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Abstract: There have been numerous investigations on the hypergeometric series 2F1 and the gen-
eralized hypergeometric series pFq such as differential equations, integral representations, analytic
continuations, asymptotic expansions, reduction cases, extensions of one and several variables,
continued fractions, Riemann’s equation, group of the hypergeometric equation, summation, and
transformation formulae. Among the various approaches to these functions, the transformation for-
mulae for the hypergeometric series 2F1 and the generalized hypergeometric series pFq are significant,
both in terms of applications and theory. The purpose of this paper is to establish a number of trans-
formation formulae for pFq, whose particular cases would include Gauss’s and Kummer’s quadratic
transformation formulae for 2F1, as well as their two extensions for 3F2, by making advantageous
use of a recently introduced sequence and some techniques commonly used in dealing with pFq

theory. The pFq function, which is the most significant function investigated in this study, exhibits
natural symmetry.

Keywords: gamma function; Psi function; generalized hypergeometric function pFq; Gauss’s summa-
tion theorem for 2F1; summation theorems for pFq; transformation formulas for pFq; series rearrange-
ment techniques
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1. Introduction and Preliminaries

The pFq (p, q ∈ Z≥0) is the generalized hypergeometric series defined by (see, e.g., [1],
Section 1.5):

pFq

[
α1, . . . , αp ;

β1, . . . , βq ;
z

]
=

∞

∑
n=0

(α1)n · · · (αp)n

(β1)n · · · (βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq; z),

(1)

being a natural generalization of the Gaussian hypergeometric series 2F1, where (λ)ν

denotes the Pochhammer symbol (for λ, ν ∈ C) defined by:

(λ)ν :=
Γ(λ + ν)

Γ(λ)
=

{
1 (ν = 0; λ ∈ C \ {0}),
λ(λ + 1) · · · (λ + n− 1) (ν = n ∈ Z≥1; λ ∈ C).

(2)

where Γ is the familiar Gamma function (see, e.g., [1], Section 1.1) and it is assumed that
(0)0 := 1, an empty product as 1, and that the variable z, the numerator parameters α1, . . . ,
αp, and the denominator parameters β1, . . . , βq take on complex values, provided that no
zeros appear in the denominator of (1), that is, that:(

β j ∈ C \Z≤0; j = 1, . . . , q
)
.
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Here and elsewhere, let Z, R, and C be, respectively, the sets of integers, real numbers,
and complex numbers. Further,

E≤ν, E<ν, E≥ν, and E>ν

be the sets of numbers in E less than or equal to ν, less than ν, greater than or equal to ν,
and greater than ν, respectively, for some ν ∈ E, where E is either Z or R.

Furthermore, in the following, an empty sum and an empty product are assumed to
be, respectively, 0 and 1.

We recall certain identities and theorems:
The generalized binomial theorem (see, e.g., [2], p. 44, Equation (8)) is given as:

(1− z)−λ =
∞

∑
n=0

(λ)n
zn

n!
= 1F0(λ ; ; z) (3)

(| arg(1− z)| < π, |z| < 1; λ ∈ C).

The classical Gauss’s summation theorem is recalled (see [3]; see, e.g., [2], p. 30,
Equation (7)):

2F1(α, β ; γ ; 1) =
Γ(γ)Γ(γ− α− β)

Γ(γ− α)Γ(γ− β)
(4)

(γ ∈ C \Z≤0, <(γ− α− β) > 0).

Setting α = −n (n ∈ Z≥0) in (4) provides the Chu–Vandermonde summation theorem
(see, e.g., [4], p. 69):

2F1(−n, β ; γ ; 1) =
(γ− β)n

(γ)n
(γ ∈ C \Z≤0, n ∈ Z≥0). (5)

An extension of Gauss’s summation Theorem (4) is recalled (see, e.g., [5], p. 534,
Entry 7.4.4–10; see also [6], Equation (8)):

3F2

[
a, b, d + 1 ;

c, d ;
1

]
=

Γ(c) Γ(c− a− b− 1)
Γ(c− a) Γ(c− b)

(
c− a− b− 1 +

ab
d

)
(6)

(c, d ∈ C \Z≤0; <(c− a− b) > 1).

Setting either a = d or b = d in (6) is found to be equivalent to (4).
The following identities are derivable from (2) (see, e.g., [1], p. 5):

(α)−n :=
Γ(α− n)

Γ(α)
=

(−1)n

(1− α)n
(α ∈ C \Z; n ∈ Z≥0); (7)

(−s)j =

{
0 (j > s),
(−1)j s!
(s−j)! (0 ≤ j ≤ s);

(8)

(b + `)k
(b)k

=
(b + k)`
(b)`

(`, k ∈ Z≥0; b ∈ C). (9)

By mainly reducing suitable parameters involving pFq to construct certain summation
formulas for pFq, Choi et al. [7] introduced the following sequence {Aj(α, `)}`j=0 (for details,
see [7], Equations (28) and (33)):

`

∑
j=0

Aj(α, `)k(k− 1) · · · (k− j + 1) =: (α + k)` =
(α)`(α + `)k

(α)k
(10)

(k ∈ Z≥0, ` ∈ Z≥1, α ∈ C),
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and,

Aj(α, `) =
(
`

j

)
(α)`
(α)j

=

(
`

j

)
(α + j)`−j (11)

(` ∈ Z≥0, j = 0, 1, . . . , `; α ∈ C).

Using (8) and (11), we may obtain:

`

∑
j=0

Aj(α, `)k(k− 1) · · · (k− j + 1) = (α)` 2F1(−`, −k ; α ; 1) (12)

(`, k ∈ Z≥0, α ∈ C).

One defines the generalized harmonic numbers Hn(z) by:

Hn(z) :=
n

∑
j=1

1
z + j

(n ∈ Z≥1, z ∈ C \Z≤−1), (13)

where Hn := Hn(0) are the familiar harmonic numbers.
The Psi (or digamma) function ψ(z) is defined by (see, e.g., [1], Section 1.3):

ψ(z) :=
d
dz

log Γ(z) =
Γ′(z)
Γ(z)

(z ∈ C \Z≤0), (14)

where log is assumed to be taken as the principal branch. This Psi function has a number
of useful identities, for example,

ψ(z + n)− ψ(z) =
n

∑
j=1

1
z + j− 1

= Hn(z− 1) (n ∈ Z≥1). (15)

We also have:

d
dz

(z)n = (z)n
[
ψ(z + n)− ψ(z)

]
= (z)n Hn(z− 1) (n ∈ Z≥1). (16)

Among a number of transformation formulas for 2F1 and pFq (see, e.g., [5,8]), for our
purpose, we begin by recalling Gauss’s quadratic transformation formula for 2F1 (see [3],
p. 225, Equation (100); see also [9], p. 92, Equation (1); [10], p. 50):

(1− z)−2a
2F1

(
a, a +

1
2

; c ; − 4z
(1− z)2

)
= 2F1(2a, 2a− c + 1 ; c ; −z) (17)

(
c ∈ C \Z≤0; |z| < 1, 4|z| < |1− z|2, | arg(1− z)| < π

)
.

By making a main use of (6), Rakha et al. [6] (p. 173, Equation (9)) established the
following quadratic transformation formula between 3F2 and 4F3:

(1− z)−2a
3F2

a, a +
1
2

, d + 1 ;

c + 1, d ;
− 4z

(1− z)2


= 4F3

[
2a, 2a− c, a− A + 1, a + A + 1 ;

c + 1, a− A, a + A ;
− z

] (18)

(
c ∈ C \Z≤−1; a± A, d ∈ C \Z≤0; |z| < 1, 4|z| < |1− z|2, | arg(1− z)| < π

)
,

where:

A :=
(

a2 − 2ad + cd
) 1

2 (19)
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is assumed to be taken one of its two values.

Remark 1. In [6], the A and restrictions are not specified.

Kummer [11] (p. 78, Equation (52)) presented the following quadratic transformation
formula (see also [4], p. 65, Theorem 24): Let c + 3

2 , 2c + 2 ∈ C \Z≤0; |z| < 1
2 ,

|z| < |1− z|, | arg(1− z)| < π. Then:

(1− z)−2a
2F1

[
a, a + 1

2 ;

c + 3
2 ;

z2

(1− z)2

]
= 2F1

[
2a, c + 1 ;

2c + 2 ;
2z

]
. (20)

By primarily using (6), Rakha et al. [12] (p. 208, Equation (3)) extended (20) in the
following quadratic transformation formulas between 3F2 and 4F3:

(1− z)−2a
3F2

[
a, a + 1

2 , d + 1 ;

c + 3
2 , d ;

z2

(1− z)2

]

= 4F3

[
2a, c, 2d + B

2 + 1
2 , 2d− B

2 + 1
2 ;

2c + 2, 2d + B
2 −

1
2 , 2d− B

2 −
1
2 ;

2z

] (21)

(
c + 3

2 , 2c + 2, 2d− 1
2 ±

B
2 , d ∈ C \Z≤0;

|z| < 1
2 , |z| < |1− z|, | arg(1− z)| < π

)
,

where:

B :=
(

16d2 − 16cd− 8d + 1
) 1

2 (22)

is assumed to be taken one of its two values.
As stated in the abstract, the transformation formulas for the generalized hypergeo-

metric series pFq have theoretical and practical significance. The primary goal of this article
is to develop a number of transformation formulae for pFq, with special emphasis on (17),
(18), (20), and (21), by making beneficial use of the sequence in (10) and other techniques
widely utilized in dealing with pFq theory.

2. Extensions of the Quadratic Transformation Formulas

This section provides several generalizations of the quadratic transformation formu-
las (18) as well as (17).

Theorem 1. Let ` ∈ Z≥1; b, d ∈ C \Z≤0; b− 2a ∈ C \Z≥1, <(b− 2a) > `;
|z| < 1, 4|z| < |1− z|2, | arg(1− z)| < π. Then:

(1− z)−2a
3F2

[
a, a + 1

2 , d + ` ;

b, d ;
− 4z

(1− z)2

]

=
∞

∑
s=0

(2a)s(1− b + 2a)s(−z)s

(b)s s! 3F2

[
−`, −s, 2a + s ;

d, 1− b + 2a ;
1

]
.

(23)

Proof. Let L1 be the left member of (23). Using (1), we have:

L1 =
∞

∑
r=0

(−1)r 22r (a)r(a + 1
2 )r(d + `)r zr

(d)r(b)r r!
(1− z)−2r−2a,
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which, upon using the following duplication formula:

(λ)2n = 22n
(

λ

2

)
n

(
λ

2
+

1
2

)
n

(n ∈ Z≥0), (24)

L1 =
∞

∑
r=0

(−1)r (2a)2r (d + `)r zr

(d)r(b)r r!
(1− z)−2r−2a. (25)

Employing (3) in (25) gives:

L1 =
∞

∑
s=0

∞

∑
r=0

(−1)r (2a)2r (d + `)r zr+s

(d)r(b)r r!
(2a + 2r)s

s!
,

which, upon using the following identity:

(λ)m+n = (λ)m (λ + m)n (m, n ∈ Z≥0), (26)

yields:

L1 =
∞

∑
s=0

∞

∑
r=0

(−1)r (2a)s+2r (d + `)r zr+s

(d)r(b)r r! s!
. (27)

Recall the following double series manipulation:

∞

∑
m=0

∞

∑
n=0

f (m, n) =
∞

∑
m=0

m

∑
n=0

f (m− n, n), (28)

f : Z≥0 ×Z≥0 → C being a function, provided that the involved double series is assumed
to be absolutely convergent.

Using (28) in (27) provides:

L1 =
∞

∑
s=0

s

∑
r=0

(−1)r (2a)s+r (d + `)r zs

(d)r(b)r r! (s− r)!
,

which, upon using (8) and (26), offers:

L1 =
∞

∑
s=0

(2a)s zs

s!

s

∑
r=0

(−s)r (2a + s)r

(b)r r!
(d + `)r

(d)r
. (29)

Using (10) in (29), we obtain:

L1 =
1

(d)`

∞

∑
s=0

(2a)szs

s!

`

∑
j=0

Aj(d, `)
s

∑
r=j

(−s)r(2a + s)r

(b)r (r− j)!
,

which, upon setting r− j = r′ in the third summation and dropping the prime on r, with
the aid of (26), leads to:

L1 =
1

(d)`

∞

∑
s=0

(2a)szs

s!

`

∑
j=0

Aj(d, `)(−s)j(2a + s)j

(b)j

s−j

∑
r=0

(−s + j)r(2a + s + j)r

(b + j)r r!
,

or, equivalently,

L1 =
1

(d)`

∞

∑
s=0

(2a)szs

s!

`

∑
j=0

Aj(d, `)(−s)j(2a + s)j

(b)j

× 2F1

[
−s + j, 2a + s + j ;

b + j ;
1

]
.

(30)
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Employing (4) or (5) in 2F1 in (30) provides:

L1 =
1

(d)`

∞

∑
s=0

(2a)s(1− b + 2a)s(−z)s

(b)ss!

`

∑
j=0

Aj(d, `)(−s)j(2a + s)j(−1)j

(1− b + 2a)j
. (31)

Using (11) in the inner summation in (31), with the aid of (8), we may get:

L1 =
∞

∑
s=0

(2a)s(1− b + 2a)s(−z)s

(b)ss!

`

∑
j=0

(−`)j(−s)j(2a + s)j

(d)j(1− b + 2a)j j!
,

which, in virtue of (1), leads to the right member of (23).

Remark 2. The right member of (23) may be expressed in terms of the double hypergeo-
metric function of the Srivastava–Daoust (see, e.g., [13]; [14], p. 454, Equation (4.1); [15],
pp. 199–200, Equation (2.1)).

Theorem 2. Let `1, `2 ∈ Z≥1; b, d1, d2 ∈ C \ Z≤0; b− 2a ∈ C \ Z≥1, <(b− 2a) > `1 + `2;
|z| < 1, 4|z| < |1− z|2, | arg(1− z)| < π. Then,

(1− z)−2a
4F3

[
a, a + 1

2 , d1 + `1, d2 + `2 ;

b, d1, d2 ;
− 4z

(1− z)2

]

=
∞

∑
s=0

(2a)s(1 + 2a− b)s(−z)s

(b)s s!

×
`1

∑
j=0

(−`1)j(−s)j(d2 + `2)j(2a + s)j

(d1)j(d2)j(1 + 2a− b)j j! 3F2

[
−`2, −s + j, 2a + s + j ;

d2 + j, 1 + 2a− b + j ;
1

]
.

(32)

Proof. The proof would run in parallel with that of Theorem 1. The details are omitted.

The following theorem provides a general quadratic transformation formula for a pFq,
which includes (23) and (32) as particular cases.

Theorem 3. Let r, `j ∈ Z≥1 (j = 1, . . . , r); b, dj ∈ C \ Z≤0 (j = 1, . . . , r); b− 2a ∈ C \ Z≥1,
<(b− 2a) > `1 + · · ·+ `r; |z| < 1, 4|z| < |1− z|2, | arg(1− z)| < π. Then,

(1− z)−2a
r+2Fr+1

a, a +
1
2

, d1 + `1, ..., dr + `r ;

b, d1, ..., dr ;
− 4z

(1− z)2


=

∞

∑
s=0

(2a)s(1 + 2a− b)s(−z)s

(b)s s!

[
r−1

∏
µ=1
S
(
`µ, Jµ−1; a, b, d1, . . . , dr; s

)]

× 3F2

[
−`r, −s + Jr−1, 2a + s + Jr−1 ;

dr + Jr−1, 1 + 2a− b + Jr−1 ;
1

]
.

(33)

Here,

Jp :=
p

∑
ν=1

jν (p ∈ Z≥1), (34)
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and,
S
(
`µ, Jµ−1; a, b, d1, . . . , dr; s

)
:=

`µ

∑
jµ=0

(−1)jµ
(
`µ

jµ

) (
−s + Jµ−1

)
jµ

(
2a + s + Jµ−1

)
jµ(

1 + 2a− b + Jµ−1
)

jµ

(
dµ + Jµ−1

)
jµ

×
r

∏
ν=µ+1

(
dν + `ν + Jµ−1

)
jµ(

dν + Jµ−1
)

jµ

(µ = 1, . . . , r− 1).

Proof. As in the proof of Theorems 1 and 2, by induction on r, we may justify (33). Thus,
the involved specifics are omitted.

Theorems 1 and 2 can be rewritten, respectively, as in Theorems 4 and 5.

Theorem 4. Let ` ∈ Z≥1; b, d ∈ C \ Z≤0; b − 2a ∈ C \ Z≥1, <(b − 2a) > `; |z| < 1,
4|z| < |1− z|2, | arg(1− z)| < π. Then,

(1− z)−2a
3F2

[
a, a + 1

2 , d + ` ;

b, d ;
− 4z

(1− z)2

]

=
`

∑
k=0

(
`

k

)
(2a)2k (−z)k

(b)k (d)k
2F1

[
2a + 2k, 1− b + 2a + k ;

b + k ;
− z

]
.

(35)

Proof. LetR1 be the right member of (23). We have:

R1 =
`

∑
k=0

(−`)k
(d)k (1− b + 2a)k k!

∞

∑
s=0

(−s)k (2a)s+k (1− b + 2a)s(−z)s

(b)s s!
. (36)

Using (8) in (36), we obtain:

R1 =
`

∑
k=0

(
`

k

)
1

(d)k (1− b + 2a)k

×
∞

∑
s=0

s(s− 1) · · · (s− k + 1) (2a)s+k (1− b + 2a)s(−z)s

(b)s s!
,

which gives:

R1 =
`

∑
k=0

(
`

k

)
1

(d)k (1− b + 2a)k

∞

∑
s=k

(2a)s+k (1− b + 2a)s(−z)s

(b)s (s− k)!
. (37)

Setting s− k = s′ in the inner sum in (37) and dropping the prime on s, we find:

R1 =
`

∑
k=0

(`k)

(d)k (1− b + 2a)k

∞

∑
s=0

(2a)s+2k (1− b + 2a)s+k (−z)s+k

(b)s+k s!
. (38)

Employing (26) in (38), we get:

R1 =
`

∑
k=0

(
`

k

)
(2a)2k (−z)k

(b)k (d)k

∞

∑
s=0

(2a + 2k)s (1− b + 2a + k)s (−z)s

(b + k)s s!
,

which, in light of (1), leads to the right member of (35).

Remark 3. The formulas in Theorems 1 and 4 are found to hold true for ` = 0. The
particular case of (35) when ` = 0 reduces to yield Gauss’s quadratic transformation
formula for 2F1 (see (17)).



Symmetry 2022, 14, 1073 8 of 12

Theorem 5. Let `1, `2 ∈ Z≥1; b, d1, d2 ∈ C \ Z≤0; b− 2a ∈ C \ Z≥1, <(b− 2a) > `1 + `2;
|z| < 1, 4|z| < |1− z|2, | arg(1− z)| < π. Then,

(1− z)−2a
4F3

[
a, a + 1

2 , d1 + `1, d2 + `2 ;

b, d1, d2 ;
− 4z

(1− z)2

]

=
`1

∑
j=0

`2

∑
k=0

(
`1

j

)(
`2

k

) (2a)2(j+k) (d2 + `2)j (−z)j+k

(b)j+k (d1)j (d2)j+k

× 2F1

[
2a + 2j + 2k, 1 + 2a− b + j + k ;

b + j + k ;
− z

]
.

(39)

Proof. The proof would proceed in the same manner as Theorem 4. The specifics have
been avoided.

By comparing (18) and the resultant identity, which may be derived from setting ` = 1,
b = c + 1 in (35), we obtain a transformation formula asserted in the following theorem.

Theorem 6. Let c ∈ C \ Z≤−1, a± A ∈ C \ Z≤0, d ∈ C \ Z≤0; |z| < 1; c− 2a ∈ C \ Z≥0,
<(c− 2a) > 0. Then,

4F3

[
2a, 2a− c, a− A + 1, a + A + 1 ;

c + 1, a− A, a + A ;
− z

]

= 2F1

[
2a, 2a− c ;

c + 1 ;
− z

]
− 2a(2a + 1)z

(c + 1)d 2F1

[
2a + 2, 2a− c + 1 ;

c + 2 ;
− z

]
,

(40)

where A with its assumption is the same as in (19).

3. Extensions of the Quadratic Transformation Formulas

This section establishes several generalizations the quadratic transformation formu-
las (20) and (21).

Theorem 7. Let ` ∈ Z≥1; c + 3
2 , 2c + 2, d ∈ C \ Z≤0, c ∈ C \ Z≥0, <(c) > `− 1; |z| < 1

2 ,
|z| < |1− z|, | arg(1− z)| < π. Then,

(1− z)−2a
3F2

[
a, a + 1

2 , d + ` ;

c + 3
2 , d ;

z2

(1− z)2

]

=
∞

∑
s=0

(2a)s(1 + c)s(2z)s

(2c + 2)s s! 3F2

[
−`, − s

2 , − s−1
2 ;

d, −c− s ;
1

]
.

(41)

Proof. Let L2 be the left member of (41). We have:

L2 =
∞

∑
r=0

22r (a)r(a + 1
2 )r(d + `)r z2r

22r (c + 3
2 )r(d)r r!

(1− z)−(2r+2a),

which, upon using (3) and (24), gives:

L2 =
∞

∑
s=0

∞

∑
r=0

(2a)2r+s (d + `)r z2r+s

22r (c + 3
2 )r(d)r r! s!

, (42)

Recall the following double series manipulation:

∞

∑
s=0

∞

∑
r=0

f (s, r) =
∞

∑
s=0

[ s
2 ]

∑
r=0

f (s− 2r, r), (43)
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f : Z≥0 × Z≥0 → C being a function, provided that the involved double series is
assumed to be absolutely convergent.

Employing (43) in (42), with the aid of (8), we obtain:

L2 =
∞

∑
s=0

[ s
2 ]

∑
r=0

(−s)2r(2a)s(d + `)r zs

22r
(
c + 3

2
)

r(d)r r! s!
,

which, upon using (24) and (9), yields:

L2 =
∞

∑
s=0

(2a)s zs

s!

[ s
2 ]

∑
r=0

(
− s

2
)

r

(
−s+1

2

)
r(

c + 3
2
)

r r!
(d + r)`
(d)`

. (44)

Using (10) in (44), we find:

L2 =
1

(d)`

∞

∑
s=0

(2a)szs

s!

`

∑
j=0

Aj(d, `)
[ s

2 ]

∑
r=j

(
− s

2
)

r

(
−s+1

2

)
r(

c + 3
2
)

r (r− j)!
,

which, upon setting r− j = r′ and dropping the prime on r, yields:

L2 =
1

(d)`

∞

∑
s=0

(2a)s zs

s!

`

∑
j=0

Aj(d, `)
(
− s

2
)

j

(
−s+1

2

)
j(

c + 3
2
)

j
2F1

[
− s

2 + j, − s
2 + 1

2 + j ;

c + 3
2 + j ;

1

]
. (45)

Now, proceeding the similar manner as in the proof of Theorem 1, we may get the
identity (41). The remaining specifics are omitted.

Theorem 8. Let `1, `2 ∈ Z≥1; c + 3
2 , 2c + 2, d1, d2 ∈ C \Z≤0, c ∈ C \Z≥0,

<(c) > `1 + `2 − 1; |z| < 1
2 , |z| < |1− z|, | arg(1− z)| < π. Then,

(1− z)−2a
4F3

[
a, a + 1

2 , d1 + `1, d2 + `2 ;

c + 3
2 , d1, d2 ;

z2

(1− z)2

]
=

∞

∑
s=0

(2a)s(1 + c)s(2z)s

(2c + 2)s s!

×
`1

∑
j=0

(−`1)j
(
− s

2
)

j

(
−s+1

2

)
j
(d2 + `2)j

(d1)j(d2)j(−c− s)j j! 3F2

−`2, − s
2
+ j,
−s + 1

2
+ j ;

d2 + j, −c− s + j ;
1

.

(46)

Proof. The proof would continue in the same fashion as that of Theorem 7, but without
the details.

Theorem 9. Let `j ∈ Z≥1 (j = 1, . . . , r); c + 3
2 , 2c + 2, dj ∈ C \ Z≤0 (j = 1, . . . , r),

c ∈ C \Z≥0, <(c) > `1 + · · ·+ `r − 1; |z| < 1
2 , |z| < |1− z|, | arg(1− z)| < π. Then,

(1− z)−2a
r+2Fr+1

a, a +
1
2

, d1 + `1, ..., dr + `r ;

c +
3
2

, d1, ..., dr ;

z2

(1− z)2


=

∞

∑
s=0

(2a)s(1 + c)s(2z)s

(2 + 2c)s s!

[
r−1

∏
µ=1
T
(
`µ, Jµ−1; c, d1, . . . , dr; s

)]

× 3F2

−`r, − s
2
+ Jr−1,

−s + 1
2

+ Jr−1 ;

dr + Jr−1, −c− s + Jr−1 ;
1

.

(47)
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Here, Jp is the same as in (34), and:

T
(
`µ, Jµ−1; c, d1, . . . , dr; s

)
:=

`µ

∑
jµ=0

(−1)jµ
(
`µ

jµ

) (− s
2 + Jµ−1

)
jµ

(
−s+1

2 + Jµ−1

)
jµ(

−c− s + Jµ−1
)

jµ

(
dµ + Jµ−1

)
jµ

×
r

∏
ν=µ+1

(
dν + `ν + Jµ−1

)
jµ(

dν + Jµ−1
)

jµ

(µ = 1, . . . , r− 1).

Proof. As with the proofs of Theorems 7 and 8, we may justify, by induction on r, (47). As
a result, the details are eliminated.

As in Theorem 4, Theorem 7 can be rewritten in the following theorem.

Theorem 10. Let ` ∈ Z≥0; c + 3
2 , 2c + 2, d ∈ C \ Z≤0, c ∈ C \ Z≥0, <(c) > ` − 1;

|z| < 1
2 , |z| < |1− z|, | arg(1− z)| < π. Then,

(1− z)−2a
3F2

[
a, a + 1

2 , d + ` ;

c + 3
2 , d ;

z2

(1− z)2

]

=
`

∑
k=0

(
`

k

)
(a)k (a + 1

2 )k z2k

(c + 3
2 )k (d)k

2F1

[
2a + 2k, c + 1 + k ;

2c + 2 + 2k ;
2z

]
.

(48)

Remark 4. The case ` = 0 of (48) is found to yield Kummer’s quadratic transformation
formula (20).

As in Theorem 5, Theorem 8 can be rewritten in the following theorem.

Theorem 11. Let `1, `2 ∈ Z≥1; c + 3
2 , 2c + 2, d1, d2 ∈ C \Z≤0, c ∈ C \Z≥0,

<(c) > `1 + `2 − 1; |z| < 1
2 , |z| < |1− z|, | arg(1− z)| < π. Then,

(1− z)−2a
4F3

[
a, a + 1

2 , d1 + `1, d2 + `2 ;

c + 3
2 , d1, d2 ;

z2

(1− z)2

]

=
`1

∑
j=0

`2

∑
k=0

(
`1

j

)(
`2

k

) (d2 + `2)j

(d1)j (d2)j+k

×
(a)j+k

(
a + 1

2

)
j+k

z2(j+k)(
c + 3

2
)

j+k
2F1

[
2a + 2j + 2k, c + 1 + j + k ;

2c + 2 + 2j + 2k ;
2z

]
.

(49)

By matching the right members of (21) and the case ` = 1 of (48), we may obtain a
transformation formula between 4F3 and 2F1 asserted in the following theorem.

Theorem 12. Let c + 3
2 , 2c + 2, 2d− 1

2 ±
B
2 , d ∈ C \Z≤0, <(c) > 0 and |z| < 1

2 . Then,

4F3

[
2a, c, 2d + B

2 + 1
2 , 2d− B

2 + 1
2 ;

2c + 2, 2d + B
2 −

1
2 , 2d− B

2 −
1
2 ;

2z

]

= 2F1

[
2a, c + 1 ;

2c + 2 ;
2z

]
+

a (a + 1
2 ) z2

d (c + 3
2 )

2F1

[
2a + 2, c + 2 ;

2c + 4 ;
2z

]
,

(50)

where B with its assumption is the same as in (22).
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4. Remarks, Further Formulas, and Posing Problems

In this article, by making a convenient use of the {Aj(α, `)}`j=0 in (10), we provided a
number of transformation formulas among pFq, which include some known formulae as
particular cases.

For the terminating Clausen hypergeometric series 3F2(1) in Theorems 1–3, and 7–9,
the summation theorems of Dixon, Saalschütz, Watson, Whipple, and other summation
theorems for 3F2(1) (see, e.g., [5]) cannot be applied.

We may also establish a number of formulas for pFq by applying calculus to those
identities in the previous sections. For example, differentiating both sides of (23) with
respect to d, and using (16), we may obtain an identity in Theorem 13.

Theorem 13. Let ` ∈ Z≥1; b, d ∈ C \ Z≤0; b − 2a ∈ C \ Z≥1, <(b − 2a) > `; |z| < 1,
4|z| < |1− z|2, | arg(1− z)| < π. Then,

(1− z)−2a
∞

∑
k=1

(a)k

(
a + 1

2

)
k
(d + `)k

k! (b)k (d)k
[Hk(d + `− 1)− Hk(d− 1)]

(−1)k 22k zk

(1− z)2k

= −
`

∑
j=1

(2a)2j (−z)j

(`− j)! (b)j (d)j
Hj(d− 1) 2F1

[
2a + 2j, 1− b + 2a + j ;

b + j ;
− z

]
.

(51)

Setting ` = 1 in Theorem 13 may provide a transformation formula in the follow-
ing corollary.

Corollary 1. Let b, d ∈ C \Z≤0; b− 2a ∈ C \Z≥1, <(b− 2a) > 1; |z| < 1,
4|z| < |1− z|2, | arg(1− z)| < π. Then,

2F1

[
a, a + 1

2 ;

b ;
− 4z

(1− z)2

]
− 3F2

[
a, a + 1

2 , d + 1 ;

b, d ;
− 4z

(1− z)2

]

=
2a (2a + 1) z (1− z)2a

bd 2F1

[
2a + 2, 2− b + 2a ;

b + 1 ;
− z

]
.

(52)

The following problems are posed:

• Rewrite the results in Theorems 3 and 9 in the same manner as those in Theorems 4, 5,
10, and 11.

• Using the identities in the previous sections, establish formulae as those in (51)
and (52).

• As noted in Remark 2, express the right members of (23) and (41), respectively, in terms
of the double hypergeometric function of the Srivastava–Daoust (see, e.g., [13]; [14],
p. 454, Equation (4.1); [15], pp. 199–200, Equation (2.1)).

In this study, only equalities associated with the hypergeometric function and general-
ized hypergeometric functions were explored. In fact, inequalities involving hypergeomet-
ric and related functions have also been investigated and appeared in the literature. For
example, in [16], an intriguing inequality for the hypergeometric function, which is related
to cost-effective numerical density estimation of the hyper-gamma probability distribution
was shown (see also the references cited therein). Further it is intriguing to introduce that,
in [17], using the features of superquadratic functions, various interesting improvements
and popularizations on time scales of the Hardy-type inequalities and their converses
were presented.
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