + RMS-DS + AS + path loss). It is
found that Feature Set 1 shows the lowest identification accuracy, Feature set 2 achieves
a higher identification accuracy of more than 80%. However, the number of dentification
features is not the more the better. For example, Feature set 3 adds an extra feature Path
loss, but the accuracy reduced because the path loss strongly depends on the unknown
communication distance. Therefore, the Feature set 2 used in this paper is a rational choice.

Table 4. Accuracy of Proposed Identification Model Under Different Features.

Scenario Over-Sea Suburban Urban Dense Urban High-Rise Urban

K factor + RMS DS 100% 100% 79% 70% 85%
K factor + RMS DS + AS 100% 100% 84% 80% 97%

PL + K factor + RMS DS + AS 100% 100% 80% 77% 96%

Moreover, the confusion matrix, also known as the error matrix, is used to validate
the effectiveness of proposed identification method. Each row in the matrix represents the
final predicted category of the model, and each column represents the actual label of the
test set data. The confusion matrices of the method without height factor and the proposed
method with height factor are shown in Figure 8a,b, respectively. In this paper, we set
ε = 0.8 . It can be found that the identification accuracy of proposed method under over-sea
and suburban scenarios reaches 100%. The identification accuracy of proposed method
under the urban, dense urban and high-rise urban scenarios increases 14%, 52%, and 2%
than the method without height factor, and the overall identification accuracy increases
by 14% from 77% to 91%. Although the channel characteristics of urban scenarios are very
similar, the performance of proposed identification method is still better than that of the
method without height factor.

(a) (b)

Figure 8. Confusion matrices of the method (a) without height factor and (b) with height factor.

Considering the channel characteristics in this paper are also sensitive to the trans-
mitter height, we perform more simulations under different transmitter height to obtain
the training data. The transmitter height ranges from 1.7 m to 6 m for each scenario. The
layout parameters of the training dataset are the same as in Table 3, and the layout parame-
ters of the testing data are shown in Table 5. The confusion matrices of the identification
model without/with transmitter height variance are compared as shown in Figure 9a,b,
respectively. It can be found that the accuracy of the identification model is improved by
considering the transmitter height.
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Table 5. Validation layout parameters with different transmit heights.

Data Sets Datapoints Number

1.7 m 100/100/100/100/100
3 m 100/100/100/100/100
4 m 100/100/100/100/100
5 m 100/100/100/100/100
6 m 100/100/100/100/100

(a) (b)

Figure 9. Confusion matrices of (a) the method only considering the transmitter height of 1.7 m and
(b) the method considering the transmitter height from 1.7 m to 6 m.

5. Conclusions

In this paper, a channel-characteristic-based scenario identification model for the A2G
communication has been proposed by using SVM. An improved scenario identification
method including dataset acquisition and preprocessing, identification model training, and
height-integrated model feedback has been developed as well. The datasets of channel
characteristics, i.e., RMS-DS, K factor and AS under over-sea, suburban, urban, dense
urban and high-rise urban scenarios have been used to train the identification model and
validate the proposed identification method. The simulation and validation results have
demonstrated that the selection of identification features in this paper is rational, and
the identification accuracy of the improved method increases by 14% than the method
without height factor. In the future, we will try more different group of identification
features and apply it on more scenarios to improve the accuracy and generality of proposed
identification method.
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The following abbreviations are used in this manuscript:

UAV Unmanned aerial vehicle
SVM Support vector machine
A2G Air-to-ground
RMS-DS Root-mean-square delay spread
AS Angle spread
RT Ray tracing
6G Sixth generation
ML Machine Learning
V2V Vehicle-to-vehicle
LOS Line-of-sight
NLOS Non-line-of-sight
GIS Geographic informaiton system
CNN Convolutional Neural Network
BPNN Back Propagation Neural Network
LR Logistic regression
SBR/IM Shooting and bouncing ray/image
AAOA Angle spread of azimuth angle of arrival
AAOD Angle spread of azimuth angle of arrival
EAOA Angle spread of elevation angle of arrival
EAOD Angle spread of elevation angle of arrival
ITU-R International Telecommunication Union-Radiocommunication Sector
PCA Principal component abalysis
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