
����������
�������

Citation: Tahata, K. Advances in

Quasi-Symmetry for Square

Contingency Tables. Symmetry 2022,

14, 1051. https://doi.org/10.3390/

sym14051051

Academic Editors: Palle E.T.

Jorgensen and Basil Papadopoulos

Received: 12 April 2022

Accepted: 18 May 2022

Published: 20 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Review

Advances in Quasi-Symmetry for Square Contingency Tables
Kouji Tahata

Department of Information Sciences, Faculty of Science and Technology, Tokyo University of Science, Yamazaki,
Noda-shi 278-8510, Chiba, Japan; kouji_tahata@rs.tus.ac.jp

Abstract: Contingency tables highlight relationships between categorical variables. Typically, the
symmetry or marginal homogeneity of a square contingency table is evaluated. The original symmetry
model often does not accurately fit a dataset due to its restrictions. Caussinus proposed a quasi-
symmetry model which served as a bridge between symmetry and marginal homogeneity in square
contingency tables. This study significantly influenced methodological developments in the statistical
analysis of categorical data. Herein recent advances in quasi-symmetry are reviewed with an
emphasis on four topics related to the author’s results: (1) modeling based on the f -divergence,
(2) the necessary and sufficient condition of symmetry, (3) partition of test statistics for symmetry,
and (4) measure of the departure from symmetry. The asymmetry model based on f -divergence
enables us to express various asymmetries. Additionally, these models are useful to derive the
necessary and sufficient conditions of symmetry with desirable properties. This review may be useful
to consider the statistical modeling and the measure of symmetry for contingency tables with the
same classifications.

Keywords: decomposition; f -divergence; marginal homogeneity; measure; symmetry

1. Introduction

Contingency tables play important roles in various fields, as they highlight rela-
tionships between categorical variables. Typically, the analysis of contingency tables is
interested in whether row and column variables are independent. If the independence
hypothesis is rejected, then the association between the variables is of interest. Various
coefficients have been proposed to measure the association, such as gamma, Yule’s Q,
Kendall’s tau-b, Kendall’s tau, and Somers’ d. See (Bishop et al. [1], Ch. 11) and (Agresti [2],
pp. 184–192). Bishop et al. [1], Agresti [2], and Kateri [3] present overviews of contingency
table analysis. Additionally, Kateri [4] reviewed the φ-divergence association models re-
lated to the independence model for two-way contingency tables. Fujisawa and Tahata [5]
proposed the generalized asymmetry plus quasi-uniform association model. These works
in the literature provide reviews of contingency table analysis based on association models.

Contingency tables with the same row and column classifications are often called
square contingency table. Square contingency table data arise many fields. For example,
unaided distance vision data, social mobility data, father–son matched educational level
data, longitudinal data in biomedical research, and so on. Typically, the analysis of square
contingency tables considers the issue of symmetry rather than independence (null associa-
tion) because observations tend to concentrate on or near the main diagonal. Therefore,
many statisticians have considered various symmetry and asymmetry models, and mod-
eling of symmetry is one of the important topics for the analysis of square contingency
tables. For example, Bowker [6] proposed a test for the hypothesis of symmetry (S). The
S model indicates the symmetry structure of cell probabilities. Additionally, Stuart [7]
provided a large-sample test for marginal homogeneity (MH). The MH model indicates the
equivalence of marginal probabilities.

Caussinus [8] developed quasi-symmetry (QS). The QS model bridges S and MH in
square tables. The QS model indicates the symmetry of the odds ratio with respect to the
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main diagonal of the square contingency table. If the S model holds, then the MH model
holds. However, the inverse is not always true. The QS model can be used to show that the
S model holds if and only if both the QS and MH models hold. This finding has influenced
the methodological developments in statistical analysis of categorical data. See Section 3
for more details.

A special issue of Annales de la Faculté des Sciences de Toulouse, Mathématiques was pub-
lished in 2002. It contained papers written by internationally distinguished authors on topics
related to QS. Agresti [9] described some generalizations of the QS model that have similar
connections with generalizations of the Rasch model. Goodman [10] commented relationship
between the QS model and the quasi-independence model. McCullagh [11] set out to list
all hereditary sub-representations by real-valued square matrices, and to explain how these
may be used in model construction. There are Fienberg and van der Heijden [12], Bergsma
and Rudas [13], Dossou-Gbété and Grorud [14], Erosheva et al. [15], De Falguerolles and
van der Heijden [16], Stigler [17], Thélot [18], and Caussinus [19] in addition to those in the
special issue.

Since then, numerous studies have treated QS from a variety of perspectives. For
square contingency tables, Tomizawa [20] introduced modeling based on the cumulative
probabilities. Miyamoto et al. [21] proposed the cumulative QS model for square contin-
gency tables with ordinal categories. Kateri et al. [22] considered generalized QS models.
To evaluate the goodness of fit, Booth et al. [23] adapted a network algorithm to test QS in
square tables. Krampe et al. [24] proposed a method based on algebraic statistics combined
with Markov chain Monte Carlo (MCMC) methods for the ordinal QS (OQS) model. Addi-
tionally, various topics related to the QS model are discussed in mathematical statistics. For
example, see Rapallo [25], Pardo and Martin [26], and Gottard et al. [27]. Tomizawa and
Tahata [28] reviewed some topics on various symmetry models and showed the property
of test statistics of symmetry for multi-way contingency tables. Tahata and Tomizawa [29]
reviewed various models of symmetry and asymmetry and presented the relationships
among models.

The topics related to the QS model have been discussed in several papers for the last
5 years. Bocci and Rapallo [30] reviewed why the synergy between algebraic statistics and
quasi-independence has been fruitful. Additionally, see Khan and Tewari [31]. Altun [32]
considered various symmetry and asymmetry models for square contingency tables with or-
dinal categories. Tahata et al. [33] proposed the model selection via the penalized likelihood
approach. The symmetry models for square contingency tables are applied to the cross
classified a single nucleotide polymorphism (SNP) interactions data in Karadağ et al. [34].
Altunay and Yilmaz [35] proposed two novel log-linear models to measure the degree of
accumulation of the neutral option over the contingency tables based on Likert-type items.
Additionally, Ando [36,37,38] proposed models that indicate the structure of asymmetry
and gave the decompositions of the models. For square contingency tables with ordinal
categories, the models which have various ordered scores were compared in Ando [39].

This review focuses on the further developments of modeling and properties of
symmetry in recent years. Additionally, some comments which are not described in
referenced papers are added. Herein four topics related to Tahata [40] and Tahata et al.
[41] are reviewed: (1) modeling based on the f -divergence, (2) the necessary and sufficient
condition of symmetry, (3) partition of test statistics for symmetry, and (4) the measure of
departure from symmetry.

The rest of this paper is organized as follows. Section 2 demonstrates modeling based
on the f -divergence. Section 3 reviews the necessary and sufficient condition of symmetry.
The result given by Caussinus [8] is included as a special case. Aitchison [42], Darroch and
Silvey [43], Read [44], Lang and Agresti [45], and Lang [46] discussed the partitioning of
goodness of fit statistics. Section 4 presents an overview of the main results presented in
Tomizawa and Tahata [28]. Caussinus’ QS model has a good property from a partitioning
point of view. Section 5 introduces the measure of departure from symmetry. Section 6
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discusses the relationships between the measure and asymmetry model. Finally, Section 7
contains concluding remarks.

2. Modeling Based on the f -Divergence

Consider an R× R square contingency table with the same row and column classifica-
tions. Let X and Y denote the row and column variables, respectively, and let πij denote
the probability that an observation will fall in the cell (i, j) of the table.

The S model, which is defined as πij = πji for i = 1, . . . , R; j = 1, . . . , R, indicates the
symmetry structure of cell probabilities (Bowker [6]). Additionally, the MH model indicates
the equivalence of marginal probabilities and is defined as πi• = π•i for i = 1, . . . , R where
πi• = ∑j πij and π•j = ∑i πij (Stuart [7]). The QS model is defined as

πijπjkπki = πjiπkjπik (1 ≤ i < j < k ≤ R). (1)

From (1), the QS model can be expressed using the odds ratio as

θ(i<j;j<k) = θ(j<k;i<j) (1 ≤ i < j < k ≤ R),

where θ(i<j;j<k) = (πijπjk)/(πjjπik) and θ(j<k;i<j) = (πjiπkj)/(πkiπjj).
This indicates the symmetry of the odds ratio with respect to the main diagonal of the

square contingency table (Caussinus [8]). For the analysis of square contingency tables,
symmetry models have been proposed by using various ideas, for example, McCullagh [47],
Agresti [48], and Tomizawa [49].

Ireland et al. [50], (Bishop et al. [1], pp. 345–346) and Gilula et al. [51] presented
the method for model generation. In particular, Kateri and Papaioannou [52] applied
the method for the modeling of symmetry for square contingency tables and proposed a
family of models, which includes the QS model as a special case. This family is derived by
minimizing the f -divergence under certain conditions. Additionally, Tahata [40] extended
the results to the modeling of the asymmetry structure of cell probabilities. This section
reviews asymmetry models based on the f -divergence.

Let π = (πij) and q = (qij) be two discrete finite bivariate probability distributions.
(Csiszár and Shields [53], Section 4) introduced the f -divergence between π and q. Let f
be a convex function on (0,+∞) with f (1) = 0. The f -divergence of a distribution π from
q is defined as

IC(π : q) = ∑
i

∑
j

qij f

(
πij

qij

)
.

Here, we take f (0) = limt→0 f (t), 0 · f (0/0) = 0, and 0 · f (a/0) = a limt→∞[ f (t)/t].
Let f be a twice differentiable and strictly convex function, and πS

ij = (πij + πji)/2.
Kateri and Papaioannou [52] proposed the generalized QS (denoted by QS[ f ]) model. It is
defined as

πij = πS
ijF
−1(ai + γij

)
(i = 1, . . . , R; j = 1, . . . , R), (2)

where γij = γji and F(t) = f ′(t). The QS[ f ] model is the closest to the S model in terms of
the f -divergence under the condition where the marginals πi• (or π•i) for i = 1, . . . , R and the
sums πij + πji = 2πS

ij for i = 1, . . . , R; j = 1, . . . , R are given. Kateri and Papaioannou [52]
noted that if f (t) = t log(t), t > 0, then the f -divergence is reduced to the Kullback–Leibler
divergence (Kullback and Leibler [54]), and the QS[ f ] model is equivalent to the QS model.
Namely, the QS model is the closest to the S model in terms of the Kullback–Leibler divergence
under this condition. Additionally, see Kateri [4], Kateri and Agresti [55], Kateri [56], and
Tahata [40].

Next, consider an R× R square contingency table with ordered categories. Let {ui}
be a set of known scores u1 ≤ u2 ≤ · · · ≤ uR (with u1 < uR). Replacing {ai} by {αui} in
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the QS[ f ] model is the ordinal QS[ f ] (OQS[ f ]) model (Kateri and Agresti [55]). The OQS[ f ]
model is the closest to the S model in terms of the f -divergence under the condition where
∑i uiπi• (or ∑i uiπ•i) and the sums {πij + πji} are given. If f (t) = t log(t), t > 0, then (1)
the OQS[ f ] model with {ui = i} is equivalent to the linear diagonals parameter S (LDPS)
model (Agresti [48]) and (2) the OQS[ f ] model is equivalent to the OQS model (Agresti [9],
pp. 236–238).

Tahata [40] proposed a model to fill the gap between the QS[ f ] and OQS[ f ] models.
It should be noted that {ui} is a set of known scores u1 < u2 < · · · < uR. For a given k
(k = 1, . . . , R− 1) the asymmetry model based on the f -divergence (ASk[ f ]) is defined as

πij = πS
ijF
−1

(
k

∑
h=1

uh
i αh + γij

)
(i = 1, . . . , R; j = 1, . . . , R),

where γij = γji and F(t) = f ′(t). From the relation πS
ij = (πij + πji)/2, the parameters of

the ASk[ f ] model must satisfy

F−1

(
k

∑
h=1

uh
i αh + γij

)
+ F−1

(
k

∑
h=1

uh
j αh + γji

)
= 2.

The ASk[ f ] model is the closest to the S model in terms of the f -divergence under
the condition where ∑i uh

i πi• (or ∑i uh
i π•i) for h = 1, . . . , k and the sums πij + πji for

i = 1, . . . , R; j = 1, . . . , R are given. Additionally, the ASk[ f ] model can be expressed as

πij = πS
ijF
−1

(
k

∑
h=0

uh
i αh + γij

)
(i = 1, . . . , R; j = 1, . . . , R), (3)

where γij = γji. For example, α0 = 1 can be set without a loss of generality. There is
a one-to-one transformation between a set of {a1, a2, . . . , aR} in Equation (2) and that of
{α0, α1, . . . , αR−1} in Equation (3) when k = R− 1. When α1 = · · · = αk = 0, the ASk[ f ]
model is reduced to the S model. It should be noted that (1) the AS1[ f ] model is reduced to
the OQS[ f ] model, (2) the ASk[ f ] model (k = 2, 3, . . . , R− 2) is an extension of the OQS[ f ]
model, and (3) the ASR−1[ f ] model is reduced to the QS[ f ] model.

If f (t) = t log(t) for t > 0, then the ASk[ f ] model becomes

πij = πS
ij exp

[
k

∑
h=1

uh
i αh + γij − 1

]
(i = 1, . . . , R; j = 1, . . . , R), (4)

where γij = γji. Then under Equation (4)

πij

πji
=

k

∏
h=1

β
uh

i −uh
j

h (i < j), (5)

where βh = exp[αh]. Equation (5) with {ui = i} is the kth linear asymmetry (LSk) model
proposed by Tahata and Tomizawa [57]. Therefore, the LSk model is the closest to the S
model in terms of the Kullback–Leibler divergence under the condition where ∑i ihπi• (or
∑i ihπ•i) for h = 1, . . . , k and the sums {πij + πji} are given.

Let the conditional probability that an observation will fall in cell (i, j) when the
observation falls in cell (i, j) or (j, i) be denoted by πc

ij. That is, πc
ij = πij/(πij + πji). When

f (t) = (1− t)2, the ASk[ f ] model becomes

πij = πS
ij

(
∑k

h=1 uh
i αh + γij

2
+ 1

)
(i = 1, . . . , R; j = 1, . . . , R), (6)
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where γij = γji. Then under Equation (6)

πc
ij − πc

ji =
k

∑
h=1

(
uh

i − uh
j

)
βh (i < j), (7)

where βh = αh/4 with ∑h(uh
j − uh

i )βh < 1. This model is the closest to the S model when
the divergence is measured by the Pearson distance.

Equation (5) can be expressed as

log
πc

ij

πc
ji
=

k

∑
h=1

(
uh

i − uh
j

)
αh (i < j).

Namely, the ASk[ f ] model with f (t) = t log(t) indicates that the log odds is expressed
as a polynomial of (αh). On the other hand, the ASk[ f ] model with f = (1− t)2 (namely,
Equation (6)) indicates that the difference between symmetric conditional probabilities is
expressed as a polynomial of (βh) from Equation (7). Let g(x) = 2x and the composition of
functions F and g be denoted by H. That is, H(x) = F(2x). Then the ASk[ f ] model can be
expressed as

H(πc
ij) =

k

∑
h=1

uh
i αh + γij (i = 1, . . . , R; j = 1, . . . , R),

where γij = γji. This formula indicates that a H-transformation of conditional probability
(πc

ij) has a linear combination of parameters. For i < j,

H(πc
ij)− H(πc

ji) =
k

∑
h=1

(
uh

i − uh
j

)
αh.

Therefore, the ASk[ f ] model is characterized as the structure with symmetric condi-
tional probabilities (πc

ij, πc
ji). The structure depends on the function f . The function f is

chosen by the user. Namely, we can apply various asymmetry models to the given dataset
by changing the function f . Namely, modeling based on f -divergence enable to construct
various asymmetries by using the function f .

Fujisawa and Tahata [58] proposed the extended ASk[ f ] model for square contingency
tables with ordinal categories. Additionally, Yoshimoto et al. [59] discussed the quasi
point-symmetry models based on the f -divergence. For two-way contingency tables, the
φ-divergence ( f -divergence) association models are a family of models which includes
the association and correlation models as special cases. Kateri [4] presented this family of
models and demonstrated the role of φ-divergence in building this family. Additionally,
Kateri [56] developed the new families of φ-divergence generalized QS models.

3. Necessary and Sufficient Condition of Symmetry

The S model rarely fits the given dataset due to its strong restrictions. More relaxed
models, such as the QS and MH models, are often applied to a dataset. Here, we are
interested in an extension of the S model, which indicates the asymmetry structure of cell
probabilities. Caussinus [8] noted that the S model holds if and only if both the QS and MH
models hold. Caussinus’ result is useful to deduce the reason for a poor fit of the S model,
and Bishop et al. [1] (Section 8.2.3) derived its proof. Let HM denote model M. Then

HS = HQS ∩ HMH . (8)

In this section, the necessary and sufficient conditions for the S model are reviewed.
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The conditional S (CS) model (Read [44] and McCullagh [47]) is defined as πij = γπji
for i < j. The CS model with γ = 1 is reduced to the S model. See also (Bishop et al. [1],
pp. 285–286).

Consider the global symmetry (GS) model, which is defined as

∑ ∑
i<j

πij = ∑ ∑
i>j

πij.

Namely, this model indicates that Pr(X < Y) is equal to Pr(X > Y). If both the
CS and GS models hold, then the S model holds. Since the converse holds, Read [44]
highlighted that

HS = HCS ∩ HGS. (9)

The LDPS model fits well when there is an underlying bivariate normal distribution
(Agresti [48]). Additionally, Tomizawa [49] considered an extended LDPS (ELDPS) model
and reported the relationship with bivariate normal distribution. Tahata and Tomizawa [57]
considered the LSk model, which is defined by Equation (5) with {ui = i}. This model is a
generalization of the LDPS and ELDPS models. That is, the LDPS and ELDPS models are
the LS1 and LS2 models, respectively. It should be noted that

HS ⊂ HLS1 (= HLDPS) ⊂ HLS2 (= HELDPS) ⊂ · · · ⊂ HLSR−2 ⊂ HLSR−1 (= HQS). (10)

For m = 1, . . . , R− 2, the difference in the degrees of freedom (df) between HLSm and
HLSm+1 is one.

On the other hand, for a given positive integer k (k = 1, . . . , R− 1), the kth moment
equality (MEk) model is defined as

E(Xh) = E(Yh) (h = 1, . . . , k),

where E(Xh) = ∑i ihπi• and E(Yh) = ∑i ihπ•i. For example, the ME1 model indicates
that the mean of X is equal to that of Y, and the ME2 model indicates the equality of the
mean and variance for X and Y. Tahata and Tomizawa [60] proved that the MH model is
equivalent to the MER−1 model. Therefore,

HS ⊂ HMER−1 (= HMH) ⊂ HMER−2 ⊂ · · · ⊂ HME2 ⊂ HME1 . (11)

For m = 1, . . . , R− 2, the difference in df between HMEm and HMEm+1 is one. From the
Caussinus’ result, Equations (10) and (11) provide various relations. For example

HS = HLSk ∩ HMER−1 (= HMH) (k = 1, . . . , R− 2),

and

HS = HLS1 (= HLDPS) ∩ HMEk (k = 2, . . . , R− 1).

(Agresti [2], p. 261) and Kateri and Agresti [55] reported similar comments. However,
it should be noted that HLSk ∩ HMH and HLDPS ∩ HMEk have more redundant conditions
than the S model.

Let (π∗ij) denote the cell probabilities satisfying both the LSk and MEk models. The LSk
model is expressed as

log π∗ij =
k

∑
h=1

(
ih log u1(h) + jh log u2(h)

)
+ log ψij (i = 1, . . . , R; j = 1, . . . , R),
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where ψij = ψji. Additionally, the MEk model is expressed as

µ
∗(h)
1 = µ

∗(h)
2 (h = 1, . . . , k),

where µ
∗(h)
1 = ∑i ihπ∗i• and µ

∗(h)
2 = ∑i ihπ∗•i. By considering IC with f (t) = t log(t) (namely,

the Kullback–Leibler divergence) to measure the difference between (π∗ij) and (π∗ji),

∑
i

∑
j

π∗ij log
π∗ij
π∗ji

= ∑
i

∑
j

π∗ij

{
k

∑
h=1

(
ih − jh

)
log u1(h) +

(
jh − ih

)
log u2(h)

}

=
k

∑
h=1

{(
µ
∗(h)
1 − µ

∗(h)
2

)
log u1(h) +

(
µ
∗(h)
2 − µ

∗(h)
1

)
log u2(h)

}
= 0.

That is, π∗ij = π∗ji holds for i = 1, . . . , R; j = 1, . . . , R from the property of the Kullback–
Leibler divergence. Additionally, if the S model holds, then both LSk and MEk models hold
clearly. Therefore, for a given positive integer k, these lead to

HS = HLSk ∩ HMEk . (12)

Tahata [40] extended the result using the ASk[ f ] model (k = 1, . . . , R− 1). Consider
the generalized MEk (denoted by GMEk) model defined as

∑
i

uh
i πi• = ∑

i
uh

i π•i (h = 1, . . . , k),

with a set of known scores u1 < u2 < · · · < uR. Tahata [40] proved the following result:

HS = HASk [ f ] ∩ HGMEk . (13)

Tahata et al. [61] proposed the extended LSk (ELSk) model, which is defined as

πij

πji
= γ

k

∏
h=1

θ
jh−ih

h (i < j).

The ELSk model with γ = 1 is reduced to the LSk model. It should be noted that the
ELSR−1 model is equal to the extended QS (EQS) model (Tomizawa [62]), which indicates
the asymmetry structure of the odds ratio. The QS model indicates the symmetry structure
of the odds ratios. The OQS (LDPS) model indicates both the QS model and the asymmetry
structure of cell probabilities and is a special case of the QS model. The EQS model is an
extension of the QS model. Tahata et al. [61] noted that

HS = HELSk ∩ HMEk ∩ HGS. (14)

Fujisawa and Tahata [58] proposed the model, which is a generalization of the ELSk
model using the f -divergence and gave the generalization of Equation (14).

4. Partition of Test Statistics for Symmetry

Consider the situation where the analyst has found hypothesis HM3 unacceptable
and has turned their attention to an examination of components HM1 and HM2 such
that HM3 = HM1 ∩ HM2 . Let T(M) denote the statistic for testing the goodness of
fit of model M. T(M) is asymptotically distributed as a chi-square distribution with
the corresponding df. Aitchison [42] noted that the possibility of partitioning the test
statistic for HM3 into components for testing HM1 and HM2 must be investigated. Namely,
T(M3) = T(M1) + T(M2). When hypotheses HM1 and HM2 are separable, partitioning is
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possible. Separable implies that the restricted tests of HM3 against HM2 and that of HM3

against HM1 use the same critical regions as the unrestricted test of HM1 and that of HM2 ,
respectively. It should be noted that df for HM3 (denoted by d f3) is equal to the sum of df
for HM1 and HM2 . That is, d f3 = d f1 + d f2. The acceptance of HM1 and HM2 separately
means that T(M1) < cd f1(α) and T(M2) < cd f2(α) where α is the significance level and c
denotes the corresponding critical value. Then T(M1) + T(M2) < cd f1(α) + cd f2(α). Under
the separable hypotheses, hypothesis HM3 is rejected when T(M1) + T(M2) > cd f3(α). The
acceptance of HM1 and HM2 usually results in the acceptance of HM3 because cd f1(α) +
cd f2(α) rarely exceeds cd f3(α). Darroch and Silvey [43] considered the separability with
respect to the likelihood ratio method, which they called “independence”. Additionally,
Lang and Agresti [45] and Lang [46] discussed the partitioning of goodness of fit statistics.
This section describes a property of the statistic for testing the goodness of fit of the S model.

Let nij denote the observed frequency in cell (i, j) in an R× R square contingency table
with n = ∑i ∑j nij. Additionally, let mij and m̂ij denote the expected frequency in cell (i, j)
and the corresponding maximum likelihood estimate (MLE) under a model, respectively.
Assume that a multinomial distribution applies to the table. For the S model, MLEs of mij
are given as

m̂ij =


nij + nji

2
(i 6= j),

nii (i = j).

See, for example, Bowker [6] and Bishop et al. [1] (p. 283). Additionally, MLEs of mij
for the CS model are given as

m̂ij =


nU(nij + nji)

nU + nL
(i < j),

nL(nij + nji)

nU + nL
(i > j),

nii (i = j),

where nU = ∑ ∑i<j nij and nL = ∑ ∑i>j nij. MLEs of mij for the GS model are given as

m̂ij =


nij(nU + nL)

2nU
(i < j),

nij(nU + nL)

2nL
(i > j),

nii (i = j).

It should be noted that the S, CS, and GS models have closed-form estimators. Let
G2(M) denote the likelihood ratio chi-square statistic for testing the goodness of fit of
model M. Read [44] noted that

G2(S) = G2(CS) + G2(GS). (15)

From Equations (9) and (15), G2(GS) = G2(GS|CS) (or G2(CS) = G2(CS|GS)). There-
fore, the CS and GS models are separable (i.e., exhibit independence).

Caussinus [8] gave Equation (8). The QS and MH models do not have closed-form esti-
mators. Therefore, it is difficult to obtain a relationship similar to Equation (15). Tomizawa
and Tahata [28] proved the relationship between test statistics for the QS and MH models.
We review the result briefly.

The QS model is expressed in the log-linear form as

log πij = λ + λX
i + λY

j + λXY
ij (i = 1, . . . , R; j = 1, . . . , R), (16)
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where λXY
ij = λXY

ji . Without the loss of generality, for example, set λX
R = λY

R = λXY
Rj =

λXY
iR = 0. Let π = (π11, . . . , π1R, . . . , πR1, . . . , πRR)

′. Then the QS model is expressed as

log π = Xλ,

where λ = (λ, λX , λY, λXY)′, λX = (λX
1 , . . . , λX

R−1), λY = (λY
1 , . . . , λY

R−1), and

λXY = (λXY
11 , . . . , λXY

1,R−1, λXY
22 , . . . , λXY

2,R−1, . . . , λXY
R−1,R−1).

It should be noted that X = (1R2 , X1, X2, X12) is the R2 × K matrix with K = (R2 +
3R− 2)/2, where 1s is the s× 1 vector of the 1 element,

X1 =

[
IR−1 ⊗ 1R

OR,R−1

]
, X2 = 1R ⊗

[
IR−1
0′R−1

]
,

and X12 is the R2×R(R− 1)/2 matrix of 1 or 0 elements determined from (16). Additionally,
Is is the s× s identity matrix, Os,t is the s× t zero matrix, 0s is the s× 1 zero vector, and ⊗
denotes the Kronecker product. The matrix X is a full column rank, which is K. The linear
space spanned by the columns of the matrix X is denoted by S(X). The dimension of S(X)

is K and S(X) is a subspace of RR2
. Let S(X)⊥ denote the orthogonal complement of S(X).

Let U be an R2 × d1, where d1 = R2 − K = (R− 1)(R− 2)/2, full column rank matrix such
that the columns of U span S(X)⊥. Since U ′X = Od1,K, the QS model can be expressed as
h1(π) = 0d1 , where h1(π) = U ′ log π.

The MH model is defined as

πi• − π•i = 0 (i = 1, . . . , R− 1).

Let h2(π) = Wπ, where W = X ′1 − X ′2. The MH model can be expressed as
h2(π) = 0d2 , where d2 = R− 1. The columns of W ′ belong to subspace S(X). It should
be noted that WU = Od2,d1 . Since Equation (8) holds, the S model can be expressed as

h3(π) = (h′1(π), h′2(π))′ = 0d3 ,

where d3 = d1 + d2 = R(R− 1)/2.
Let p = (p11, . . . , p1R, . . . , pR1, . . . , pRR)

′ denote the sample proportions, where
pij = nij/n. From the multivariate central limit theorem,

√
n(p − π) has an asymp-

totic normal distribution with mean 0R2 and covariance matrix Σ(π) = diag(π)−ππ′,
where diag(π) is the diagonal matrix with the elements of π on the main diagonal. In
an analogous manner to Bhapkar [63], the Wald statistic can be derived for the S model.
Let Hs(π) = ∂hs(π)/∂π′ for s = 1, 2, 3. Using the delta method,

√
n(h3(p)− h3(π)) has

an asymptotic normal distribution with mean 0d3 and covariance matrix of[
H1(π)Σ(π)H ′1(π) Od1,d2

Od2,d1 H2(π)Σ(π)H ′2(π)

]
,

because H1(π)Σ(π)H ′2(π) = U ′W ′ = Od1,d2 . Then T3 = T1 + T2, where

Ts = nh′s(p)[Hs(p)Σ(p)H ′s(p)]−1hs(p).

Let W(M) denote the Wald statistic for testing goodness of fit of model M. Since T1, T2,
and T3 correspond to W(QS), W(MH), and W(S), respectively, we obtain

W(S) = W(QS) + W(MH). (17)
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Additionally, from the asymptotic equivalence of the Wald statistic and the likelihood
ratio statistic (Rao [64], Section 6e. 3), we obtain

G2(S) = G2(QS) + G2(MH) + op(1). (18)

Therefore, the QS and MH models are separable and exhibit asymptotic independence.
Caussinus’ result (8) shows a good property, such as Equations (17) and (18).

Tahata and Tomizawa [57] proved the asymptotic separability of the LSk and MEk
models for Equation (12). Tahata [40] extended the result for Equation (13). Additionally,
Tahata et al. [61] provided the property of the test statistics related to Equation (14). Separa-
ble hypotheses for the S model are discussed elsewhere, for example, by Saigusa et al. [65]
and Fujisawa and Tahata [58].

5. Measure of the Departure from Symmetry

As described in Section 1, the analysis of contingency tables is interested in whether
row and column variables are independent. If the independence hypothesis is rejected,
then the association between the variables is of interest. Various coefficients have been
proposed to measure the association such as gamma, Yule’s Q, Kendall’s tau-b, Kendall’s
tau, and Somers’ d. See (Bishop et al. [1], Ch. 11) and (Agresti [2], pp. 184–192). On the
other hand, Tomizawa [66] proposed two kinds of measures to represent the degree of
departure from the S model. Tomizawa et al. [67] gave a generalization of these measures.
Their generalization is expressed as the average of the power divergence (Cressie and
Read [68]). Additionally, Tomizawa et al. [69], Tahata et al. [70], and Iki et al. [71] have
proposed measures to represent the degree of departure from symmetry and the marginal
homogeneity. This section reviews a measure to represent the degree of departure from the
QS model.

Consider an R× R square contingency table with nominal categories. Caussinus [8]
proposed the QS model defined as Equation (1). Using the conditional probability (πc

ij),
the QS model can be expressed as

Qijk = Qkji (1 ≤ i < j < k ≤ R),

where Qijk = πc
ijπ

c
jkπc

ki and Qkji = πc
kjπ

c
jiπ

c
ik.

Let
∆ = ∑

i<j<k

(
Qijk + Qkji

)
.

Additionally, let

Q∗ijk =
Qijk

∆
, Q∗kji =

Qkji

∆
, C∗ijk = C∗kji =

1
2
(Q∗ijk + Q∗kji),

for 1 ≤ i < j < k ≤ R. Assuming that Qijk + Qkji 6= 0 for 1 ≤ i < j < k ≤ R,
Tahata et al. [41] proposed a measure defined as

Φ(λ)
QS =

1
2λ − 1 ∑

i<j<k

Q∗ijk


(

Q∗ijk
C∗ijk

)λ

− 1

+ Q∗kji


(

Q∗kji

C∗kji

)λ

− 1


 (λ > −1).

When λ = 0, this measure is defined by the value taken at the limit as λ→ 0. Thus

Φ(0)
QS =

1
log 2 ∑

i<j<k

{
Q∗ijk log

(
Q∗ijk
C∗ijk

)
+ Q∗kji log

(
Q∗kji

C∗kji

)}
.
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Φ(λ)
QS is the modification of the power divergence between

{
Q∗ijk

}
and

{
C∗ijk
}

. Especially,

Φ(0)
QS is the modification of the Kullback–Leibler divergence between them. It should be

noted that the user chooses the real value λ.
In addition, measure Φ(λ)

QS can be expressed using the diversity index of degree λ
(Patil and Taillie [72]). Let

Qc
ijk =

Qijk

Qijk + Qkji
, Qc

kji =
Qkji

Qijk + Qkji
(1 ≤ i < j < k ≤ R). (19)

For paraphrasing Equation (19), please see Tahata and Kozai [73] and Tahata et al. [74].
Then for λ > −1

Φ(λ)
QS =


1− 2λ

2λ − 1 ∑
i<j<k

(
Q∗ijk + Q∗kji

){
1−

(
Qc

ijk

)λ+1
−
(

Qc
kji

)λ+1
}

(λ 6= 0),

1− 1
log 2 ∑

i<j<k

(
Q∗ijk + Q∗kji

)(
−Qc

ijk log Qc
ijk −Qc

kji log Qc
kji

)
(λ = 0).

Namely, measure Φ(λ)
QS is a weighted sum of the diversity index, which includes the

Shannon entropy (Shannon [75]) when λ = 0 and the Gini concentration (Giorgi and
Gigliarano [76]) when λ = 1.

Measure Φ(λ)
QS lies between 0 and 1. For any λ > −1, the value of the measure is 0

if and only if the R× R contingency table has a QS structure, while its value is 1 if and
only if the degree of departure from QS is the largest, in the sense that Qc

ijk = 0 (then
Qc

kji = 1) or Qc
kji = 0 (then Qc

ijk = 1) for any 1 ≤ i < j < k ≤ R. When the value of
the measure is 1, for any 1 ≤ i < j < k ≤ R, then πijπjkπki = 0 or πjiπkjπik = 0 holds.
Namely, for any 1 ≤ i < j < k ≤ R, at least one of πc

ij, πc
jk, and πc

ki is equal to 0, or at
least one of πc

ji, πc
kj, and πc

ik is equal to 0. In other words, for any 1 ≤ i < j < k ≤ R,
the complete asymmetry arises for at least one pair of symmetric cells. That is, it gives
the partial complete asymmetry of cell probabilities. The partial complete asymmetry is a
weaker condition than the complete asymmetry of cell probabilities used in Tomizawa [66]
and Tomizawa et al. [67]. Additionally, the QS model indicates the symmetry structure of
the odds ratio, while Φ(λ)

QS = 1 indicates the complete asymmetry of the odds ratio because
θ(i<j;j<k)/θ(j<k;i<j) = 0 or ∞ for any 1 ≤ i < j < k ≤ R. It is natural that the degree of
departure from the QS model is the largest.

Consider an approximate standard error and large-sample confidence interval for
measure Φ(λ)

QS . Let Φ̂(λ)
QS denote the sample version of Φ(λ)

QS , which is given by Φ(λ)
QS when π

is replaced by p. Φ̂(λ)
QS has an asymptotic normal distribution with mean Φ(λ)

QS and variance

σ2[Φ̂(λ)
QS ] using the delta method (Bishop et al. [1] (Section 14.6)). See Tahata et al. [41] for

details of σ2[Φ̂(λ)
QS ].

Tahata and Kozai [73] proposed a measure to represent the degree of departure from
the EQS model proposed by Tomizawa [62]. Additionally, Tahata et al. [74] developed a
different measure to represent the degree of departure from the QS model and partitioned
their measure into two components. Ando [77] discussed the bivariate index vector to
concurrently analyze both the degree and the direction of departure from the QS model.

6. Discussions

When the QS model does not fit a given dataset well, often whether an extended model
is suitable is evaluated. Tomizawa [62] proposed the EQS model for a square contingency
table with ordinal categories. On the other hand, Tahata [78] proposed the quasi-asymmetry
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(QA) model for a square contingency table with nominal categories. The QA model is
defined as

log πij = λ + λX
i + λY

j + λXY
ij (i = 1, . . . , R; j = 1, . . . , R),

where λXY
ij = ∆ij + λXY

ji and |∆ij| = ∆ (≥ 0) for i < j. Using the odds ratio, the QA model
can be expressed as

θ(i<j;j<R) = e∆ij θ(j<R;i<j) (1 ≤ i < j ≤ R− 1).

This states that the odds of the symmetric odds ratio are equal to e∆ for some i < j and
e−∆ for other i < j. Using Qc

ijk and Qc
kji in Equation (19), the QA model can be expressed as

|Qc
ijR −Qc

Rji| = ∆∗ (1 ≤ i < j ≤ R− 1),

where ∆∗ = (e∆ − 1)/(e∆ + 1). When ∆ = 0 (∆∗ = 0), the QA model is reduced to the QS
model. If the QA model holds, parameter ∆∗ is useful to visualize the degree of departure
from QS because 0 ≤ ∆∗ < 1. Additionally, the value of ∆∗ approaches 1 as the value of ∆
increases. The parameter ∆∗ may be effective to express the degree of departure from QS.

If a square table has a structure of QA, then measure Φ(λ)
QS is simply expressed as

Φ(λ)
QS = 1− λ2λ

(2λ − 1)∑s<t<u(Qstu + Quts)
∑

i<j<k

(
Qijk + Qkji

)
H(λ)

ijk (∆)

where

H(λ)
ijk (∆) =

1
λ

1−
(

e∆ij+∆jk

e∆ij+∆jk + e∆ik

)λ+1

−
(

e∆ik

e∆ij+∆jk + e∆ik

)λ+1
.

Namely, measure Φ(λ)
QS can be expressed as the weighted sum of the function of ∆.

Herein, we note that (i) when ∆ = 0, H(λ)
ijk (0) = (2λ − 1)/(λ2λ) for any i < j < k. That

is, the value of the measure equals 0 (i.e., the QS model holds). (ii) If we take the limit as
∆→ ∞, then Qc

ijk = 0 (then Qc
kji = 1) or Qc

kji = 0 (then Qc
ijk = 1) for any i < j < k. That is,

the value of the measure equals 1. Therefore, the maximum degree of departure from QS
can be interpreted as the limitation of QA model with ∆→ ∞.

7. Concluding Remarks

Previously, Tomizawa and Tahata [28] reviewed topics on various symmetry models
to analyze square contingency tables, and Tahata and Tomizawa [29] summarized topics
related to the symmetry and asymmetry models. This paper mainly reviews four recent
developments in the analysis of square contingency tables: (1) modeling based on the
f -divergence, (2) the necessary and sufficient condition of symmetry, (3) partition of test
statistics for symmetry, and (4) the measure of departure from symmetry. These are based
on the results in Tahata [40] and Tahata et al. [41].

This paper focuses on the analysis of square contingency tables. Previous papers have
examined contingency tables with other structures. For example, Tahata and Tomizawa [79]
discussed the double symmetry, which is characterized as both symmetry and point sym-
metry. In this review, the problem of estimation of cell probabilities and goodness of
fit test are omitted. For such issue, Kateri [3], Lawal [80] and Tan [81] would be useful
to study computational aspects using R or SAS. Additionally, Lang [82,83] provided the
methodology and corresponding R code.

In this paper, the models related to the QS model are described. Especially, the
characterization of models and its properties are discussed. The models described this
paper is useful for analyzing real dataset. For example, unaided distance vision data, social
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mobility data, father–son matched educational level data, longitudinal data in biomedical
research, and so on. Such applications can be seen in each of references. For details of the
estimation of cell probabilities and goodness of fit test, please see corresponding papers.

Various topics are generalized for multi-way contingency tables with the same clas-
sifications. Bhapkar and Darroch [84] proposed the QS and MH models for a general
order and gave the generalization of Equation (8). Tomizawa and Tahata [28] proved the
generalization of Equation (18). For multi-way contingency tables, the structures of asym-
metries are considered in Tahata and Tomizawa [57], Tahata et al. [85], Tahata et al. [86]
and Shinoda et al. [87]. Moreover, Tahata and Tomizawa [88] and Yoshimoto et al. [59]
treated the problem of point symmetry for multi-way contingency tables.

In future work, the generalization of the results in described in this review will be
considered for the multi-way contingency tables. Additionally, the goodness of fit test for
symmetry and asymmetry models should be considered for sparse contingency tables.
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