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Abstract: Using the ranks and Moore-Penrose inverses of involved matrices, in this paper we establish

some necessary and sufficient solvability conditions for a system of Sylvester-type quaternion matrix

equations, and give an expression of the general solution to the system when it is solvable. As an

application of the system, we consider a special symmetry solution, named the η-Hermitian solution,

for a system of quaternion matrix equations. Moreover, we present an algorithm and a numerical

example to verify the main results of this paper.
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η-Hermitian matrix

1. Introduction

In 1952, Roth [1] studied the following one-sided generalized Sylvester matrix equation
for the first time

A1X + YB1 = C1, (1)

which is widely used in system and control theory. Since then, many researches have paid
attention to Sylvester-type matrix equations (e.g., [2–5]) because of their wide range of
applications, such as in descriptor system control theory [6], neural networks [7], robust,
feedback [8], graph theory [9] and other areas. For instance, Baksalary and Kala [10]
established a necessary and sufficient condition for Equation (1) to have a solution and
gave an expression of its general solution. In [11], Baksalary and Kala give a solvability
condition for the equation

AXB + CYD = E. (2)

Wang investigated Equation (2) over arbitrary regular rings with identity [12].
In 1843, the very famous mathematician Hamilton discovered the quaternion. It is

well known that quaternion algebra, denoted by H, is an associative and non-commutative
division algebra over the real number field R, where

H = {a0 + a1i + a2j + a3k|i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R}.

Since the 1970s, quaternions and the quaternion matrix have been studied a lot
(e.g., [13–16]). The widespread applications of quaternions and the quaternion matrix
include theoretical mechanics, optics, computer graphics, flight mechanics and aerospace
technology, quantum physics, signal processing and so on (e.g., [17–20]).
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In the last decade, the study of Sylvester-type matrix equations was extended to H
(e.g., [21–28]). In 2012, Wang and He [29] presented the necessary and sufficient conditions
for the Sylvester-type matrix equation

A1X1 + X2B1 + C3X3D3 + C4X4D4 = E1 (3)

to be consistent and derived the expression of its general solution, which can be easily
generalized to H. For the Sylvester-type matrix equations with multiple variables and
multiple equations, Wang [4] gave a solvability condition and the general solution to the
system of Sylvester-type matrix equations

A3W = B3, ZC3 = D3,

A5W + ZB5 = D4.
(4)

Zhang [30] investigated the necessary and sufficient conditions for the solvability of
the following system of Sylvester-like matrix equations

A1X = B1, XC1 = D1,

A2Y = B2, YC2 = D2,

ZC3 = D3, A4V = B4,

A6V+ZB6 + A7XB7 + A8YB8 = D5,

(5)

and presented a formula of its general solution. We note that Equations (1)–(5) are the
special cases of the following Sylvester-type quaternion matrix equations

A1X = B1, XC1 = D1,

A2Y = B2, YC2 = D2,

A3W = B3, ZC3 = D3,

A5W + ZB5 = D4, A4V = B4,

A6V+ZB6 + A7XB7 + A8YB8 = D5,

(6)

where Ai, Bi, Cj, Dk (i = 1, 8, j = 1, 3, k = 1, 5) are given matrices over H; X, Y, Z, V, W
are unknown.

Motivated by the work mentioned above, in this paper we aim to investigate the
solvability conditions and the general solutions to a more general system of a Sylvester-
type quaternion matrix equation, Equation (6). In 2011, Took et al. [31] defined a special
class of symmetric matrices, named η-Hermitian. For η ∈ {i, j, k}, a quaternion matrix A is
called η-Hermitian if A = Aη∗ , where Aη∗ = −ηA∗η , A∗ is the conjugate and transpose
matrix of A. It is well known that η-Hermitian matrices have some applications in linear
modeling (e.g., [32–34]) and so on.

As an application of (6), we derive the solvability conditions and an expression of the
η-Hermitian solution to the system of matrix equations

A4V = B4,

A1X = B1, X = Xη∗ ,

A2Y = B2, Y = Yη∗ ,

A6V + (A6V)η∗ + A7XAη∗

7 + A8YAη∗

8 = D5, D5 = Dη∗

5 ,

(7)
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where Ai(i = 1, 2, 4, 6, 8), B1, B2, B4, D5 are given matrices over H; X and Y are η-Hermitian
matrices over H.

We organize the rest of this article as follows: In Section 2, we introduce the basic
knowledge of quaternions and Moore–Penrose inverse of a quaternion matrix, and review
some matrix equations. In Section 3, we establish the solvability conditions for the system
of (6) in terms of the Moore–Penrose inverses and the ranks of the coefficients’ quaternion
matrices in (6). In Section 4, we give an expression of the general solution to the system
of (6), and illustrate the main results using a numerical example. In Section 5, we give
some solvability conditions and an expression of the η-Hermitian solution to the system
(7). Finally, we present a brief conclusion in Section 6 to end this paper.

2. Preliminaries

Let R and Hm×n stand for the real number field and the set of all m× n matrix spaces
over the quaternion algebra, respectively. The symbols r(A), A∗, I and 0 are denoted by the
rank of a given quaternion matrix A, the conjugate transpose of A, an identity matrix, and
a zero matrix with appropriate sizes, respectively. The Moore–Penrose inverse of A ∈ Hl×k

is defined to be the unique matrix, denoted by A†, satisfying

AA† A = A, A† AA† = A†, (AA†)∗ = AA†, (A† A)∗ = A† A.

Moreover, LA = I − A† A and RA = I − AA† represent two projectors. Clearly,
(LA)

η∗ = RAη∗ and (RA)
η∗ = LAη∗ of A.

The following lemma was given by Marsaglia and Stynan [35], which is also available
over H.

Lemma 1 ([35]). Let A ∈ Hm×n, B ∈ Hm×k, C ∈ Hl×n, D ∈ Hj×k and E ∈ Hl×i. Then,

r

(
A BLD

REC 0

)
= r

 A B 0
C 0 E
0 D 0

− r(D)− r(E).

Lemma 2 ([36]). Let A1 and C1 be known matrices with feasible dimensions over H. Then, the
matrix equation A1X = C1 has a solution if and only if RA1 C1 = 0. In this case, its general
solution is expressed as

X = A†
1C1 + LA1 T1,

where T1 is an arbitrary matrix of an appropriate size.

Lemma 3 ([36]). Let B1 and D1 be known matrices with allowable dimensions over H. Then,
the matrix equation YB1 = D1 has a solution if and only if D1LB1 = 0. In this case, its general
solution is

Y = D1B†
1 + T2RB1 ,

where T2 is an arbitrary matrix of an appropriate size.

Lemma 4 ([37]). Let A1, B1, C1 and C2 be the given matrices. Then, the system of matrix equations

A1Y = C1, YB1 = C2
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is consistent if and only if

RA1 C1 = 0, C2LB1 = 0, A1C2 = C1B1.

In this case, its general solution is

Y = A†
1C1 + LA1 C2B†

1 + LA1 T3RB1 ,

where T3 is an arbitrary matrix of an appropriate size.

Lemma 5 ([10]). Let A, B and C be given over H. Then, the Equation (1) is solvable if and only if
RACLB = 0. Under this condition, the general solution to Equation (1) can be expressed as

X = A†C−U1B + LAU2,

Y = RACB† + AU1 + U3RB,

where U1, U2 and U3 are arbitrary matrices with appropriate sizes over H.

Lemma 6 ([38]). Consider the following matrix equation over H

A1X1 + X2B1 + A2Y1B2 + A3Y2B3 + A4Y3B4 = B, (8)

where Ai, Bi (i = 1, 4), B are given and the others are unknown. Let

RA1 A2 = A11, RA1 A3 = A22, RA1 A4 = A33, B2LB1 = B11, B22LB11 = N1,

B3LB1 = B22, B4LB1 = B33, RA11 A22 = M1, S1 = A22LM1 , RA1 BLB1 = T1,

C = RM1 RA11 , C1 = CA33, C2 = RA11 A33, C3 = RA22 A33, C4 = A33,

D = LB11 LN1 , D1 = B33, D2 = B33LB22 , D3 = B33LB11 , D4 = B33D,

E1 = CT1, E2 = RA11 T1LB22 , E3 = RA22 T1LB11 , E4 = T1D,

C11 = (LC2 , LC4), D11 =

(
RD1

RD3

)
, C22 = LC1 , D22 = RD2 , C33 = LC3 ,

D33 = RD4 , E11 = RC11 C22, E22 = RC11 C33, E33 = D22LD11 , E44 = D33LD11 ,

M = RE11 E22, N = E44LE33 , F = F2 − F1, E = RC11 FLD11 , S = E22LM,

F11 = C2LC1 , G1 = E2 − C2C†
1 E1D†

1 D2, F22 = C4LC3 , G2 = E4 − C4C†
3 E3D†

3 D4,

F1 = C†
1 E1D†

1 + LC1 C†
2 E2D†

2 , F2 = C†
3 E3D†

3 + LC3 C†
4 E4D†

4 .

Then, the following statements are equivalent:
(1) Equation (8) is consistent.
(2)

RCi Ei = 0, EiLDi = 0 (i = 1, 4), RE22 ELE33 = 0.

(3)
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r

(
B A2 A3 A4 A1

B1 0 0 0 0

)
= r(B1) + r( A2 A3 A4 A1 ),

r

 B A2 A4 A1

B3 0 0 0
B1 0 0 0

 = r( A2 A4 A1 ) + r

(
B3

B1

)
,

r

 B A3 A4 A1

B2 0 0 0
B1 0 0 0

 = r( A3 A4 A1 ) + r

(
B2

B1

)
,

r


B A4 A1

B2 0 0
B3 0 0
B1 0 0

 = r

 B2

B3

B1

+ r( A4 A1 ),

r

 B A2 A3 A1

B4 0 0 0
B1 0 0 0

 = r( A2 A3 A1 ) + r

(
B4

B1

)
,

r


B A2 A1

B3 0 0
B4 0 0
B1 0 0

 = r

 B3

B4

B1

+ r( A2 A1 ),

r


B A3 A1

B2 0 0
B4 0 0
B1 0 0

 = r

 B2

B4

B1

+ r( A3 A1 ),

r


B A1

B2 0
B3 0
B4 0
B1 0

 = r


B2

B3

B4

B1

+ r(A1),

r



B A2 A1 0 0 0 A4

B3 0 0 0 0 0 0
B1 0 0 0 0 0 0
0 0 0 −B A3 A1 A4

0 0 0 B2 0 0 0
0 0 0 B1 0 0 0
B4 0 0 B4 0 0 0


= r


B3 0
B1 0
0 B2

0 B1

B4 B4

+ r

(
A2 A1 0 0 A4

0 0 A3 A1 A4

)
.

In this case, the general solution to Equation (8) can be expressed as
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X1 = A†
1(B− A2Y1B2 − A3Y2B3 − A4Y3B4)− A†

1U1B1 + LA1U2,

X2 = RA1(B− A2Y1B2 − A3Y2B3 − A4Y3B4)B†
1 + A1 A†

1U1 + U3RB1 ,

Y1 = A†
11TB†

11 − A†
11 A22M†

1 TB†
11 − A†

11S1 A†
22TN†

1 B22B†
11 − A†

11S1U4RN1 B22B†
11 + LA11U5 + U6RB11 ,

Y2 = M†
1 TB†

22 + S†
1S1 A†

22TN†
1 + LM1 LS1U7 + U8RB22 + LM1U4RN1 ,

Y3 = F1 + LC2 V1 + V2RD1 + LC1 V3RD2 , or Y3 = F2 − LC4W1 −W2RD3 − LC3W3RD4 ,

where T = T1 − A33Y3B33; Ui(i = 1, 8) represents any matrix with appropriate dimensions over H,

V1 = (Im 0)
[
C†

11(F− C22V3D22 − C33W3D33)− C†
11U11D11 + LC11U12

]
,

W1 = (0 Im)
[
C†

11(F− C22V3D22 − C33W3D33)− C†
11U11D11 + LC11U12

]
,

W2 =
[

RC11(F− C22V3D22 − C33W3D33)D†
11 + C11C†

11U11 + U21RD11

]( 0
In

)
,

V2 =
[

RC11(F− C22V3D22 − C33W3D33)D†
11 + C11C†

11U11 + U21RD11

]( In

0

)
,

V3 = E†
11FE†

33 − E†
11E22M†FE†

33 − E†
11SE†

22FN†E44E†
33 − E†

11SU31RN E44E†
33 + LE11U32 + U33RE33 ,

W3 = M†FE†
44 + S†SE†

22FN† + LMLSU41 + LMU31RN −U42RE44 ,

where U11, U12, U21, U31, U32, U33, U41 and U42 are any matrix with appropriate dimensions over H.

3. Solvability Conditions to the System (6)

The goal of this section is to give the necessary and sufficient conditions for the
existence of a solution to system (6).

Theorem 1. Let Ai ∈ Hmi×ni (i = 1, 4), A5 ∈ Hm×n3 , A6 ∈ Hm×n4 , A7 ∈ Hm×n1 , A8 ∈
Hm×n2 , Bj ∈ Hmj×lj(j = 1, 2), B3 ∈ Hm3×q, B4 ∈ Hm4×l , B5 ∈ Hl3×q, B6 ∈ Hl3×l , B7 ∈
Hl1×l , B8 ∈ Hl2×l , Ck ∈ Hlk×pk (k = 1, 3), Dj ∈ Hnj×pj(j = 1, 2), D3 ∈ Hm×l2 , D4 ∈ Hm×q

and D5 ∈ Hm×l . Set

A11 = A5LA3 , B11 = RC3 B5, C11 = D4 − A5 A†
3B3 − D3C†

3 B5, A22 = A6LA4 , (9)

B22 = RB11 RC3 B6, A33 = A7LA1 , B33 = RC1 B7, A44 = A8LA2 , B44 = RC2 B8, (10)

A55 = A11, B55 = RC3 B6, M1 = RA22 A33, M2 = RA22 A44, M3 = RA22 A55, (11)

C22 = D5 − A6 A†
4B4 − D3C†

3 B6 − RA11 C11B†
11RC3 B6

− A7(A†
1B1 + LA1 D1C†

1)B7 − A8(A†
2B2 + LA2 D2C†

2)B8, (12)

N1 = B33LB22 , N2 = B44LB22 , N3 = B55LB22 , G1 = N2LN1 , H1 = RM1 M2, (13)

S1 = M2LH1 , T = RA22 C22LB22 , P = RH1 RM1 , P1 = PM3, P2 = RM1 M3, (14)

P3 = RM2 M3, P4 = M3, Q = LN1 LG1 , Q1 = N3, Q2 = N3LN2 , Q3 = N3LN1 , (15)

Q4 = N3Q, E1 = PT, E2 = RM1 TLN2 , E3 = RM2 TLN1 , E4 = TQ, (16)

E11 = (LP2 , LP4), F11 =

(
RQ1

RQ3

)
, E22 = LP1 , F22 = RQ2 , E33 = LP3 , F33 = RQ4 , (17)
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M11 = RE11 E22, M22 = RE11 E33, M33 = F22LF11 , M44 = F33LF11 , M = RM11 M22, (18)

N = M44LM33 , F = F2 − F1, E = RE11 FLF11 , S = M22LM, G11 = P2LP1 , (19)

H11 = E2 − P2P†
1 E1Q†

1Q2, G22 = P4LP3 , H22 = E4 − P4P†
3 E3Q†

3Q4, (20)

F2 = P†
1 E1Q†

1 + LP1 P†
2 E2Q†

2, F1 = P†
3 E3Q†

3 + LP3 P†
4 E4Q†

4. (21)

Then, the following statements are equivalent:
(1) System (6) has a solution.
(2)

A1D1 = B1C1, A2D2 = B2C2 (22)

and
RA1 B1 = 0, D1LC1 = 0, RA2 B2 = 0, D2LC2 = 0,

RA3 B3 = 0, D3LC3 = 0, RA4 B4 = 0, RA11 C11LB11 = 0,

RPi Ei = 0, EiLQi = 0 (i = 1, 4), RM22 ELM33 = 0.

(23)

(3) (22) holds and

r(A1 B1) = r(A1), r

(
C1

D1

)
= r(C1), r(A2 B2) = r(A2), r

(
C2

D2

)
= r(C2), (24)

r(A3 B3) = r(A3), r

(
C3

D3

)
= r(C3), r(A4 B4) = r(A4), (25)

r

 D4 A5 D3

B5 0 C3

B3 A3 0

 = r

(
A5

A3

)
+ r( B5 C3 ), (26)

r



D5 A7 A8 A6 D4 A5 D3

B6 0 0 0 B5 0 C3

B1B7 A1 0 0 0 0 0
B2B8 0 A2 0 0 0 0

B4 0 0 A4 0 0 0
0 0 0 0 B3 A3 0


= r


A7 A8 A5 A6

A1 0 0 0
0 A2 0 0
0 0 0 A4

0 0 A3 0

+ r
(

B6 B5 C3
)
, (27)

r



D5 A7 A6 A8D2 D4 A5 D3

B8 0 0 C2 0 0 0
B6 0 0 0 B5 0 C3

B1B7 A1 0 0 0 0 0
B4 0 A4 0 0 0 0
0 0 0 0 B3 A3 0


= r


A7 A6 A5

A1 0 0
0 A4 0
0 0 A3

+ r
(

B8 C2 0 0
B6 0 B5 C3

)
, (28)

r



D5 A8 A6 A7D1 D4 A5 D3

B7 0 0 C1 0 0 0
B6 0 0 0 B5 0 C3

B2B8 A2 0 0 0 0 0
B4 0 A4 0 0 0 0
0 0 0 0 B3 A3 0


= r


A8 A6 A5

A2 0 0
0 A4 0
0 0 A3

+ r
(

B7 C1 0 0
B6 0 B5 C3

)
, (29)
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r



D5 A6 A7D1 A8D2 D4 A5 D3

B7 0 C1 0 0 0 0
B8 0 0 C2 0 0 0
B6 0 0 0 B5 0 C3

B4 A4 0 0 0 0 0
0 0 0 0 B3 A3 0


= r

 B7 C1 0 0 0
B8 0 C2 0 0
B6 0 0 B5 C3

+ r

 A6 A5

A4 0
0 A3

,

(30)

r


D5 A7 A8 A6 D3

B6 0 0 0 C3

B1B7 A1 0 0 0
B2B8 0 A2 0 0

B4 0 0 A4 0

 = r


A7 A8 A6

A1 0 0
0 A2 0
0 0 A4

+ r
(

B6 C3

)
, (31)

r


D5 A7 A6 A8D2 D3

B8 0 0 C2 0
B6 0 0 0 C3

B1B7 A1 0 0 0
B4 0 A4 0 0

 = r

(
B8 C2 0
B6 0 C3

)
+ r

 A7 A6

A1 0
0 A4

, (32)

r


D5 A8 A6 A7D1 D3

B7 0 0 C1 0
B6 0 0 0 C3

B2B8 A2 0 0 0
B4 0 A4 0 0

 = r

(
B7 C1 0
B6 0 C3

)
+ r

 A8 A6

A2 0
0 A4

, (33)

r


D5 A6 A7D1 A8D2 D3

B7 0 C1 0 0
B8 0 0 C2 0
B6 0 0 0 C3

B4 A4 0 0 0

 = r

 B7 C1 0 0
B8 0 C2 0
B6 0 0 C3

+ r

(
A6

A4

)
, (34)

r



D5 A7 A6 0 0 0 A8D2 D4 0 0 0 A5 D3 0 0
B8 0 0 0 0 0 C2 0 0 0 0 0 0 0 0
B6 0 0 0 0 0 0 B5 0 0 0 0 C3 0 0
0 0 0 D5 A8 A6 0 0 A7D1 D4 0 0 0 A5 D3

0 0 0 B7 0 0 0 0 C1 0 0 0 0 0 0
0 0 0 B6 0 0 0 0 0 B5 0 0 0 0 C3

B6 0 0 B6 0 0 0 0 0 0 C3 0 0 0 0
B1B7 A1 0 0 0 0 0 0 0 0 0 0 0 0 0

B4 0 A4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 B2B8 A2 0 0 0 0 0 0 0 0 0 0
0 0 0 B4 0 A4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 B3 0 0 0 A3 0 0 0
0 0 0 0 0 A4 0 0 0 B3 0 0 0 A3 0
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= r


B8 0 C2 0 0 0 0 0 0
B6 0 0 B5 0 0 0 C3 0
0 B7 0 0 C1 0 0 0 0
0 B6 0 0 0 B5 0 0 C3

B6 B6 0 0 0 0 C3 0 0

+ r



A7 A6 0 0 A5 0
0 0 A8 A6 0 A5

A1 0 0 0 0 0
0 A4 0 0 0 0
0 0 A2 0 0 0
0 0 0 A4 0 0
0 0 0 0 A3 0
0 0 0 0 0 A3


. (35)

Proof. (1)⇔ (2)
The proof is divided into three parts:

• Firstly, we divide the system (6) into the following:

A3W = B3, ZC3 = D3, A4V = B4,

A1X = B1, XC1 = D1, A2Y = B2, YC2 = D2,
(36)

A5Z + WB5 = D4, (37)

A6V + ZB6 + A7XB7 + A8YB8 = D5, (38)

and consider the solvability conditions and the general solution to the system of
matrices of Equation (36). For more information, see Step 1.

• Secondly, substituting the W and Z obtained in the first step into Equation (37) yields

A11T3 + T4B11 = C11, (39)

where A11, B11 and C11 are defined by (9); T3 and T4 are unknowns. For more informa-
tion, see Step 2.

• Finally, by substituting the X, Y, Z, and V obtained from the above two steps into
Equation (38), we obtain a matrix equation with the following form

A22T5 + U3B22 + A33T1B33 + A44T2B44 + A55U1B55 = C22, (40)

where Aii, Bii (i = 2, 5) and C22 are given by (9)–(12); T1, T2, T5, U1 and U3 are un-
knowns. For more information, see Step 3.

We can obtain the results from the following steps: First, we consider the solvabil-
ity conditions and the expression of the general solutions to the system of the matrix
Equation (36).

Step 1. It follows from Lemmas 2–4 that system (36) has a solution if and only if (22)
holds and

RA1 B1 = 0, D1LC1 = 0, RA2 B2 = 0, D2LC2 = 0,

RA3 B3 = 0, D3LC3 = 0, RA4 B4 = 0.
(41)

In this case, the general solution to system (36) can be written as

X = A†
1B1 + LA1 D1C†

1 + LA1 T1RC1 ,
Y = A†

2B2 + LA2 D2C†
2 + LA2 T2RC2 ,

W = A†
3B3 + LA3 T3, Z = D3C†

3 + T4RC3 , V = A†
4B4 + LA4 T5,

(42)

where Ti (i = 1, 5) are arbitrary matrices over H with appropriate sizes.
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Step 2. Substituting W, Z in (42) into (37) yields (39). According to Lemma 5, it follows
that Equation (39) has a solution if and only if

RA11 C11LB11 = 0. (43)

In this case, the general solution to Equation (39) can be expressed as

T3 = A†
11C1 −U1B11 + LA11U2, (44)

T4 = RA11 C11B†
11 + A11U1 + U3RB11 , (45)

where U1, U2 and U3 are any matrix with appropriate sizes over H.
Substituting (45) into Z = D3C†

3 + T4RC3 yields

Z = D3C†
3 + RA11 C11B†

11RC3 + A11U1RC3 + U3RB11 RC3 . (46)

Step 3. By substituting X, Y, V in (42) and Z in (46) into (38), we obtain Equation (40).
By using Lemma 6, Equation (40) is consistent if and only if

RPi Ei = 0, EiLQi = 0 (i = 1, 4), RM22 ELM33 = 0, (47)

namely,

r

(
C22 A33 A44 A55 A22

B22 0 0 0 0

)
= r(B22) + r( A33 A44 A55 A22 ), (48)

r

 C22 A33 A55 A22

B44 0 0 0
B22 0 0 0

 = r( A33 A55 A22 ) + r

(
B44

B22

)
, (49)

r

 C22 A44 A55 A22

B33 0 0 0
B22 0 0 0

 = r( A44 A55 A22 ) + r

(
B33

B22

)
, (50)

r


C22 A55 A22

B33 0 0
B44 0 0
B22 0 0

 = r

 B33

B44

B22

+ r( A55 A22 ), (51)

r

 C22 A33 A44 A22

B55 0 0 0
B22 0 0 0

 = r( A33 A44 A22 ) + r

(
B55

B22

)
, (52)

r


C22 A33 A22

B44 0 0
B55 0 0
B22 0 0

 = r

 B44

B55

B22

+ r( A33 A22 ), (53)
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r


C22 A44 A22

B33 0 0
B55 0 0
B22 0 0

 = r

 B33

B55

B22

+ r( A44 A22 ), (54)

r


C22 A22

B33 0
B44 0
B55 0
B22 0

 = r


B33

B44

B55

B22

+ r(A22), (55)

r



C22 A33 A22 0 0 0 A55

B44 0 0 0 0 0 0
B22 0 0 0 0 0 0
0 0 0 −C22 A44 A22 A55

0 0 0 B33 0 0 0
0 0 0 B22 0 0 0

B55 0 0 B55 0 0 0


= r


B44 0
B22 0
0 B33

0 B22

B55 B55

+ r

(
A33 A22 0 0 A55

0 0 A44 A22 A55

)
. (56)

In this case, the general solution to Equation (40) can be expressed as

T5 = A†
22(C22 − A33T1B33 − A44T2B44 − A55U1B55) + A†

22V1B22 + LA22 V2,

U3 = RA22(C22 − A33T1B33 − A44T2B44 − A55U1B55)B†
22 + A22 A†

22V1 + V3RB22 ,

T1 = M†
1 T11N†

1 −M†
1 M2H†

1 T11N†
1 −M†

1S1M†
2 T11G†

1 N2N†
1 −M†

1S1V4RG1 N2N†
1

+ LM1 V5 + V6RN1 ,

T2 = H†
1 T11N†

2 + S†
1S1M†

2 T11G†
1 + LH1 LS1 V7 + V8RN2 + LH1 V4RG1 ,

U1 = F1 + LP2W1 + W2RQ1 + LP1W3RQ2 , or U1 = F2 − LP2W4 −W5RQ3 − LP3W6RQ4 ,

where T11 = T −M3U1N3, Vi(i = 1, 8) are any matrix with suitable dimensions over H,

W1 =
[

Im 0
][

E†
11(F− E22W3F22 − E33W6F33)− E†

11U11F11 + LE11U12

]
,

W4 =
[

0 Im

][
E†

11(F− E22W3F22 − E33W6F33)− E†
11U11F11 + LE11U12

]
,

W2 =
[

RE11(F− E22W3F22 − E33W6F33)F†
11 + E11E†

11U11 + U21RF11

][ In

0

]
,

W5 =
[

RE11(F− E22W3F22 − E33W6F33)F†
11 + E11E†

11U11 + U21RF11

][ 0
In

]
,

W3 = M†
11FM†

33 −M†
11M22M†FM†

33 −M†
11SM†

22FN† M44M†
33 −M†

11SU31RN M44M†
33

+ LM11U32 + U33RM33 ,

W6 = M†FM†
44 + S†SM†

22FN† + LMLSU41 + LMU31RN −U42RM44 ,

where U11, U12, U21, U31, U32, U33, U41 and U42 are any matrix with suitable dimensions
over H.

To sum up, the system of matrices of Equation (6) has a solution if and only if (41), (43)
and (47) hold.

(2)⇔ (3) We divide it into three parts to prove its equivalence.
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Part 1. In this part, we prove that (41) holds if and only if (24) and (25) hold. According
to Lemma 1, it is easy to show that (41) holds if and only if (24) and (25) hold.

Part 2. In this part, we prove that (43) ⇐⇒ (26). It follows from Lemma 1 and
elementary operations that

(43)⇔ r

(
C11 A11

B11 0

)
= r(A11) + r(B11)

⇔ r

(
C11 A5LA3

RC3 B5 0

)
= r(A5LA3) + r(RC3 B5)

⇔ r

 D4 − A5 A†
3B3 − D3C†

3 B5 A5 0
B5 0 C3

0 A3 0

 = r

(
A5

A3

)
+ r
(

B5 C3

)

⇔ r

 D4 A5 D3

B5 0 C3

B3 A3 0

 = r

(
A5

A3

)
+ r
(

B5 C3

)
⇔ (26).

Part 3. In this part, we show that (47) holds if and only if (27) to (35) hold. By using
Lemma 6, (47) holds if and only if (48) to (56) hold. Hence, we only show that (48) to (56)
hold if and only if (27) to (35) hold, respectively. We first prove that (48)⇔ (27).

Note that

X0 = A†
1B1 + LA1 D1C†

1 , Y0 = A†
2B2 + LA2 D2C†

2 , Z0 = D3C†
3 , V0 = A†

4B4, W0 = A†
3B3

are the special solution to the equations

A1X = B1, XC1 = D1,

A2Y = B2, YC2 = D2,

A3W = B3, ZC3 = D3, A4V = B4,

respectively. Then, we have that

C11 = D4 − A5W0 − Z0B5, (57)

C22 = D5 − A6V0 − Z0B6 − RA11 C11B†
11RC3 B6 − A7X0B7 − A8Y0B8. (58)

It follows from Lemma 1 and elementary operations to (47) that

(48)⇔ r


C22 A7 A8 A11 A6 0

RC3 B6 0 0 0 0 B11

0 A1 0 0 0 0
0 0 A2 0 0 0
0 0 0 0 A4 0

 = r( RC3 B6 B11 ) + r


A7 A8 A11 A6

A1 0 0 0
0 A2 0 0
0 0 0 A4



⇔ r


D5 − Z0B6 A7 A8 A6 C11 A11

RC3 B6 0 0 0 B11 0
B1B7 A1 0 0 0 0
B2B8 0 A2 0 0 0

B4 0 0 A4 0 0

 = r


A7 A8 A11 A6

A1 0 0 0
0 A2 0 0
0 0 0 A4

+ r( RC3 B6 B11 )
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⇔ r



D5 A7 A8 A6 D4 A5 D3

B6 0 0 0 B5 0 C3

B1B7 A1 0 0 0 0 0
B2B8 0 A2 0 0 0 0

B4 0 0 A4 0 0 0
0 0 0 0 B3 A3 0


= r


A7 A8 A5 A6

A1 0 0 0
0 A2 0 0
0 0 0 A4

0 0 A3 0

+ r( B6 B5 C3 )⇔ (27).

Similarly, we can prove that RP2 E2 = 0⇔ (28), RP3 E3 = 0⇔ (29), RP4 E4 = 0⇔ (30)
and EiLQi = 0 (i = 1, 4) hold if and only if (31) to (34) hold, respectively. Next, we
show that RM22 ELM33 = 0⇔ (35). According to Lemma 1 and elementary operations, we
have that

RM22 ELM33 = 0⇔ r

(
E D22

D33 0

)
= r(D22) + r(D33)

⇔ r



C22 A33 A22 0 0 0 A55

B44 0 0 0 0 0 0
B22 0 0 0 0 0 0
0 0 0 −C22 A44 A22 A55

0 0 0 B33 0 0 0
0 0 0 B22 0 0 0

B55 0 0 B55 0 0 0


= r


B44 0
B22 0
0 B33

0 B22

B55 B55

+ r
(

A33 A22 0 0 A55

0 0 A44 A22 A55

)

⇔ r



C22 A7 A6 0 0 0 A11 0 0 0 0 0
B8 0 0 0 0 0 0 C2 0 0 0 0

RC3 B6 0 0 0 0 0 0 0 B11 0 0 0
0 0 0 −C22 A8 A6 A11 0 0 0 0 0
0 0 0 B7 0 0 0 0 0 C1 0 0
0 0 0 RC3 B6 0 0 0 0 0 0 B11 0

B6 0 0 B6 0 0 0 0 0 0 0 C3

0 A1 0 0 0 0 0 0 0 0 0 0
0 0 A4 0 0 0 0 0 0 0 0 0
0 0 0 0 A2 0 0 0 0 0 0 0
0 0 0 0 0 A4 0 0 0 0 0 0



= r


B8 0 C2 0 0 0 0

RC3 B6 0 0 B11 0 0 0
0 B7 0 0 C1 0 0
0 RC3 B6 0 0 0 B11 0

B6 B6 0 0 0 0 C3

+ r



A7 A6 0 0 A11

0 0 A8 A6 A11

A1 0 0 0 0
0 A4 0 0 0
0 0 A2 0 0
0 0 0 A4 0



⇔ r


B8 0 C2 0 0 0 0 0 0
B6 0 0 B5 0 0 0 C3 0
0 B7 0 0 C1 0 0 0 0
0 B6 0 0 0 B5 0 0 C3

B6 B6 0 0 0 0 C3 0 0

+ r



A7 A6 0 0 A11 0
0 0 A8 A6 0 A11

A1 0 0 0 0 0
0 A4 0 0 0 0
0 0 A2 0 0 0
0 0 0 A4 0 0





Symmetry 2022, 14, 1056 14 of 21

= r



D5 − Z0B6 A7 A6 0 0 0 A8D2 C11 0 0 0 A11 0 0 0
B8 0 0 0 0 0 C2 0 0 0 0 0 0 0 0
B6 0 0 0 0 0 0 B5 0 0 0 0 C3 0 0
0 0 0 Z0B6 − D5 A8 A6 0 0 −A7D1 −C11 0 0 0 A11 0
0 0 0 B7 0 0 0 0 C1 0 0 0 0 0 0
0 0 0 B6 0 0 0 0 0 B5 0 0 0 0 C3

B6 0 0 B6 0 0 0 0 0 0 C3 0 0 0 0
B1B7 A1 0 0 0 0 0 0 0 0 0 0 0 0 0

B4 0 A4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −B2B8 A2 0 0 0 0 0 0 0 0 0 0
0 0 0 −B4 0 A4 0 0 0 0 0 0 0 0 0



⇔ r


B8 0 C2 0 0 0 0 0 0
B6 0 0 B5 0 0 0 C3 0
0 B7 0 0 C1 0 0 0 0
0 B6 0 0 0 B5 0 0 C3

B6 B6 0 0 0 0 C3 0 0

+ r



A7 A6 0 0 A5 0
0 0 A8 A6 0 A5

A1 0 0 0 0 0
0 A4 0 0 0 0
0 0 A2 0 0 0
0 0 0 A4 0 0
0 0 0 0 A3 0
0 0 0 0 0 A3



= r



D5 A7 A6 0 0 0 A8D2 D4 0 0 0 A5 D3 0 0
B8 0 0 0 0 0 C2 0 0 0 0 0 0 0 0
B6 0 0 0 0 0 0 B5 0 0 0 0 C3 0 0
0 0 0 D5 A8 A6 0 0 A7D1 D4 0 0 0 A5 D3

0 0 0 B7 0 0 0 0 C1 0 0 0 0 0 0
0 0 0 B6 0 0 0 0 0 B5 0 0 0 0 C3

B6 0 0 B6 0 0 0 0 0 0 C3 0 0 0 0
B1B7 A1 0 0 0 0 0 0 0 0 0 0 0 0 0

B4 0 A4 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 B2B8 A2 0 0 0 0 0 0 0 0 0 0
0 0 0 B4 0 A4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 B3 0 0 0 A3 0 0 0
0 0 0 0 0 0 0 0 0 B3 0 0 0 A3 0



⇔ (35).

4. The General Solution to the System (6)

In this section, we give an expression for the general solution of Equation (6) by using
the Moore–Penrose inverse. According to the proof of Theorem 1, we obtain the following the-
orem:

Theorem 2. The general solution to system (6) can be expressed as follows when the solvability
conditions are met:

X = A†
1B1 + LA1 D1C†

1 + LA1 T1RC1 , Y = A†
2B2 + LA2 D2C†

2 + LA2 T2RC2 ,

Z = D3C†
3 + RA11 C11B†

11RC3 + A11U1RC3 + U3RB11 RC3 ,

W = A†
3B3 + LA3 A†

11C1 − LA3 A†
11U1B11 + LA3 LA11U2,

V = A†
4B4 + LA4 A†

22(C22 − A33T1B33 − A44T2B44 − A55U1B55) + LA4 A†
22V1B22 + LA4 LA22 V2,
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where T11 = T −M3U1N3, Vi(i = 1, 8) are arbitrary matrices with appropriate sizes.

T1 = M†
1 T11N†

1 −M†
1 M2H†

1 T11N†
1 −M†

1S1M†
2 T11G†

1 N2N†
1 −M†

1S1V4RG1 N2N†
1

+ LM1 V5 + V6RN1 ,

T2 = H†
1 T11N†

2 + S†
1S1M†

2 T11G†
1 + LH1 LS1 V7 + V8RN2 + LH1 V4RG1 ,

U3 = RA22(C22 − A33T1B33 − A44T2B44 − A55U1B55)B†
22 + A22 A†

22V1 + V3RB22 ,

U1 = F1 + LP2W1 + W2RQ1 + LP1W3RQ2 , or U1 = F2 − LP2W4 −W5RQ3 − LP3W6RQ4 ,

W1 =
[

Im 0
][

E†
11(F− E22W3F22 − E33W6F33)− E†

11U11F11 + LE11U12

]
,

W4 =
[

0 Im

][
E†

11(F− E22W3F22 − E33W6F33)− E†
11U11F11 + LE11U12

]
,

W2 =
[

RE11(F− E22W3F22 − E33W6F33)F†
11 + E11E†

11U11 + U21RF11

][ In

0

]
,

W5 =
[

RE11(F− E22W3F22 − E33W6F33)F†
11 + E11E†

11U11 + U21RF11

][ 0
In

]
,

W3 = M†
11FM†

33 −M†
11M22M†FM†

33 −M†
11SM†

22FN† M44M†
33 −M†

11SU31RN M44M†
33

+ LM11U32 + U33RM33 ,

W6 = M†FM†
44 + S†SM†

22FN† + LMLSU41 + LMU31RN −U42RM44 ,

where U11, U12, U21, U31, U32, U33, U41 and U42 are arbitrary matrices over H of appropriate sizes.

Next, we discuss the special cases of the system of matrices of Equation (6). Letting
A3, B3, A5, B5 and D4 vanish yields the following:

Corollary 1. Suppose that Ai, Bi, Cj, Dj (i = 1, 4, j = 1, 5) and E1 are given, denote

A6 = A4LA1 , B6 = RB1 B4, C6 = C4LA2 , D6 = RB2 D4, C7 = C5LA3 , D7 = RB3 D5,

E6 = E1 − A4 A†
1C1 − D1B†

1 B4 − C4

(
A†

2C2 + LA2 D2B†
2

)
D4 − C5

(
A†

3C3 + LA3 D3B†
3

)
D5,

A = RA6 C6, B = D6LB6 , C = RA6 C7, D = D7LB6 ,

E = RA6 E6LB6 , M = RAC, N = DLB, S = CLM.

Then, the following statements are equivalent:
(1)System (5) is consistent.
(2)

RAi Ci = 0, DiLBi = 0 (i = 1, 2, 3), A2D2 = C2B2, A3D3 = C3B3,

RAE = MM†E, ELB = EN†N, RAELD = 0, RCELB = 0.
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(3)

r
(

Ai Ci

)
= r(Ai), r

(
Bi

Di

)
= r(Bi) (i = 1, 2, 3), A2D2 = C2B2, A3D3 = C3B3,

r


E1 A4 D1 C4D2 C5D3

B4 0 B1 0 0
D4 0 0 B2 0
D5 0 0 0 B3

C1 A1 0 0 0

 = r

(
A1

A4

)
+ r

 B4 B1 0 0
D4 0 B2 0
D5 0 0 B2

,

r


E1 A4 C4 C5 D1

B4 0 0 0 B1

C1 A1 0 0 0
C2D4 0 A2 0 0
C3D5 0 0 A3 0

 = r


A4 C4 C5

A1 0 0
0 A2 0
0 0 A3

+ r
(

B4 B1

)
,

r


E1 A4 C4 D1 C5D3

B4 0 0 B1 0
D5 0 0 0 B3

C1 A1 0 0 0
C2D4 0 A2 0 0

 = r

 A3 C4

A1 0
0 A2

+ r

(
B4 B1 0
D5 0 B3

)
,

r


E1 A4 C5 D1 C4D2

B4 0 0 B1 0
D4 0 0 0 B2

C1 A1 0 0 0
C3D5 0 A3 0 0

 = r

 A4 C5

A1 0
0 A3

+ r

(
B4 B1 0
D4 0 B2

)
.

In this case, the general solution to system (5) can be expressed as

X1 = A†
1C1 + LA1U1, X2 = D1B†

1 + U2RB1 ,

X3 = A†
2C2 + LA2 D2B†

2 + LA2U3RB2 ,

X4 = A†
3C3 + LA3 D3B†

3 + LA3U4RB3 ,

U1 = A†
6(E6 − C6U3D6 − C7U4D7)− A†

6W2B6 + LA6W1,

U2 = RA6(E6 − C6U3D6 − C7U4D7)B†
6 + A6 A†

6W2 + W3RB6 ,

U3 = A†EB† − A†CM†EB† − A†SC†EN†DB† − A†SV4RN DB† + LAV1 + V2RB,

U4 = M†ED† + S†SC†EN† + LMLSV3 + LMV4RN + V5RD,

where Vi, Wj(i = 1, 5, j = 1, 3) are arbitrary matrices over H with appropriate sizes.

Remark 1. The above corollary is from the important findings of [30].

Letting Ai, Bi, Cj, Dj (i = 1, 2, 4, 6, 7, 8, j = 1, 2) and D5 vanish, we have the following:

Corollary 2. Given A3, B3, C3, D3, A5, B5 and D4 of feasible dimensions over H. Set A11 =

A5LA3 , B11 = RC3 C and E11 = D4 − A5 A†
3B3 − D3C†

3 B5. Then, the following statements
are equivalent:

(1) System (4) is consistent.
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(2) r(A3 B3) = r(A3), r

(
C3

D3

)
= r(C3), r

D4 A5 D3

B5 0 C3

B3 A3 0

 = r

(
A5

A3

)
+ r(B5 C3).

In this case, the general solution to system (4) can be expressed as

W = A†
3B3 + LA3

(
A†

11E11 − A†
3W2B11 + LA11W1

)
,

Z = D3C†
3 +

(
RA11 E11B†

11 + A11 A†
11W2 + W3RB11

)
RC3 ,

where W1, W2 and W3 are arbitrary matrices over H of appropriate sizes.

Remark 2. The above corollary is from the vital investigation of [4].

Finally, we give Algorithm 1 and an example to illustrate the main results of this paper.

Algorithm 1: Algorithm for solving Equation (6)

(1) Feed the values of Ai, Bi, Cj, Dk (i = 1, 8, j = 1, 3, k = 1, 5) with conformable shapes over H.
(2) Compute the symbols in (9) to (21).
(3) Check (22), (23) or rank equalities in (24) to (35) hold or not. If no, then return “inconsistent”.
(4) Otherwise, compute X, Y, Z, V, W.

Example 1. Consider the matrix of Equation (6). Assume

A1 =

( −1−j i−j
i −1

1−i −j

)
, A2 =

(
i+j 1+k
i+k k
1+i 1+i+k

)
, A3 =

(
j+k −1+j
−i+k i
i+j −j+k

)
, A4 =

( 1+j 2+k
1−i+k 2j+2k

1+i+j+k 1+i+j

)
,

A5 =

( −j −j+k
−1−j+k k

1−j i+k

)
, A6 =

(
1+i+j+k 1

0 1+i
1+j 1+i

)
, A7 =

( i+j 1+i
1+i+k 1+j
1+i+j 1+j

)
, A8 =

( −1+i+j−k −i
−1+j−k i−j
−1+j+k −1+i

)
,

B1 =

( i−5j −1+i
−2+i −1−2i+j

1−2i−j−k −2+i−j+k

)
, B2 =

( 1+i+j−k −1+3i+j+k
−1+2i+j+k −1+i+2j

1+3i−j −3+3i

)
, B3 =

( −2−2i+j−k −3+2j−3k −3−2j+k
−1−k 2−i+4j 1−i+k
−1+3k −3−j−2k 1−2i−j

)
,

B4 =

( 2+i−j+3k 2+i+5j−2k 2j
1+3i+2j+3k 2−3i+2j−k 1−2i+j

3+3i+k 3i+5j 2j+2k

)
, B5 =

(
i 1+j+k 1+i+k
0 i 1+i+j

)
, B6 =

(
2+2i+j+k 2+2j+k 1+i+j
1+2i+j+2k 1+2i+k 2+2i+2j+k

)
,

B7 =
(

k i+j i+k
i+k j 1

)
, B8 =

(
j j 1+i+j+k
1 1+j+k 1+j

)
, C1 =

(
1+i+k 1+i+k 1+i+k

1+i k 0

)
, C2 =

(
i −1 0

1−i+j−k −i−j i+k

)
,

C3 =
(

0 k 0
1+j+k i+j+k 1+i+k

)
, D1 =

(
i+j 1+2i+j−k 1+2i+j

1+4i+4k 1+i+4k 1+2i+j+3k

)
, D2 =

(
−i−j+k −1−i+j 0
4+2i+3k i−j−3k −3−i−j+k

)
,

D3 =

( −i+j+2k −1+j+2k i+j+2k
−1−j+2k −3+2k −2+i+k

0 −1−j 0

)
, D4 =

( i+2k 3+j+5k 4+k
1+j −2−6i+5j+4k −i+j+3k

−1+i+3j+k i+7k −i+3k

)
,

D5 =

( 7i−2j+9k 2+10i+13j+10k 4i+6j
−7+8i−j+7k −12+2i+10j−k −5+5i+j−k
−7+4i−4j+6k −8+2i+6j−4k −11+9i+j−8k

)
.

Computing directly yields

r(Ai Bi) = r(Ai) = 2, r

(
Cj

Dj

)
= r
(
Cj
)
= 2 (i = 1, 4, j = 1, 3),

(26) = 4, (27) = 10, (28) = 10, (29) = 10, (30) = 10,

(31) = 8, (32) = 8, (33) = 8, (34) = 8, (35) = 24.

All rank equations hold. Thus, according to Theorem 1, the system of matrix equations has a
solution, and the general solution to the system can be expressed as
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X =

(
1 + j −1
2 + k 1 + i− j

)
, Y =

(
1 + i− j 0

1 2i− j + k

)
, Z =

 1 + i 1 + k
1 + j + k i + k

i + k 0

,

V =

(
1 2 + i− k 1 + j

1− j + k i + j 0

)
, W =

(
j 3i + j + k j

1 + i i + j −i + 2j

)
,

5. The General Solution to the System (7) with η-Hermicity

As an application of the results of system (6), we study the necessary and sufficient
conditions for system (7) to have a solution involving η-Hermicity and derive a formula of
its general solution, where X, Y are η-Hermitian matrices.

Theorem 3. Given Ai, Bj (i = 1, 2, 7, 8, j = 1, 2, 5, 8), C3, D3, D4 of appropriate dimensions over
H. Set

A22 = A6LA4 , A33 = A7LA1 , A44 = A8LA2 ,

C22 = D5 − A†
6 A4B4 − A7 A†

1(A†
1)

η∗ + LA1 Cη∗

1 (C†
1)

η∗Aη∗

7 − A8 A†
2(A†

2)
η∗ + LA2 Cη∗

2 (C†
2)

η∗)Aη∗

8 ,

M1 = RA22 A33, M2 = RA22 A44, T = RA22 C22Rη∗

A22
, M = RM1 M2, S = M2LM.

Then, the following statements are equivalent:
(1) System (7) has a solution.
(2)

RA1 B1 = 0, RA2 B2 = 0, RA4 B4 = 0,

RM1 RMT = 0, RA22 T(RA44)
η∗ = 0.

(3)

r(A1 B1) = r(A1), r(A2 B2) = r(A2), r(A4 B4) = r(A4),

r


D5 A6 Bη∗

4 A7Bη∗

1 A8Bη∗

2

Aη∗

6 0 Aη∗

4 0 0

Aη∗

7 0 0 Aη∗

1 0

Aη∗

8 0 0 0 Aη∗

2
B4 A4 0 0 0

 = r

 Aη∗

6 Aη∗

4 0 0

Aη∗

7 0 Aη∗

1 0

Aη∗

8 0 0 Aη∗

1

+ r

(
A4

A6

)
,

r


D5 A6 A7 Bη∗

4 A8Bη∗

2

Aη∗

6 0 0 Aη∗

4 0

Aη∗

8 0 0 0 Aη∗

2
B4 A4 0 0 0

B1 Aη∗

7 0 A1 0 0

 = r

(
Aη∗

6 Aη∗

4 0

Aη∗

8 0 Aη∗

2

)
+ r

 A6 A7

A4 0
0 A1

.
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Under these conditions, the general solution with η-Hermicity to the system (7) can be stated as

V = A†
4B4 + LA4U1,

X = A†
1B1 + LA1 Bη∗

1 (A†
1)

η∗ + LA1U2Lη∗

A1
,

Y = A†
2B2 + LA2 Bη∗

2 (A†
2)

η∗ + LA2U3Lη∗

A2
,

U1 = A†
22(C22 − A33U2 Aη∗

33 − A44U3 Aη∗

44)− A†
22W2 Aη∗

22 + LA22W1,

U2 = M†
1 TMη∗

1 −M†
1 M2M†TMη∗

1 −M†
1SM†

2 T(Mη∗)† Mη∗

2 Mη∗

1 −M†
1SV4(LM)η∗Mη∗

2 Mη∗

1

+ LM1 V1 + V2(LM)η∗ ,

U3 = M†TMη∗

2 + S†SM†
2 TMη∗ + LMLSV3 + LMV4(LM)η∗ + V5(LM2)

η∗ ,

where Vi (i = 1, 5) and Wj (j = 1, 3) are arbitrary matrices with appropriate sizes over H.

Proof. Since the solvability of the system (7) is equivalent to the system

A4V1 = B4, V2(A4)
η∗ = (B4)

η∗ , V2 = (V1)
η∗ ,

A1X1 = B1, X1 Aη∗

1 = Bη∗

1 , X1 = Xη∗

1 ,

A2Y1 = B2, Y1 Aη∗

2 = Bη∗

2 , Y1 = Yη∗

1 ,

A6V1 + V2 Aη∗

6 + A7X1 Aη∗

7 + A8Y1 Aη∗

8 = D5, D5 = Dη∗

5 .

(59)

If system (7) has a solution, say, (V, X, Y), then system (59) has a solution, (V1, V2, X1, Y1) =

(V, Vη∗ , X, Y). Conversely, if system (59) has a solution (V1, V2, X1, Y1), then

(V, X, Y) = (
V1 + Vη∗

2
2

,
X1 + Xη∗

1
2

,
X2 + Xη∗

2
2

)

is the solution of (7). It follows from Corollary 1 that this proof can be completed.

6. Conclusions

We established the solvability conditions for system (6) by using the Moore–Penrose
inverses and ranks of the coefficient quaternion matrices in (6), and derived a formula of
its general solution when it is solvable. In terms of applications, we derived the necessary
and sufficient conditions for system (7) to have an η-Hermitian solution as well as the
expression of the general solution. In addition, we used an algorithm and a numerical
example to verify the main results of this paper. It is worth noting that the main results
of (6) are available not only for R and C, but also any division ring. Moreover, inspired
by [39], we can investigate the system (6) tensor equations over the quaternion algebra.
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