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Abstract: The property of dark matter remains to date unknown. However, a model-independent
classification of dark matter candidates can be achieved by using various symmetries, as performed
in the standard model. Fermionic dark matter has been extensively researched, and one favored
candidate is the neutralino in the Minimal Supersymmetric Standard Model, which is required
by fermion–boson symmetry and the preservation of R-parity. Bosonic dark matter has not been
sufficiently studied, especially the scenario of dark matter with a mass of sub-GeV. In this paper, we
consider the effect of spin-dependent (SD) on scalar and vector dark matter, which are mediated
by pseudoscalar and axial-vector, and evaluate the effect on the dark matter–electron scattering
cross-section. We list all the interactions and form factor of dark matter–electron SD scattering, and
use XENON10/100/1T experiment data to derive the exclusion limit of the SD cross-section. We find
that the SD scattering of scalar and vector dark matter can be three orders of magnitude stronger than
spin-independent (SI) scattering due to the p-wave scattering.

Keywords: spin-dependent scattering; scalar and vector; dark matter; electron

1. Introduction

Approximately 27% of the energy density of our universe consists of dark matter which
is non-luminous and rarely interacts with baryons [1]. Beyond gravitational phenomena,
dark matter still has many elusive properties which include its mass and interactions.
Usually, the methods of exploration for dark matter (DM) include direct detection, indirect
detection, and collider experiments. Among all the candidates of dark matter, the most
attractive one may be the weakly interacting massive particles (WIMPs). Among the
candidates for dark matters, the lightest is Majorana fermion, i.e., neutralino in the Minimal
Supersymmetric Standard Model, which is required by fermion–boson symmetry and
the preservation of the global symmetry called R-parity. Clearly, prospects for the direct
detection of dark matter crucially depend on whether WIMP–nucleon interactions are
primarily spin-dependent or spin-independent. Although the property of dark matter
remain unknown to date, one can perform a model-independent classification of dark
matter candidates using symmetries. Firstly, WIMP dark matter is constrained to be neutral
under both electromagnetism and color; secondly, if the WIMP-nucleon cross-section
is primarily spin-dependent, scalar dark matter is disfavored; thirdly, the DM–nucleus
interaction is described by an effective potential, which is a rotationally invariant scalar
formed out of vectors: the relative velocity, DM position, and nuclear spin [2]. By using the
effective potential and possible form of Lagrange, we can evolve the leading contributions
to the cross-section.

Usually, the scattering of dark matter is divided into the SI and SD cases. SI scattering,
which originated from the scalar couplings between dark matter and the target, dominates
in detectors with a heavy nucleus. SD scattering, which originated from spin couplings,
dominates in detectors with a light nucleus [3–9]. For SI scattering, the interaction will be
mediated by a scalar or vector. The SD scattering can be modeled by setting the dark matter
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which interacts solely with electron spin with a pseudoscalar or axial-vector mediator [10].
Then, p wave scattering always happens in SD scattering, and the exclusion limit of the
corresponding cross-section can be enhanced by the momentum transfer [11]. This is a very
different point compared with SI scattering. Furthermore, the SD limits of the fermionic
dark matter were thoroughly studied in the literature [3,10]. However, the SD scattering of
the scalar and vector dark matters still requires further study, especially the effects of the
momentum transfer by the mediator.

Previous studies have mainly focused on DM with mass at the order of 100 GeV [12].
However, in recent dark matter detection, the limits of the WIMP cross-section approach the
“neutrino floor” have become closer and closer, and less parameter space is left for detection.
Instead, there is still a large space for the detection of light dark matter with a mass lighter
than 1 GeV [13], due to the much smaller momentum transfer in the collision. Such light
dark matter can scatter with electrons, causing the ionization of atoms in a detector target
material and leading to single- or multi-electron events. We use 15 kg-days of data acquired
in 2006 to set limits on the dark matter–electron scattering cross-section. As for the detection
of the sub-GeV dark matter, the ionization signal will become more promising, since the
electron recoil energies can exceed the threshold of the direct detection when the sub-GeV
dark matter scatters on the electron [14–31]. Especially, in the dual-phase time projection
chamber (TPC), the liquid XENON detector gives the most stringent constraint on the
detection limits. When the dark matter particles scatter with the electron, the “S2” signal of
the electron can be produced by electric fields upward into gaseous xenon in the liquid.
The resulting recoil electrons have sufficient energy to ionize other atoms. The resulting
signal includes the observed electron and scintillation photon.

In this work, scalar and vector types of dark matter are proposed and the correspond-
ing effective operators are studied. The SD scattering of these dark matters, especially
the effects of the momentum transfer, are numerically studied. The experiment data of
XENON10, XENON100, and XENON1T [32–35] are used for numerical analysis. In SD scat-
tering case, the spin of the electron will make the response function and form factors more
complicated than the simple scalar interaction. Therefore, these form factor and response
functions are calculated and the corresponding exclusion limit on the SD cross-sections
are discussed.

The paper is organized as follows: the theoretical calculation of the cross-section and
the benchmark model of the scalar and vector dark matter are shown in Section 2. In
Section 3, we describe the recoil spectra and numerical results. The conclusion is given in
Section 4.

2. The Dark Matter Model and the Form Factor
2.1. The Calculation Framework of Dark Matter and Electron Scattering Process

The scattering between the dark matter and the electrons is calculated under the im-
pulse approximation in which the binding of the electrons is neglected. This approximation
is a suitable method when the collision time is much shorter than the ionization of the
target atom. Details of the condition and the comparison with the Born approximation can
be found in [36–39]. As mentioned previously, the detailed calculations of the scattering
are divided into the SI and SD cases. In case of the detection of the recoils of the nuclei, the
rate of the SI case is proportional to the atomic number; thus, it is sensitive to heavy nuclei.
However, the spin of nuclei is always considered to be coming from the single last unpaired
nucleon; then, the detection will be relatively sensitive to the light nuclei. The calculation
of the SD scattering on the nuclei is different from the SI case. For scattering on the electron,
both the SI and SD cases are scattered on a single electron. Thus, at a first glance, all
the scatterings should be taken into account as they seem to have the same weights from
the theoretical side. What we can do in the simplest way is to consider couplings on the
electron operators.
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e† Ie, e†Se. (1)

The couplings to the first one can be seen as the cause of the SI scattering, while
the couplings to the second one will cause SD scattering. The spin operator S is the non-
relativistic limit of the quantum fermionic field which always comes from the γ matrices
and then from the Dirac spin

σs = 2S, (2)

with

σs = γ0γ =

(
σ 0
0 σ

)
. (3)

In general, the spin operators originate from a pseudoscalar or an axial-vector me-
diator. Both SI and SD scattering can be considered in a uniform formula which will be
subsequently discussed.

In the direct detection, the measured quantity is the counting rate Rion which is
theoretically predicted by the velocity-averaged cross-section between dark matter and the
target. In the direct detection, the differential event rate that is induced by ionizing electron
can be written as

dRion

dER
= N

ρχ

mχ

σ̄e

8µ2
χe

(4)

×
∫

qdq|FDM(q)|2R(ion)(ER, q)η(vmin).

in which ρχ = 0.4 GeV/cm3 is the local dark matter density and the number of target atoms
is N. ER and q are the recoil energy and momentum transfer of the electron, respectively.
σ̄e is the reduced cross-section and µχe = mχme/(mχ + me) is the reduced mass of dark
matter (mχ) and electron (me).

In Equation (4), we apply the response function R(ion) to denote the wave function
of electron ionization | f nl

ion|2 [40,41]. Compared with SI scattering, the interaction in SD
scattering will consider the spin operator of the electron which comes from the Dirac spin
σs. Thus, in this case, the wave function of the electron is not plane wave eiq·r but is a more
complex form eiq·rσs. We follow Refs. [11,42] to write these two functions as

Rion
SI (ER, q) = ∑

J f

∑
Ji

∣∣∣∣∣〈J f |
Z

∑
i=1

eiq·ri |Ji〉
∣∣∣∣∣
2

×δ(EJ f − EJi − ER) (5)

and

Rion
SD (ER, q) = ∑

J f

∑
Ji

∑
k

∣∣∣∣∣〈J f |
Z

∑
i=1

eiq·ri σs
i,k|Ji〉

∣∣∣∣∣
2

×δ(EJ f − EJi − ER). (6)

in which the 〈J f | · · · |Ji〉 is the transition amplitude from the initial state |Ji〉 to the final
state 〈J f |. σs

i,k is Dirac spin. The delta function imposes the energy conservation of the
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transition. The summations all the electrons at different shells gives the response functions.
The ratio r of the SD and SI response function is given by (see Refs. [11,40,43])

r =
Rion

SD

Rion
SI

= 3. (7)

The ratio r = 3 is because the dependence on the recoil energy ER can be ignored
when the recoil energy is less than 0.2 keV, as shown in Ref. [11].

The η(vmin) which is the velocity distribution of dark matter follow Maxwell–Boltzmann.
In the calculation, we assume that the incoming velocity of dark matter is v, and the outgo-
ing momentum of dark matter and electron are p′χ and meve. Therefore, the momentum
conservation is given by

q = mχv− p′χ = meve (8)

and the energy conservation is given by

∆Ee =
1
2

mχv2 −
|mχv− q|2

2mχ
= v · q− q2

2mχ
, (9)

where ∆Ee = Eb + ER is the transferred energy which is dependent on the binding energy
Eb and recoiled energy ER. From Equation (9), the minimum velocity vmin required for
ionizing the electron in the (n, l) shell is given by

vmin =
|Enl

b |+ ER

q
+

q
2mχ

. (10)

As such, the Maxwell–Boltzmann velocity distribution for the minimum velocity
η(vmin) can be given by

η(vmin) =
∫

vmin

d3v
v

fχ(v)Θ(v− vmin), (11)

with

fχ(~vχ) ∝ e
− |~vχ+~vE |2

v2
0 Θ(vesc − |~vχ +~vE|), (12)

in which we assume that the circular velocity v0 = 220 km/s, cut at the escaping velocity
vesc ∼ 544 km/s and the averaged Earth relative velocity vE = 232 km/s [44,45].

Finally, we discuss the scattering cross-section σe between the dark matter and electron
from Equation (4). In order to study the effect of momentum transfer, the reduced cross-
section σ̄e and momentum-dependent factor FDM(q) are introduced. The scattering cross-
section can be written as

σe = σ̄e|FDM|2, (13)

in which σ̄e is a reduced cross-section with momentum independence. It is given by

σ̄e = µ2
χe
|M(q = q0)|2

16πm2
χm2

e
, (14)

Then, the form factor FDM(q) is given by [46]

|FDM(q)|2 =
|M(q)|2

|M(q = q0)|2
, (15)
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where q0 = αme is the reference momentum. We can see that all the effect of the momentum
transfer is absorbed in the form factor from Equation (15). In Ref. [27], the form factor is
considered as 1 and 1/q2 for the heavy and light mediator in SI scattering. However, in SD
scattering, the form factor is more complicated and dependent on the momentum transfer
due to the appearance of γ5 in the mediator. All the form factors of the scalar and vector
dark matter are discussed in the next subsection.

2.2. Benchmark Model of Scalar and Vector Dark Matter

In order to check the effect of the momentum transfer in SD scattering, the scalar dark
matter with scalar the mediator is studied in our numerical calculations. The interaction
can be simplified as

Lint = agχφ2 + age ēγ5e, (16)

in which gχ and ge is the coupling constant of the dark matter and electron, respectively.
The scalar dark matter and electron are characterized by φ and e, respectively. The scalar
mediator is denoted by a. With Equation (16), we can obtain the momentum dependent
form factor FDM from Equation (15)

|FDM|2 =
q2(m2

a + q2
0)

2

q2
0(m

2
a + q2)2

, (17)

where ma (mχ) is the mass of the mediator (dark matter). q0 and q are the reference and
momentum transfer, respectively. The details can be found in Appendix A. In order to fully
reflect the effect of the momentum transfer, the interaction with the vector dark matter
is also considered. We listed all the interactions [2] between the scalar (φ) and vector (B)
dark matter and the electron with pseudoscalar (a) and axial-vector (A) mediator in Table 1.
The scattering amplitudes is listed in Appendix A. To compare with SI scattering, the
corresponding form factor and the approximation in the massive and massless form factor
are also listed in the table. We can see when the mass of the mediator is massive or massless,
the form factor is approximately equal to 1, q2 or 1/q2, thus yielding results which show
the limits to be very simple as well as similar. However, in fact, the form factors have a
much more analytically complicated q dependence, as can be seen from Table 1.

These form factors are plotted in the top of Figure 1 to explore the effect of the
momentum transfer on SD scattering. For comparison, we also plotted the SI form factor
with the scalar or vector mediator for the scalar dark matter in the bottom panel. The effect
of the momentum transfer is discussed in next section.

|F
D
M 1
(q
) 2

|FDM
4(q) 2

|F
D
M 3
(q) 2

|FDM
5(q) 2

q=0.1 MeV

mχ=100 MeVSpin-dependent

10-2 10-1 100 101 102
10-1

100

101

102

103

104

105

q[MeV]

|F
D
M
(q
)
2

Figure 1. Cont.
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scalar
vector

mχ=100 MeV
mA(mϕ)=0.5 MeV

Spin-independent

10-2 10-1 100 101 102
10-2

10-1

100

101

q[MeV]

|F
D
M
(q
)
2

Figure 1. Top panel: the form factor |FDM(q)| for the SD scattering of the scalar and vector dark
matter with pseudoscalar or axial-vector mediator. Bottom panel: the form factor |FDM(q)| for the
SI scattering of the fermionic dark matter with a scalar or vector mediator. mχ = 100 MeV for
each panel.

Table 1. Different operators which induce the spin-dependent scattering between the dark matter
and the electron. To compare with SI scattering, the corresponding form factor and the approximation
in the massive and massless form factors are also listed.

DM Coupling Electron Coupling |FDM(q)|2 Massive Massless

agχφ2 age ēγ5e |F1
DM|2 =

q2(m2
a+q2

0)
2

q2
0(m

2
a+q2)2 ≈ q2

q2
0

≈ q2
0

q2

gχ(φ†∂µφ− φ∂µφ†)Aµ ge ēγµγ5eAµ |F2
DM|2 =

q2(m2
A+q2

0)
2

q2
0(m

2
A+q2)2 ≈ q2

q2
0

≈ q2
0

q2

agχBµBµ age ēγ5e |F3
DM|2 =

q2(m2
a+q2

0)
2(4m2

χq2+12m4
χ+q4)

q2
0(m

2
a+q2)2(4m2

χq2
0+12m4

χ+q4
0)

≈ q2

q2
0

≈ q2
0

q2

gχB†
ν∂µBν Aµ ge ēγµγ5eAµ |F4

DM|2 =
q2(m2

A+q2
0)

2(4m2
χq2+12m4

χ+q4)

q2
0(m

2
A+q2)2(4m2

χq2
0+12m4

χ+q4
0)

≈ q2

q2
0

1

× (m2
Amχ−meq2)(2m2

Ame+m2
Amχ+meq2)

(m2
Amχ−meq2

0)(2m2
Ame+m2

Amχ+meq2
0)

gχBµ∂µBν Aν ge ēγµγ5eAµ |F5
DM|2 =

q2(m2
A+q2

0)
2

q2
0(m

2
A+q2)2 ≈ q2

q2
0

≈ q2
0

q2

× −16m2
e m4

χ−2m2
χq2(me−mχ)2+m2

e q4+2memχq4

−16m2
e m4

χ−2m2
χq2

0(me−mχ)2+m2
e q4

0+2memχq04

3. Recoil Spectra and Numerical Results
3.1. The Procedure of Numerical Simulations

We follow the procedure described in Ref. [26] to calculate the constraints in the exper-
imental data. The total quantum number which can be produced by electron recoil energy
ER induces the observed electron ne and scintillation photons nγ. n(1) = Floor (ER/W)
in which the W = 13.8 eV is the minimum energy to produce a quantum number. We
choose fR = 0, fe = 0.83 as the fiducial values. The uncertainty is defined as 0 < fR < 0.2,
12.4 < W < 16 eV, and 0.62 < fe < 0.91. In our work, we mainly consider the shells of the
electron as (5s, 4d, 4p, 4s) which have energies of (13.3, 63.2, 87.9, 201.4) eV. There are
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also many additional quanta numbers in these shells under the effect of photoionization.
The additional quanta numbers in shell (5s, 4d, 4p, 4s) are (0, 4, 6–10, 3–15), respectively,
Ref. [27]. These quanta numbers also include the observed electron ne and scintillation
photons nγ. All the quanta number is (n1 + n2) which obeys a binomial distribution. We
can obtain the number of electrons ne by calculating the corresponding distributions. These
additional quanta numbers, binding energy of electron, and photon energy are listed in the
Table 2 [27,47].

Table 2. The number of additional quanta and binding energy from the Xenon
(5p6, 5s2, 4d10, 4p6, 4s2) shells.

Shell 5p6 5s2 4d10 4p6 4s2

Binding Energy (eV) 12.6 25.7 75.6 163.5 213.8

Photon Energy (eV) - 13.3 63.2 87.9 201.4

Additional Quanta 0 0 4 6–10 3–15

On the experimental side, the weak signal of the electron cannot be observed. In
order to measure the amount of electrons ne, we must amplify the electron signal by
the photomultiplier tuber. The signal of the electron is converted to the photo-electrons
(PEs). We apply the experimental data from XENON10 data [26] (15 kg–days), XENON100
data [32,34] (30 kg–years) and XENON1T data [35] (1.5 tones–years) to compare our theory
result. The boundary limits of the SD scattering cross-section are obtained by comparing
these results. The number of PE and ne obey Gaussian distribution. The PE can be produced
by calculating this Gaussian function which has a mean neµ and width

√
neσ, in which

µ = 27 (19.7, 11.4) and σ = 6.7 (6.2, 2.8) for XENON10 (XENON100, XENON1T). We follow
Refs. [26,32,35] to obtain the PE bins. Note that in our numerical evaluation, the range of
the PE bin in the XENON1T is only chosen as [165, 275].

For SI scattering, the form factor will be suppressed by the momentum transfer in the
light mediator from the literature [26]. However, for SD interaction, the form factors are
more complicated in Equation (17) and Table 1. To explore the effect of the momentum
transfer on SD scattering, the spectra of the electron from FDM = 1 (top) and F1

DM(q)
(bottom) are plotted in Figure 2. Herein, the mediator ma is set as 0.5 MeV and the
fiducial cross-section σ̄e is set as 5 × 10−39 cm2. We choose the masses of dark matter
as mχ = 10 MeV, 30 MeV, 100 MeV, 300 MeV for comparison, and the exposure is set as
1000 kg–yr. From Figure 2, it can be seen that the number of the electron is the same in
the same dark matter mass. This is because the quantum number depends on the recoil
energy ER which can be produced by the incoming energy of dark matter (1/2mχv2).
However, the event rates of the F1

DM(q) (bottom) can always be enhanced by two orders of
magnitude greater than FDM = 1 for all masses of dark matter. We understand this result
from Equation (4). This shows that the event rates will depend on the form factor FDM. This
implies that the momentum transfer plays an important role in the dark matter form factor.

The dependence of the SD form factor on the momentum transfer is shown in the
left panel of Figure 1. Herein, all the form factors from Table 1 are considered. The mass
of the dark matter is set to mχ = 100 MeV and the mass of the mediator is chosen as
mA(mφ) = 0.5 MeV. In order to explore the difference between SD scattering and SI
scattering in the form factor with the light mediator, we also plotted the form factor of SI in
the bottom panel. We can see that most form factors of SD scattering are greater than SI
scattering. Furthermore, the maximum value of the SD form factor can be four orders of
magnitude stronger than FDM = 1. The SD form factor can be the maximum value when the
momentum transfer q is approximately equal to mediator mass. For different interactions,
the form factor can be the difference, so the form factor is model dependent. We find that the
mass of the mediator also affects the value of the form factor in Equation (17). Therefore, we
plot the dependence of the SD form factor on the mass of mediator in Figure 3. We can see
the form factor will not change when ma(mA) is greater than 0.1 MeV in Figure 3. However,
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for a light mediator, the form factor will be suppressed by the mass of the mediator. The
mediator therefore also plays an important role in the form factor. Therefore, we set the
mass of the mediator to 0.5 MeV to show the effect of momentum transfer.

10 MeV
30 MeV

100 MeV

mχ = 300 MeV

σe = 5×10
-39 cm2 , FDM=1

2 4 6 8 10 12 14
100

101

102

103

104

105

106

107

108

109

ne

dN
/d
n e

10 MeV
30 MeV

100 MeV

mχ = 300 MeV

σe = 5×10
-39 cm2 , FDM

1(q)

2 4 6 8 10 12 14
100

101

102

103

104

105

106

107

108

109

ne

dN
/d
n e

Figure 2. The spectra of the electron from the scalar dark matter scattering with the electron in
FDM = 1 (top) and F1

DM(q) (bottom). We choose mχ = 10 MeV (blue), 30 MeV (orange), 100 MeV
(green) and 300 MeV (red) for comparison. Furthermore, the fiducial cross-section and exposure were
chosen as σ̄e = 5× 10−39cm2 and 1000 kg–yr.

|FDM
1(q) 2

|FDM
4(q) 2

|FDM
3(q) 2

|FDM
5(q) 2

q=0.1 MeV

mχ=100 MeV

10-2 10-1 100 101 102
10-2

10-1

100

101

102

103

104

105

ma(mA)[MeV]

|F
D
M
(q
)
2

Figure 3. The relation between the form factor |FDM(q)| and the different mass of mediator. Herein,
the momentum transfer q is set to 0.1 MeV and the mass of dark matter is chosen as 100 MeV.
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3.2. The Result and Analysis of Numerical Simulations

As we discussed above, in the light mediator, the SD and SI form factors can be
suppressed by momentum transfer. This result satisfies the long-range interaction. Further-
more, it can also be enhanced by the mass of the mediator. However, in a heavy mediator,
the SI form factor will be constant 1, which is called the contact interaction. The SD form
factor can be enhanced by momentum transfer. The reason for this result is that the SD and
SI scattering are p-wave scattering and s-wave scattering, respectively. Additionally, when
we define the reduced cross-section σ̄e in the specific momentum q0, the corresponding
form factors are always proportional to the momentum transfer. The different q0 can make
the reduced cross-section σ̄e and form factor change greatly. Thus, the definition points q0
are also more important in the SD scattering. The specific form factor FDM(q) can be seen
from Table 1 and the numerical results in Figure 1.

In order to explore the limits of SD scattering and we plotted the dependence of the
SD reduced cross-section σ̄e on the mass of dark matter in Figure 4. From Equation (4),
we can see that the reduced cross-section σ̄e will decrease as the form factor FDM increases
when the counting rate R is a constant value. In Figure 4, we use the dotted line and shades
to show the result of FDM = 1 and FDM(q), respectively. The orange area, blue area and
red area denote XENON10 data, XENON100 data and XENON1T data, respectively. The
top picture of Figure 4 is the result of the pseudoscalar mediator. The upper left represents
the scalar dark matter (F1

DM(q)) and the right one is the vector dark matter(F3
DM(q)). The

bottom picture of Figure 4 is the result of the axial-vector mediator of the vector dark matter
in axial-vector mediator (F4

DM(q), F5
DM(q)). Compared with FDM = 1 (dotted line), we can

see that the cross-section on SD scattering will be significantly enhanced. This is because
the form factor can be enhanced as the momentum transfer improves. The improved
form factor can affect the reduced cross-section from Equation (13). We also found that
the exclusion limits of the SD scattering cross-section are more sensitive in the region of
mχ > 100 MeV. It can be understood from Figure 2, in which the range of electron ne is
very small in light dark matter (mχ < 100 MeV). When mχ > 100 MeV, the range of the
electron and the event can be the largest, but the range of the electron does not change and
the event can be reduced when mχ > 300 MeV.

In the above calculation, we set the mass of the mediator ma (mA) as 0.5 MeV. This is
because, in this case, the form factor can become the maximum value. Here, the momentum
transfer q is approximately equal to the mass of the mediator from Figure 1. We also found
that the form factor will depend on the mass of the mediator from Figure 3. The definition of
q0 and the mass of the mediator can affect the form factor and reduced cross-section. Thus,
we show all the exclusion limits in q0 = αme and mA(ma) = 0.5 MeV for the comparisons
between the different models. The results are plotted in Figure 4. Furthermore, we can
obtain the following conclusions.

1. The q0 must be defined at a specific value αme to compare the reduced cross-section
σ̄e of SD and SI scattering. In this scene, the reduced cross-section of the SD scattering
can be three orders of magnitude large than the SI scattering due to the effect of
transferred momentum.

2. The form factor F1
DM(q), F2

DM(q), F4
DM(q) and F5

DM(q) can recover Λ2/q2 and the F3
DM

can recover 1 in massless mediator. From this result, we can know that the form
factors of SD can recover the SI in the vanishing mediator mass. All the form factor is
proportional to q2 in the heavy dark matter which can enhance the exclusion limits.
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Figure 4. The limits on Bosonic dark matter–electron with pseudoscalar mediator (top panel) and
axial-vector mediator (bottom panel), respectively. Furthermore, results for the scatter and vector
dark matters are displayed in the left panel and right panel. These limits are from XENON1T (red),
XENON100 (blue) and XENON10 (orange) data. The F1

DM = F2
DM, so they have the same limits of the

scattering cross-section (upper left). The corresponding results from FDM = 1 (line) are also shown
in each panel for the comparison.

4. Conclusions

The experiment efforts to search for the dark matter–electron coupling motivate the
consideration of the scalar and vector dark matter candidate. In this paper, we calculate all
the form factor from the dark matter–electron couplings mediated by the pseudoscalar and
axial-vector. We also plotted the dependence on the mass of the dark matter of the SI and
SD reduced cross-section.

Our result show that the form factor of SD scattering can be four orders of magnitude
larger than SI scattering when the momentum transfer is less than the mass of the mediator
(q < 0.5 MeV). For the light mediator (q > 0.5 MeV), the form factor will be suppressed in
SI and SD scattering. Due to the peak value of SD scattering being much greater than 1, the
SD scattering form factor will be greater than SI scattering. The exclusion limits of the SD
scattering cross-section which are dependent on the form factor will also be enhanced in the
light mediator. It can be 10−44 cm2 in XENON1T. This result is the same as the fermion dark
matter from the literature [11]. The reason for this result is that the SD scattering is p-wave
scattering. We also find that the form factor is not affected by the mediator when the mass
of the mediator is greater than the momentum transfer. However, when ma < 0.1 MeV, the
form factor will be improved as the mass of the mediator increases.
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Appendix A. DM Form Factor and Scattering Amplitudes

For a scalar DM with a pseudoscalar mediator, the interaction can be written as

L1
int = agχφ2 + age ēγ5e. (A1)

The scattering amplitude is given by

M =
gχ

q2 −m2
a

Ūe(p2)(igeγ5)Ue(p4), (A2)

in which we assume that the incoming momentum of the dark matter and electron are
p1 and p2, respectively. The outgoing momentum of the dark matter and electron are p3
and p4, respectively. The q is momentum transfer. The |M|2 can be obtained by summing
the spin.

Σspin|M|2 =
g2

χg2
e

(q2 −m2
a)

2

(
Ūe(p2)γ5Ue(p4)

)(
Ūe(p4)γ5Ue(p2)

)
(A3)

=
g2

χg2
e

(q2 −m2
a)

2

(
tr
[
(pl

4γl + me)γ5(pm
2 γm + me)γ5

])
. (A4)

Wherein the result of trace is given by

tr[(pl
4γl + me)γ5(pm

2 γm + me)γ5] (A5)

= −4p4 · p2 + 4m2
e . (A6)

Thus, the amplitude square is

Σspin|M|2 =
4g2

χg2
e

(q2 −m2
a)

2 (−p4 · p2 + m2
e ), (A7)

The effect of momentum p2 and p4 can be offset by Mandelstam variables s, t, u.
Herein, s = (p1 − p2)

2, t = (p1 − p3)
2, u = (p1 − p4)

2. Furthermore, we assume the
electron to be at rest, and the incoming momentum can be written as:

p1 = (mχ, 0, 0, p), p2 = (me, 0, 0, 0), (A8)

p3 = (mχ − ER, p31, p32, p33), p4 = (me + ER, p41, p42, p43). (A9)
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wherein the ER is the recoil energy. The s, t, u can be expressed by me and mχ
s = (mχ + me)2

t = −2meER

u = (me −mχ)2 + 2ERme.

(A10)

Applying the Mandelstam variables, the |M|2 is given by

|M|2 =
−2tg2

χg2
e

(m2
a − t)2 =

4meERg2
χg2

e

(m2
a + 2meER)2 =

2q2g2
χg2

e

(m2
a + q2)

. (A11)

where we apply equation q2 = 2meER. In order to explore the effect of the momentum
transfer, the reduced amplitude |M(q0)|2 and momentum-dependent factor FDM(q) are
introduced. The |M|2 can be written as

|M|2 = |M(q0)|2 × |FDM(q)|2, (A12)

we choose the q0 = αme as reduced momentum. In this case, the |M(q0)|2 is given by

|M(q0)|2 =
2g2

χg2
e (αme)

(m2
a + (αme)2)2 . (A13)

The DM form factor FDM(q) can be obtained from Equation (A12)

FDM =
q2(m2

a + q2
0)

q2
0(m

2
a + q2)

=
q2(m2

a + (αme)2)

(αme)2(m2
a + q2)

. (A14)

As such, when the mediator is the axial-vector with the interaction

L2
int = gχ(φ

†∂µφ− φ∂µφ†)Aµ + ge ēγµγ5eAµ, (A15)

The scattering amplitude is given by

|M|2 = −
16ERg2

e g2
χme(me + mχ)2

(2ERme + m2
A)

2
. (A16)

For vector DM with a pseudoscalar mediator, the interaction and scattering amplitude are

L3
int = a(gχBµBµ + ge ēγ5e) (A17)

and

|M|2 =
2ERg2

e g2
Bme(4E2

Rm2
e + 8ERmem2

χ + 12m4
χ)

3m2
χ(2ERme + m2

a)
2 . (A18)

When the mediator is an axial-vector, the interaction and scattering amplitudes are

L4
int = gχB†

ν∂µBν Aµ + ge ēγµγ5eAµ (A19)

and

|M|2 =
2ERg2

e g2
χme(E2

R + 2ERmemχ + 3m4
χ)(4E2

Rm4
e + 4ERm3

e m2
A −m4

Amχ(2me + mχ))

3m4
Am4

χ(2ERme + m2
A)

2
. (A20)

Furthermore, the other interaction with the axial-vector is

L5
int = gχBµ∂µBν Aν + ge ēγµγ5eAµ (A21)
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and

|M|2 = −
8ERg2

e g2
χm2

e [E2
Rm2

e (me + 2mχ)− ERm2
χ(me −mχ)2 − 4mem4

χ]

3m4
χ(2ERme + m2

A)
2

. (A22)
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