Next Article in Journal
Optimizing Multi-Objective Federated Learning on Non-IID Data with Improved NSGA-III and Hierarchical Clustering
Previous Article in Journal
Does Sex, Skeletal Class and Mandibular Asymmetry Affect Tooth Length and Asymmetry in Tooth Length?
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Classification of Arc-Transitive Elementary Abelian Covers of the C13 Graph

1
Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China
2
School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun 558000, China
3
Department of Mathematics, Prince Sattam Bin Abdulaziz University, Al-Kharj 11991, Saudi Arabia
4
Department of Mathematics, University of Mazandaran, Babolsar 4741613534, Iran
*
Author to whom correspondence should be addressed.
Submission received: 26 April 2022 / Revised: 12 May 2022 / Accepted: 17 May 2022 / Published: 23 May 2022

Abstract

:
Let Γ be a graph and G A u t ( Γ ) . A graph Γ can be called G-arc-transitive (GAT) if G acts transitively on its arc set. A regular covering projection p : Γ ¯ Γ is arc-transitive (AT) if an AT subgroup of A u t ( Γ ) lifts under p. In this study, by applying a number of concepts in linear algebra such as invariant subspaces (IVs) of matrix groups (MGs), we discuss regular AT elementary abelian covers (R-AT-EA-covers) of the C 13 graph.

1. Introduction

All graphs given in this paper are assumed to be finite, connected, and simple. For a graph Γ , we denote a set of vertices, set of edges, set of arcs, and full automorphism group with V ( Γ ) , E ( Γ ) , A ( Γ ) , and A u t ( Γ ) , respectively. Suppose that G is a subgroup of A u t ( Γ ) . For a , b V ( Γ ) , { a , b } is the edge located between a and b in Γ , and N Γ ( a ) denotes the set of vertices adjacent to a in Γ (neighborhood of a).
Suppose that Γ and Γ ¯ are two graphs. We say that a graph epimorphism p : Γ ¯ Γ is covering projection if p is a local isomorphism, that is, for each v ¯ V ( Γ ¯ ) , the restriction p to N Γ ¯ ( v ¯ ) is a bijection to N Γ ( p ( v ¯ ) ) , where p ( v ¯ ) V ( Γ ) . We say that Γ ¯ is the covering graph and Γ is the base graph. A permutation group G on a set Δ is said to be semiregular if the stabilizer G v of v in G is trivial for each v Δ . If G is transitive, and semiregular, it is regular. Let N be a subgroup of A u t ( Γ ) such that N is not transitive on V ( Γ ) . The quotient graph Γ / N is defined as the graph for which the vertices are the orbits of acting N on V ( Γ ) , and two vertices A , B V ( Γ / N ) are adjacent if, and only if, there exists a A and b B such that { a , b } E ( Γ ) . The covering graph is regular or N-covering if there is a semiregular subgroup N of the automorphism group Aut( Γ ¯ ) such that graph Γ is isomorphic to the quotient graph Γ ¯ N . If N is an elementary abelian (EA), then Γ ¯ is called an EA covering of Γ . Given a graph Γ and a subgroup G of A u t ( Γ ) , Γ is G-vertex-transitive (GVT), G-edge-transitive (GET), or GAT if G is transitive on the V ( Γ ) , E ( Γ ) , or A ( Γ ) , respectively. If G = A u t ( Γ ) then Γ is called a VT, ET or AT graph, respectively. A subspace W of a vector space V is said to be invariant subspace (IV) with respect to a linear transformation T if T ( W ) W . A matrix group (MG) is a group G consisting of invertible matrices over a specified field K, with the operation of matrix multiplication.
A powerful and important tool topology and graph theory is covering techniques. Regular covering is an active and interesting topic in algebraic graph theory. Tutte in [1,2] studied finite cubic arc-transitives and showed that every arc-transitive graph of degree 3 has an order of the form 2 n p , where n > 0 and a prime number p. Conder and Dobcs a ´ nyi [3,4] classified the trivalent s-regular graphs up to order 2048 with MAGMA software [5]. Cheng and Oxley classified the AT graphs of order 2 p (see Table 1 in [6]). Talebi and Mehdipoor classified cubic semisymmetric graphs of order 18 p n in [7]. By using the covering technique, s-regular graphs with order 2 p 2 , 2 p 3 , 4 p , 4 p 2 , 6 p , 6 p 2 , 8 p , 8 p 2 , 10 p , 12 p , 10 p 2 , 14 p , 16 p , 28 p , 36 p , 44 p , 52 p , 66 p , 68 p , 76 p , 22 p , 22 p 2 , 10 p 3 , 3 p 2 and 6 p 2 were classified in [8,9,10,11,12,13,14,15,16,17,18,19,20,21,21,22]. Kosari et al. in [23] investigated new results in graphs. The automorphism lifting problem in the context of elementary abelian covers was studied by Malnič, Marušič and Potočnik [24]. Their results have been successfully applied in order to classify elementary abelian covers with specific symmetric properties for a number of small cubic or tetravalent graphs, namely, the complete graph K 4 [11], the Q 3 graph [12] the Heawood graph [24], the Petersen graph [25], the M o ¨ bius–Kantor graph [26] and the Octahedron graph [27]. Most recently, Talebi and Mehdipoor investigated semisymmetric Z p -covers of the C 20 graph [28]. In this paper, we classify R-AT-EA-covers of the C 13 graph, by using concepts of linear algebra.
Graph Γ : = C 13 is an AT tetravalent graph, which was defined in [29]. The order and size of this graph are 13 and 26, respectively. See Figure 1.
  • V ( Γ ) = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 }
  • E ( Γ ) = { { 1 , 2 } , { 1 , 6 } , { 1 , 9 } , { 1 , 13 } , { 2 , 3 } , { 2 , 7 } , { 2 , 10 } , { 3 , 4 } , { 3 , 8 } ,
  • { 3 , 11 } , { 4 , 5 } , { 4 , 9 } , { 4 , 12 } , { 5 , 6 } , { 5 , 10 } , { 5 , 13 } , { 6 , 7 } , { 6 , 11 } , { 7 , 8 } ,
  • { 7 , 12 } , { 8 , 9 } , { 8 , 13 } , { 9 , 10 } , { 10 , 11 } , { 11 , 12 } , { 12 , 13 } } .
The automorphisms of C 13 graph are
  • δ = ( 2 , 9 , 13 , 6 ) ( 3 , 4 , 12 , 11 ) ( 5 , 7 , 10 , 8 ) ,
  • σ = ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 ) .
Then, | A u t ( C 13 ) | = 52 . Aut(C13) acts transitively on V ( C 13 ) , E ( C 13 ) and A ( C 13 ) . We will see by using Sage software (S-S) [30] that Aut(C13) has one AT subgroup δ , σ 2 .
Let T be an ST of the C 13 graph with edges
{ 1 , 2 } , { 1 , 6 } , { 1 , 9 } , { 1 , 13 } , { 2 , 3 } , { 2 , 7 } , { 2 , 10 } , { 3 , 4 } , { 3 , 8 } , { 3 , 11 } , { 4 , 5 } , { 4 , 12 } .
By choosing T, we can consider in this graph a T-reduced VA, that is, the voltage values on the arcs of tree T are the identity. The CT arcs are as follows:
γ 1 = ( 5 , 6 ) , γ 2 = ( 6 , 7 ) , γ 3 = ( 7 , 8 ) , γ 4 = ( 8 , 9 ) , γ 5 = ( 9 , 10 ) , γ 6 = ( 10 , 11 ) , γ 7 = ( 11 , 12 ) , γ 8 = ( 12 , 13 ) , γ 9 = ( 13 , 8 ) , γ 10 = ( 13 , 5 ) , γ 11 = ( 12 , 7 ) , γ 12 = ( 11 , 6 ) , γ 13 = ( 10 , 5 ) , γ 14 = ( 9 , 4 ) .
Let Γ be a graph and N be a finite group. We denote the reverse as an arc ω with ω 1 . A voltage assignment (VA) of Γ is a function φ : A ( Γ ) N such that φ ( ω 1 ) = φ ( ω ) 1 for each arc ω A ( Γ ) . The voltage is the value of φ , and N is the voltage group. The graph Γ × φ N ( C o v ( Γ , φ ) ) obtained from a VA φ : A ( Γ ) N has vertex set V ( Γ ) × N and edge set E ( Γ ) × N ; then, an edge ( e , g ) of Γ   × N joins a vertex ( ω , g ) to ( b , φ ( ω ) g ) for ω = ( a , b ) A ( Γ ) and g N , where e = { a , b } . By considering the VA arcs, we can create a VA on walks [31], for example the voltage on a walk W :   ω 1 , ω 2 , , ω n , is φ ( ω 1 ) φ ( ω 2 ) φ ( ω n ) . The derived graph Γ × φ N is a covering of Γ . By defining ( a , g ) g = ( a , g g ) for any g N and ( a , g ) V ( Γ × φ N ) , is an N-covering, for any a V ( Γ ) . The reverse is also true. For a spanning tree (ST) T of the graph Γ , a VA φ is called T-reduced if the voltages on the tree arcs are the identity. If T is an arbitrary fixed ST, then Gross and Tucker [32] proved that every regular covering Γ ¯ of a graph Γ can be obtained from a T-reduced VA of Γ ¯ . Assume that Γ ¯ is an N-covering of Γ . [33] If τ A u t ( Γ ) and τ ¯ A u t ( Γ ¯ ) satisfy τ ¯ p = p τ , where p : Γ ¯ Γ , then τ ¯ is a lift of τ , and τ the projection of τ ¯ . A regular covering projection p : Γ ¯ Γ is VT, ET or AT if a VT, ET or AT subgroup of A u t ( Γ ) lifts under p.
Let Γ be a graph and W 1 , W 2 be two walks of Γ . We show that the fundamental group of a graph Γ is the set of all reduced walks equipped with the product W 1 W 2 by π ( Γ ) . The fundamental group of Γ is called π ( Γ , v ) at v. In general, the fundamental group is not a free group. Therefore, by abelianizing π ( Γ , v ) , the first homology group H G 1 ( Γ ) is obtained. It is not necessarily a free Z -module. Suppose that n e + n s is the minimal number of generators of π ( Γ , v ) , where n s is the number of semiedges and n e is the number of cotree (CT) loops and links relative to some ST, such that H G 1 ( Γ ) Z n e × Z 2 n s . [24] Observe that
H G 1 ( Γ , Z p ) Z p n e + n s p = 2 Z p n e p 3 .
given a connected graph Γ and a subgroup G A u t ( Γ ) . Let T be a ST of Γ and a set of arcs { γ 1 , , γ n } A ( Γ ) include precisely one arc from each edge in E ( Γ T ) . Suppose that B T is the corresponding basis of H G 1 ( Γ , Z p ) determined by { γ 1 , , γ n } . Furthermore, denote by G * h = { τ * h | τ G } G L ( H G 1 ( Γ , Z p ) ) the induced action of G on H G 1 ( Γ , Z p ) , and let M G Z p n × n be the matrix representation of G * h with respect to the basis B T . The dual group including all transposes of matrices in M G is denoted by M G t .
Proposition 1 was obtained from [24], Proposition 6.3 and Corollary 6.5. This proposition is very important and widely used in the presentation of R-AT-EA-covers of the C 13 graph.
Proposition 1. 
Let T be an ST of a connected graph Γ, and let the set { γ 1 , γ 2 , , γ r } A ( Γ ) include precisely one arc from each CT edge. Let φ : A ( Γ ) Z p d × 1 be a VA on Γ that is identical on T, and let Z ( φ ) = [ φ ( γ 1 ) , φ ( γ 2 ) , , φ ( γ r ) ] t . Therefore, a group G A u t ( Γ ) lifts under p φ : C o v ( Γ , φ ) Γ if and only if the induced subspace Z ( φ ) is a d-dimensional(d-dime) M G t -IV.
The main purpose for finding all regular EA coverings of a graph is finding all IVs of a MG. Now, we express the following theorem, which is basic for finding all IVs of MG.
Theorem 1 
((Maschke’s theorem)). Let V be a representation of the finite group G over a field F in which | G | is invertible. Let W be an invariant subspace of V. Then, there exists an invariant subspace W 1 of V such that V = W W 1 as representations.

2. R-AT-AE-Covers of the C13 Graph

In this section, we introduce all of the (connected) R-AT-EA-covers of the C 13 graph with projection p : Γ ¯ C 13 . Notation C γ i is the fundamental closed walk, that is, C γ i is one cycle of graph Γ containing exactly an arc γ i of CT. Notation B T is the standard ordered basis of H G 1 ( C 13 , Z p ) related to the ST T, and the arcs γ i ( i = 1 , , 14 ) , respectively.
Here, we state Lemma 1.
Lemma 1. 
Let A and B be the transposes of the matrices that indicate the linear transformations δ * h , and σ * h relative to B T . Therefore
A = 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1
B = 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 .
Proof. 
By considering acting the automorphisms δ and σ on B T , we obtain the rows of these matrices. For instance, the permutation δ maps the cycle
[ 5 , 6 , 1 , 2 , 3 , 4 , 5 ]
corresponding to γ 1 , to the cycle
[ 7 , 2 , 1 , 9 , 4 , 12 , 7 ] .
Since the second cycle is the sum of the base cycles corresponding to γ 11 and γ 14 , the first row of matrix A is obtained. This is
( 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 , 1 ) .
Similar to the above, we can obtain the matrices A and B. □
By using S-S, m A ( t ) = t 4 1 and m H ( t ) = t 13 1 are the minimal polynomials of A and H = B 2 . Assume that p is a prime. ξ is a primitive 13th root of unity in Z p . The minimal polynomial m H ( x ) is decomposed into irreducible factors over Z p . See the following statements:
( t 1 ) 13 p = 13 ( t 1 ) ( t ξ ) ( t ξ 2 ) ( t ξ 3 ) ( t ξ 4 ) ( t ξ 5 ) ( t ξ 6 ) ( t ξ 7 ) ( t ξ 8 ) ( t ξ 9 ) ( t ξ 10 ) ( t ξ 11 ) ( t ξ 12 ) p 1 m o d 13 ( t 1 ) ( ( t ξ ) ( t ξ 3 ) ( t ξ 9 ) ) ( ( t ξ 2 ) ( t ξ 5 ) ( t ξ 6 ) ) ( ( t ξ 4 ) ( t ξ 10 ) ( t ξ 12 ) ) ( ( t ξ 7 ) ( t ξ 8 ) ( t ξ 11 ) ) p 3 , 9 m o d 13 ( t 1 ) ( ( t ξ ) ( t ξ 3 ) ( t ξ 4 ) ( t ξ 9 ) ( t ξ 10 ) ( t ξ 12 ) ) ( ( t ξ 2 ) ( t ξ 5 ) ( t ξ 6 ) ( t ξ 7 ) ( t ξ 8 ) ( t ξ 11 ) ) p 4 , 10 m o d 13 ( t 1 ) ( ( t ξ ) ( t ξ 5 ) ( t ξ 8 ) ( t ξ 12 ) ) ( ( t ξ 2 ) ( t ξ 3 ) ( t ξ 10 ) ( t ξ 11 ) ) ( ( t ξ 3 ) ( t ξ 6 ) ( t ξ 7 ) ( t ξ 9 ) ) p 5 , 8 m o d 13 ( t 1 ) ( t 12 + t 11 + t 10 + t 9 + t 8 + t 7 + t 6 + t 5 + t 4 + t 3 + t 2 + t + 1 ) p 2 , 6 , 7 , 11 m o d 13 ( t 1 ) ( ( t ξ ) ( t ξ 12 ) ) ( ( t ξ 2 ) ( t ξ 11 ) ) ( ( t ξ 5 ) ( t ξ 8 ) ) ( ( t ξ 6 ) ( t ξ 7 ) ) ( ( t ξ 4 ) ( t ξ 9 ) ) ( ( t ξ 3 ) ( t ξ 10 ) ) p 1 m o d 13 .
Now, it is sufficient to see A and H as matrices over the splitting field Z p ( ξ ) . To find B , H -IVs over Z p , every IV over Z p is a direct sum of minimal IVs over Z p ( ξ ) . By a straightway calculation and applying Lemma 1, we have
k e r ( H ξ 2 I ) = v 1 , k e r ( H ξ 4 I ) = v 2 , k e r ( H ξ 6 I ) = v 3 , k e r ( H ξ 8 I ) = v 4 , k e r ( H ξ 10 I ) = v 5 , k e r ( H ξ 12 I ) = v 6 , k e r ( H ξ I ) = v 7 , k e r ( H ξ 3 I ) = v 8 , k e r ( H ξ 5 I ) = v 9 , k e r ( H ξ 7 I ) = v 10 , k e r ( H ξ 9 I ) = v 11 , k e r ( H ξ 11 I ) = v 12 , k e r ( H I ) = v 13 , v 14
where
v 1 = ξ 10 ξ 3 + 1 ξ 1 ξ 10 ξ 2 ξ + 1 1 2 ( 7 ξ 12 7 ξ 11 + 4 ξ 10 ξ 9 + ξ 4 ) 1 2 ξ 3 1 2 ξ 3 4 ξ 4 ξ 1 + 2 ξ 2 + 2 ξ 2 + 5 ξ 2 ξ + 1 1 1 2 ( 7 ξ 12 4 ξ 11 + ξ 10 ξ 2 + 4 ξ 7 ) 1 2 ξ 3 1 2 ξ 3 4 ξ 4 ξ 1 + 2 ξ 2 + 2 ξ 2 + 5 ξ 2 1 ξ ξ 10 + 1 ξ 1 ξ 4 ξ 2 ξ + 1 ξ 6 ξ 3 + 1 ξ 11 ξ 10 + 1 ξ 2 ξ 6 + 2 ξ 3 + 1 ξ 8 + ξ 7 + ξ 6 + ξ + 1 ξ 6 ξ 8 + ξ 7 + ξ 2 + ξ + 1 ξ 2 ξ 2 1 ,   v 2 = 1 ξ 6 ξ 6 + 1 16 ξ 12 15 ξ 11 + 12 ξ 10 8 ξ 9 + 4 ξ 8 ξ 7 + ξ 5 4 ξ 4 + 8 ξ 3 12 ξ 2 + 15 ξ 16 ξ 6 3 ξ 12 8 ξ 11 + 12 ξ 10 16 ξ 9 + 20 ξ 8 24 ξ 7 + 26 ξ 6 24 ξ 5 + 20 ξ 4 16 ξ 3 12 ξ 2 8 ξ + 3 4 ξ 12 ξ 11 + ξ 9 4 ξ 8 + 8 ξ 7 12 ξ 6 + 15 ξ 5 16 ξ 4 + 16 ξ 3 15 ξ 2 + 12 ξ 8 ξ 6 3 ξ 12 8 ξ 11 + 12 ξ 10 16 ξ 9 + 20 ξ 8 24 ξ 7 + 26 ξ 6 24 ξ 5 + 20 ξ 4 16 ξ 3 12 ξ 2 8 ξ + 3 ξ 4 ξ 2 + 1 1 ξ 6 ξ 9 ξ 7 + ξ 2 1 ξ 10 ξ 8 + ξ 6 + ξ 4 ξ 2 + 1 1 ξ 7 1 ξ 2 ξ 2 ξ 2 1 ξ 8 ξ 4 ξ 2 + 1 ξ 12 ξ 6 + 1 ξ 9 ξ 3 ξ 6 + 1 ξ 4 ξ 3 ξ 2 ξ 1 ξ 4 + ξ 3 + ξ 2 + ξ 1 ξ 4 ξ 4 1 , v 3 = ξ 8 ξ 4 + 1 ξ 8 + 2 ξ 4 1 ξ 12 2 ξ 11 + 4 ξ 10 2 ξ 9 + 2 ξ 8 4 ξ 7 + 2 ξ 6 ξ 5 + 2 ξ 4 ξ 3 + ξ 2 ξ 12 ξ 11 + 2 ξ 10 4 ξ 9 + 2 ξ 8 3 ξ 7 + 6 ξ 6 3 ξ 5 + 2 ξ 4 4 ξ 3 2 ξ 2 ξ + 1 ξ 5 ξ 9 ξ 6 ξ 2 + 1 ξ 8 + 2 ξ 4 1 ξ 6 ξ 3 + 1 1 ξ 10 + ξ 6 ξ 4 1 ξ 4 ξ 8 + 2 ξ 4 1 ξ 7 ξ 9 ξ 7 ξ 3 + 1 ξ 8 + 2 ξ 4 1 ξ 7 ξ 9 ξ 6 ξ 2 + 1 ξ 8 + 2 ξ 4 1 1 ξ 4 + 1 ξ 4 ξ 6 ξ 2 ξ 4 + 1 ξ 11 + ξ 8 + ξ 5 + ξ 3 + 1 ξ 5 ξ 11 + ξ 8 + ξ 6 + ξ 3 + 1 ξ 6 ξ 6 1 , v 4 = ξ 2 1 + ξ ξ 7 ξ 6 + ξ 5 ξ 4 + ξ 3 ξ 2 + ξ 1 ξ 2 ξ 5 ξ 5 1 1 + ξ ξ ξ 4 + 1 1 + ξ ξ 4 ξ 3 + ξ 2 ξ + 1 ξ 4 ξ 2 + 1 ξ 5 ξ 4 + ξ 1 ξ 4 ξ 5 1 ξ 1 + ξ 1 ξ 1 + ξ ξ 5 ξ 12 + 1 ξ 5 ξ 2 + 2 ξ + 1 ξ 11 + ξ 9 + ξ 7 + ξ 5 + 1 ξ 5 ξ 11 + ξ 6 + ξ 4 ξ 2 + 1 ξ 6 ξ 8 1 , v 5 = 1 ξ 2 ξ 2 + 1 ξ 3 1 ξ 8 ξ 2 + 1 ξ 3 1 ξ 5 ξ 2 + 1 ξ 11 + ξ 5 + ξ 3 + 1 ξ 2 ξ 4 + 2 ξ 2 + 1 ξ 11 ξ 10 ξ 8 + 1 ξ 2 ξ 4 + 2 ξ 2 + 1 ξ 3 1 ξ 7 ξ 2 + 1 ξ 3 1 ξ 4 ξ 2 + 1 ξ 4 ξ 2 + 1 ξ 3 ξ ξ 2 + 1 ξ 9 + ξ 5 + ξ 4 + ξ 1 ξ 4 ξ 9 + ξ 8 + ξ 5 + ξ 4 + 1 ξ 5 ξ 10 1 , v 6 = 1 ξ 5 ξ 5 + 1 ξ 1 ξ 6 ξ 5 + 1 ξ 1 ξ 7 ξ 5 + 1 ξ 8 + ξ 6 + ξ + 1 ξ 5 ξ 10 + 2 ξ 5 + 1 ξ 12 ξ 8 + ξ 7 1 ξ 5 ξ 10 + 2 ξ 5 + 1 19 ξ 12 15 ξ 11 + 8 ξ 10 8 ξ 8 + 15 ξ 7 19 ξ 6 + 20 ξ 5 20 ξ 4 + 20 ξ 3 20 ξ 2 + 20 ξ 20 ξ 5 ξ 10 4 ξ 9 + 8 ξ 8 12 ξ 7 + 16 ξ 6 18 ξ 5 + 16 ξ 4 12 ξ 3 + 8 ξ 2 + 4 ξ + 1 ξ 1 ξ 10 ξ 5 + 1 ξ 10 ξ 5 + 1 ξ ξ ξ 7 ξ 6 + ξ 5 ξ 4 + ξ 3 ξ 2 + ξ 1 ξ 9 ξ 8 + ξ 7 ξ 6 + ξ 5 + ξ 4 ξ 3 + ξ 2 ξ + 1 ξ 10 + ξ 7 + ξ 4 + ξ 3 1 ξ 4 ξ 10 + ξ 7 + ξ 6 + ξ 3 + 1 ξ 6 ξ 12 1 , v 7 = ξ 10 ξ 5 + 1 ξ 1 ξ 10 ξ 5 + 1 ξ 1 ξ 2 ξ 5 + 1 ξ 5 ξ 6 ξ 5 + ξ 4 ξ 3 + ξ 2 ξ + 1 ξ 4 ξ 3 + ξ 2 ξ + 1 ξ 5 ξ 1 ξ 5 + 1 20 ξ 12 20 ξ 11 + 20 ξ 10 20 ξ 9 + 20 ξ 8 19 ξ 7 + 15 ξ 6 8 ξ 5 + 8 ξ 3 15 ξ 2 + 19 ξ 20 ξ 5 ξ 10 4 ξ 9 + 8 ξ 8 12 ξ 7 + 16 ξ 6 18 ξ 5 + 16 ξ 4 12 ξ 3 + 8 ξ 2 + 4 ξ + 1 ξ 1 ξ 7 ξ 5 + 1 1 ξ 5 ξ 5 + 1 ξ 12 ξ ξ 7 ξ 6 + ξ 5 ξ 4 + ξ 3 ξ 2 + ξ 1 ξ 9 ξ 8 + ξ 7 ξ 6 + ξ 5 + ξ 4 ξ 3 + ξ 2 ξ + 1 ξ 10 + ξ 7 + ξ 6 + ξ 3 + 1 ξ 6 ξ 10 + ξ 7 + ξ 4 + ξ 3 1 ξ 4 ξ 1 , v 8 = ξ 4 ξ 2 + 1 ξ 3 1 ξ 4 ξ 2 + 1 ξ 3 1 ξ 7 ξ 2 + 1 ξ 2 ξ 8 + 1 ξ 2 + 1 ξ 2 ξ 3 1 ξ 2 + 1 ξ 3 1 ξ 5 ξ 2 + 1 ξ 3 1 ξ 8 ξ 2 + 1 1 ξ 2 ξ 2 + 1 ξ 10 ξ ξ 2 + 1 ξ 9 + ξ 8 + ξ 5 + ξ 4 + 1 ξ 5 ξ 9 + ξ 5 + ξ 4 + ξ 1 ξ 4 ξ 3 1 , v 9 = 1 1 + ξ ξ ξ 7 ξ 6 + ξ 5 ξ 4 + ξ 3 ξ 2 + ξ 1 ξ 4 ξ 5 1 ξ 4 1 + ξ ξ 12 + ξ 9 + ξ 8 + 1 ξ ξ 2 + 2 ξ + 1 ξ 4 1 ξ 9 ξ 9 ξ 5 1 ξ 2 + 1 ξ 5 ξ 4 + ξ 1 ξ 3 ξ 4 1 ξ 6 ξ 9 ξ 5 1 ξ 2 1 + ξ ξ 8 ξ 12 + 1 ξ 5 ξ 2 + 2 ξ + 1 ξ 11 + ξ 6 + ξ 4 ξ 2 + 1 ξ 6 ξ 11 + ξ 9 + ξ 7 + ξ 5 + 1 ξ 5 ξ 5 1 , v 10 = ξ 9 ξ 4 + 1 ξ 8 + 2 ξ 4 1 2 ξ 12 ξ 11 + ξ 9 2 ξ 8 + ξ 7 2 ξ 6 + 4 ξ 5 2 ξ 4 + 2 ξ 3 + 4 ξ 2 + 2 ξ 1 ξ 12 ξ 11 + 2 ξ 10 4 ξ 9 + 2 ξ 8 3 ξ 7 + 6 ξ 6 3 ξ 5 + 2 ξ 4 4 ξ 3 2 ξ 2 ξ + 1 ξ 7 ξ 9 ξ 7 ξ 3 + 1 ξ 8 + 2 ξ 4 1 ξ 6 ξ 6 ξ 3 + 1 ξ 9 ξ 7 ξ 3 + 1 ξ 4 ξ 8 + 2 ξ 4 1 ξ 5 ξ 9 ξ 6 ξ 2 + 1 ξ 8 + 2 ξ 4 1 ξ 5 ξ 9 ξ 7 ξ 3 + 1 ξ 8 + 2 ξ 4 1 ξ 8 ξ 4 1 ξ 6 ξ 2 ξ 4 + 1 ξ 11 + ξ 8 + ξ 6 + ξ 3 + 1 ξ 6 ξ 11 + ξ 8 + ξ 5 + ξ 3 + 1 ξ 5 ξ 7 1 , v 11 = ξ 12 ξ 6 + 1 15 ξ 12 12 ξ 11 + 8 ξ 10 4 ξ 9 + ξ 8 ξ 6 + 4 ξ 5 8 ξ 4 + 12 ξ 3 15 ξ 2 + 16 ξ 16 ξ 6 3 ξ 12 8 ξ 11 + 12 ξ 10 16 ξ 9 + 20 ξ 8 24 ξ 7 + 26 ξ 6 24 ξ 5 + 20 ξ 4 16 ξ 3 12 ξ 2 8 ξ + 3 12 ξ 12 15 ξ 11 + 16 ξ 10 16 ξ 9 + 15 ξ 8 12 ξ 7 + 8 ξ 6 4 ξ 5 + ξ 4 ξ 2 + 4 ξ 8 ξ 6 3 ξ 12 8 ξ 11 + 12 ξ 10 16 ξ 9 + 20 ξ 8 24 ξ 7 + 26 ξ 6 24 ξ 5 + 20 ξ 4 16 ξ 3 12 ξ 2 8 ξ + 3 ξ 4 ξ 4 ξ 2 + 1 ξ 9 ξ 6 + ξ 2 1 ξ 6 ξ 12 + 2 ξ 6 + 1 ξ 2 1 ξ 4 ξ 2 + 1 ξ 2 ξ 2 1 ξ 7 ξ 4 ξ 2 + 1 1 ξ 6 ξ 6 + 1 ξ 4 ξ 3 ξ 6 + 1 ξ 4 + ξ 3 + ξ 2 + ξ 1 ξ 4 ξ 4 ξ 3 ξ 2 ξ 1 ξ 9 1 , v 12 = ξ 6 ξ 3 + 1 ξ 1 ξ 4 ξ 2 ξ + 1 1 2 ( ξ 12 ξ 4 + 4 ξ 3 7 ξ 2 + 7 ξ 4 ) ( 1 2 ξ 3 1 2 ξ 3 4 ξ 4 ξ 1 + 2 ξ 2 + 2 ξ 2 + 5 ) ξ 2 ξ 2 ξ + 1 1 2 ( 4 ξ 12 ξ 11 + ξ 3 4 ξ 2 + 7 ξ 7 ) ( 1 2 ξ 3 1 2 ξ 3 4 ξ 4 ξ 1 + 2 ξ 2 + 2 ξ 2 + 5 ) ξ 1 ξ 2 ξ + 1 ξ ξ 1 ξ 10 ξ 2 ξ + 1 1 ξ 3 ξ 3 + 1 ξ 2 ξ 10 + 1 ξ 2 ξ 6 + 2 ξ 3 + 1 ξ 8 + ξ 7 + ξ 2 + ξ + 1 ξ 2 ξ 8 + ξ 7 + ξ 6 + ξ + 1 ξ 6 ξ 11 1 , v 13 = 1 0 0 1 0 0 0 1 1 1 0 0 1 1 , v 14 = 1 0 0 0 0 0 0 1 0 1 1 1 0 0 .
By the linear transformation A, we calculate the images of v i , 1 i 14 as follows:
  • A v 1 = ( ξ 6 ξ 3 + 1 + 1 ) v 8 ,
  • A v 2 = ( ξ 12 ξ 6 + 1 ) v 3 ,
  • A v 3 = ( ξ 9 ξ 4 + 1 ξ 8 + 2 ξ 4 1 + 1 ) v 11 ,
  • A v 4 = ( 1 1 + ξ ξ + 1 ) v 6 ,
  • A v 5 = ( ξ 4 ξ 2 + 1 + 1 ) v 1 ,
  • A v 6 = ( ξ 10 ξ 5 + 1 + 1 ) v 9 ,
  • A v 7 = ( 1 ξ 5 ξ 5 + 1 + 1 ) v 4 ,
  • A v 8 = ( 1 ξ 2 ξ 2 + 1 + 1 ) v 12 ,
  • A v 9 = ( ξ 2 1 + ξ + 1 ) v 7 ,
  • A v 10 = ( ξ 8 ξ 4 + 1 ξ 8 + 2 ξ 4 1 + 1 ) v 2 ,
  • A v 11 = ( 1 ξ 6 ξ 6 + 1 + 1 ) u 10 ,
  • A v 12 = ( ξ 10 ξ 3 + 1 + 1 ) v 5 ,
  • A v 13 = v 14 ,
  • A v 14 = v 13 .
Let V be a minimal A , H -IV. Let
V 1 = v 13 , v 14
and
V 2 = v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7 , v 8 , v 9 , v 10 , v 11 , v 12
over the field Z p ( ξ ) . Suppose first that V V 2 = 0 . Then V V 1 . More exactly, V v 13 , v 14 A v 13 , v 14 . Since A v 13 = v 14 and A v 14 = v 13 , we have V v 13 , v 14 . All one-dime subspaces of v 13 , v 14 are v 13 and s v 13 + v 14 , where s Z P . If v 13 V , then A v 13 = v 14 V and hence V = W 1 : = v 13 , v 14 . Let s v 13 + v 14 V . Then, A ( s v 13 + v 14 ) = s v 14 + v 13 V . Since s v 13 + v 14 , s v 14 + v 13 = v 13 , v 14 , we have V = W 1 .
Now, assume that V intersects V 2 nontrivially, such that V must include one of the minimal H-IVs in V 2 that are 1-dime subspaces of the spaces v 1 , v 2 , v 3 , v 4 , v 6 , v 5 , v 8 , v 7 , v 9 , v 10 , v 12 and v 11 . We examine the following cases.
  • Case I: v 1 V .
Suppose that v 1 V . Then, A v 1 V , implying that v 8 V and hence A v 8 V . Since A v 8 = ( 1 ξ 2 ξ 2 + 1 + 1 ) v 12 , we have v 12 V . By considering A v 12 , one can see that V = W 2 : = v 1 , v 12 , v 5 , v 8 .
  • Case II: v 2 V .
Suppose that v 2 V . Then A v 2 = ( ξ 12 ξ 6 + 1 ) v 3 and hence v 3 V . By noting that A v 3 = ( ξ 9 ξ 4 + 1 ξ 8 + 2 ξ 4 1 + 1 ) v 11 , we have v 11 V . Now by considering A v 11 , we can see v 10 V . Therefore, V = W 3 : = v 2 , v 3 , v 10 , v 11 .
  • Case III: v 3 V .
Assume that v 3 V . Then, A v 3 V , implying that v 11 V and hence by considering A v 11 , we have v 10 V . Finally, by noting that A v 10 = ( ξ 8 ξ 4 + 1 ξ 8 + 2 ξ 4 1 + 1 ) v 2 , one can see that V = W 3 .
  • Case IV: v 4 V .
Let v 4 V . Then, A v 4 = ( 1 1 + ξ ξ + 1 ) v 6 . By considering A v 6 , we have v 9 V . Finally, by noting that A v 9 = ( ξ 2 1 + ξ + 1 ) v 7 and A v 7 = ( 1 ξ 5 ξ 5 + 1 + 1 ) v 4 , one can see that V = W 4 : = v 4 , v 6 , v 9 , v 7 .
In the remaining cases, by considering A v i , 5 i 14 , we have one of the top IVs.
Now, we use Maschke’s theorem to find all IVs. See the following lemma.
Lemma 2.
All proper nontrivial A , H -IVs on the splitting field Z p ( ξ ) are
  • W 1 = v 13 , v 14 ,
  • W 2 = v 1 , v 5 , v 8 , v 12 ,
  • W 3 = v 2 , v 10 , v 3 , v 11 ,
  • W 4 = v 4 , v 7 , v 6 , v 9 ,
  • W 5 : = v 13 , v 14 , v 1 , v 5 , v 8 , v 12 ,
  • W 6 : = v 13 , v 14 , v 2 , v 3 , v 10 , v 11 ,
  • W 7 : = v 13 , v 14 , v 6 , v 4 , v 9 , v 7 ,
  • W 8 : = v 1 , v 5 , v 8 , v 12 , v 2 , v 3 , v 10 , v 11 ,
  • W 9 : = v 1 , v 5 , v 8 , v 12 , v 4 , v 7 , v 6 , v 9 ,
  • W 10 : = v 4 , v 7 , v 6 , v 9 , v 2 , v 3 , v 10 , v 11 ,
  • W 11 : = v 13 , v 14 , v 1 , v 5 , v 8 , v 12 , v 6 , v 4 , v 7 , v 9 ,
  • W 12 : = v 13 , v 14 , v 6 , v 4 , v 9 , v 7 , v 2 , v 10 , v 3 , v 11 ,
  • W 13 : = v 13 , v 14 , v 1 , v 5 , v 8 , v 12 , v 2 , v 10 , v 3 , v 11 ,
  • W 14 : = v 1 , v 5 , v 8 , v 12 , v 4 , v 7 , v 6 , v 9 , v 2 , v 3 , v 10 , v 11 .
Eventually, we delete element ξ from bases for the spaces W i , 2 i 14 . We first show that the subspaces W 2 are not A , H -IVs over Z p where p 1 m o d 13 . Suppose that for some a i , b i , c i , d i Z p ( ξ ) , ( a 0 , a 1 , , a 11 , b 0 , b 1 , , b 11 , c 0 , c 1 , , c 11 , d 0 , d 1 , , d 11 ) ( 0 , 0 , , 0 , 0 , 0 , , 0 , 0 , 0 , , 0 , 0 , 0 , , 0 ) , i = 0 11 a i ξ i v 1 + b i ξ i v 12 + c i ξ i v 5 + d i ξ i v 8 Z p 14 . By considering the coordinates, we see there are not a i , b i , c i , d i Z p such that i = 0 11 a i ξ i v 1 + b i ξ i v 12 + c i ξ i v 5 + d i ξ i v 8 Z p 14 . It can be seen by using the same method that the remaining spaces W i , 3 i 14 are not A , H -IVs over Z p .
According to the above explanation, the following theorem is obtained.
Theorem 2.
Let p be a prime. Suppose that Γ ¯ is an AT cover of the C 13 graph, and the group G lifts. In Figure 2, the connected R-AT-EA-p-cover of the C 13 graph is introduced:
We cannot use Maschke’s theorem for p = 2 , 13 because the hypothesis does not hold. Then, we use S-S to complete R-AT-AE-p-covers of the C 13 graph.

3. Conclusions

Symmetric graphs are used in computer networks, so studying these graphs is very important. For this reason, researchers in algebraic graph theory have been seriously classifying these graphs and studying their properties since around the year 2000. With a linear representation of automorphisms acting on the first homology group of the graph, the EA covering projections of a graph can be found. Essentially, the main purpose of this method is finding IVs of MGs over prime fields. It should be noted that applying S-S is very effective in presenting the main result. In this paper, we classified R-AT-EA-covers of the C 13 graph. In Table 1, this cover, along with the VS on the arcs of CT, was introduced. We plan to study R-AT- AE-covers of quintic graphs in the future. Our next purpose is to investigate ET, semisymmetric and half-arc-transitive coverings of tetravalent graphs.

Author Contributions

Methodology, Q.X., A.K., A.A.T. and N.M.; validation, Q.X. and N.M.; formal analysis, A.A.T. and Q.X.; investigation, A.K. and A.A.T.; data curation, N.M., Q.X., A.K. and A.A.T.; writing—original draft preparation, A.A.T. and N.M.; writing—review and editing, Q.X., A.K., A.A.T. and N.M.; visualization, N.M. and A.K.; supervision, A.K. and Q.X.; project administration, Q.X. and A.A.T.; funding acquisition, Q.X., A.K. and A.A.T. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Tutte, W.T. A family of cubical graphs. Proc. Camb. Philos. Soc. 1947, 43, 459–474. [Google Scholar] [CrossRef]
  2. Tutte, W.T. On the symmetry of cubic graphs. Canad. J. Math. 1947, 11, 621–624. [Google Scholar] [CrossRef]
  3. Conder, M.D.E. Trivalent (Cubic) Symmetric Graphs on Up to 2048 Vertices. 2006. Available online: http://www.math.auckland.ac.nzconder/symmcubic2048list.txt (accessed on 26 January 2022).
  4. Conder, M.D.E.; Dobcsányi, P. Trivalent symmetric graphs on up to 768 vertices. J. Combin. Math. Combin. Comput. 2002, 40, 41–163. [Google Scholar]
  5. Bosma, W.; Cannon, J. Handbook of Magma Function; Sydney University Press: Sydney, Australia, 1994. [Google Scholar]
  6. Cheng, Y.; Oxley, J. On weakly symmetric graphs of order twice a prime. J. Combin. Theory Ser. 1987, B 42, 196–211. [Google Scholar] [CrossRef] [Green Version]
  7. Talebi, A.A.; Mehdipoor, N. Classifying cubic semisymmetric graphs of order 18pn. J. Graphs Comb. 2014, 30, 1037–1044. [Google Scholar] [CrossRef]
  8. Feng, Y.Q.; Kwak, J.H. Classifying cubic symmetric graphs of order 10p or 10p2. Sci. China Ser. 2006, A 49, 300–319. [Google Scholar] [CrossRef]
  9. Feng, Y.Q.; Kwak, J.H. Cubic symmetric graphs of order a small number times a prime or a prime square. J. Combin. Theory Ser. 2006, B 97, 627–646. [Google Scholar] [CrossRef] [Green Version]
  10. Feng, Y.Q.; Kwak, J.H. Cubic symmetric graphs of order twice an odd prime-power. J. Aust. Math. Soc. 2006, 81, 153–164. [Google Scholar] [CrossRef] [Green Version]
  11. Feng, Y.Q.; Kwak, J.H. One-regular cubic graphs of order a small number times a prime or a prime square. J. Aust. Math. Soc. 2004, 76, 345–356. [Google Scholar] [CrossRef] [Green Version]
  12. Feng, Y.Q.; Kwak, J.H.; Wang, K. Classifying cubic symmetric graphs of order 8p or 8p2. Eur. J. Combin. 2005, 26, 1033–1052. [Google Scholar] [CrossRef] [Green Version]
  13. Feng, Y.Q.; Kwak, J.H.; Xu, M.Y. Cubic s-regular graphs of order 2p3. J. Graph Theory 2006, 52, 341–352. [Google Scholar] [CrossRef]
  14. Imani, A.; Mehdipoor, N.; Talebi, A.A. On application of linear algebra in classification cubic s-regular graphs of order 28p. Algebra Discret. Math. 2018, 25, 56–72. [Google Scholar]
  15. Lorimer, P. Vertex-transitive graphs: Symmetric graphs of prime valency. J. Graph Theory 1984, 8, 55–68. [Google Scholar] [CrossRef]
  16. Oh, J.M. A classification of cubic s-regular graphs of order 14p. Discret. Math. 2009, 309, 2721–2726. [Google Scholar] [CrossRef] [Green Version]
  17. Oh, J.M. A classification of cubic s-regular graphs of order 16p. Discret. Math. 2009, 309, 3150–3155. [Google Scholar] [CrossRef] [Green Version]
  18. Oh, J.M. cubic s-regular graphs of orders 12p, 36p, 44p, 52p, 66p, 68p and 76p. J. Appl. Math. Inform. 2013, 31, 651–659. [Google Scholar] [CrossRef]
  19. Ghasemi, M. A classification of tetravalent one-regular graphs of order 3p2. J. Colloq. Math. 2012, 1, 15–24. [Google Scholar] [CrossRef]
  20. Ghasemi, M. tetravalent arc-transitive graphs of order 3p2. Discuss. Math. Graph Theory 2014, 34, 567–575. [Google Scholar] [CrossRef]
  21. Ghasemi, M.; Spiga, P.; Xu, M.Y. 4-valent graphs of order 6p2 admitting a group of automorphisms acting regularly on arcs. J. Ars Math. Contemp. 2015, 9, 1–18. [Google Scholar]
  22. Talebi, A.A.; Mehdipoor, N. Classifying cubic s-regular graphs of orders 22p, 22p2. J. Algebra Discret. Math. 2013, 16, 293–298. [Google Scholar]
  23. Qiang, X.; Kosari, S.; Shao, Z.; Sheikholeslami, S.M.; Chellali, M.; Karami, H. A note on the paired-domination subdivision number of trees. J. Math. 2021, 9, 181. [Google Scholar] [CrossRef]
  24. Malnič, A.; Marušič, D.; Potočnik, P. Elementary abelian covers of graphs. J. Algebr. Combin. 2004, 20, 71–97. [Google Scholar] [CrossRef] [Green Version]
  25. Malnič, A.; Potočnik, P. Invariant subspaces, duality, and covers of the Petersen graph. Eur. J. Combin. 2006, 27, 971–989. [Google Scholar] [CrossRef] [Green Version]
  26. Malnič, A.; Marušič, D.; Miklavič, S.; Potočnik, P. Semisymmetric elementary abelian covers of the Möbius-Kantor graph. Discret. Math. 2007, 307, 2156–2175. [Google Scholar] [CrossRef] [Green Version]
  27. Kwak, J.H.; Oh, J.M. Arc transitive elementary abelian covers of the octahedron graph. Linear Algebra Appl. 2008, 429, 2180–2198. [Google Scholar] [CrossRef] [Green Version]
  28. Talebi, A.A.; Mehdipoor, N. Semisymmetric Zp-covers of the C20 Graph. J. Algebra Discret. Math. 2021, 16, 286–301. [Google Scholar] [CrossRef]
  29. Potočnik, P.; Wilson, S. A Census of Edge-Transitive Tetravalent Graphs. Available online: http://jan.ucc.nau.edu/~swilson/C4Site/index.html (accessed on 26 January 2022).
  30. Beezer, R.A. Sage for Linear Algebra. A Supplement to a First Course in Linear Algebra. Sage Web Site. 2011. Available online: http://www.sagemath.org (accessed on 26 January 2022).
  31. Skoviera, M. A construction to the theory of voltage groups. Discret. Math. 1986, 61, 281–292. [Google Scholar] [CrossRef] [Green Version]
  32. Gross, J.L.; Tucker, T.W. Generating all graph coverings by permutation voltage assignments. Discret. Math. 1977, 18, 273–283. [Google Scholar]
  33. Malnic, A. Group actions, covering and lifts of automorphisms. Discret. Math. 1998, 182, 203–218. [Google Scholar] [CrossRef] [Green Version]
Figure 1. C 13 graph.
Figure 1. C 13 graph.
Symmetry 14 01066 g001
Figure 2. R-AT- AE-p-cover of the C13 graph.
Figure 2. R-AT- AE-p-cover of the C13 graph.
Symmetry 14 01066 g002
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Xiao, Q.; Khan, A.; Mehdipoor, N.; Talebi, A.A. Classification of Arc-Transitive Elementary Abelian Covers of the C13 Graph. Symmetry 2022, 14, 1066. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14051066

AMA Style

Xiao Q, Khan A, Mehdipoor N, Talebi AA. Classification of Arc-Transitive Elementary Abelian Covers of the C13 Graph. Symmetry. 2022; 14(5):1066. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14051066

Chicago/Turabian Style

Xiao, Qianru, Aysha Khan, Narges Mehdipoor, and Ali Asghar Talebi. 2022. "Classification of Arc-Transitive Elementary Abelian Covers of the C13 Graph" Symmetry 14, no. 5: 1066. https://0-doi-org.brum.beds.ac.uk/10.3390/sym14051066

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop