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Abstract: Mouse pose estimations have important applications in the fields of animal behavior re-
search, biomedicine, and animal conservation studies. Accurate and efficient mouse pose estimations
using computer vision are necessary. Although methods for mouse pose estimations have developed,
bottlenecks still exist. One of the most prominent problems is the lack of uniform and standardized
training datasets. Here, we resolve this difficulty by introducing the mouse pose dataset. Our mouse
pose dataset contains 40,000 frames of RGB images and large-scale 2D ground-truth motion images.
All the images were captured from interacting lab mice through a stable single viewpoint, including
5 distinct species and 20 mice in total. Moreover, to improve the annotation efficiency, five keypoints
of mice are creatively proposed, in which one keypoint is at the center and the other two pairs of
keypoints are symmetric. Then, we created simple, yet effective software that works for annotating
images. It is another important link to establish a benchmark model for 2D mouse pose estimations.
We employed modified object detections and pose estimation algorithms to achieve precise, effective,
and robust performances. As the first large and standardized mouse pose dataset, our proposed
mouse pose dataset will help advance research on animal pose estimations and assist in application
areas related to animal experiments.

Keywords: mouse pose estimation; dataset; deep learning; computer vision

1. Introduction

Benefiting from the advancement of deep learning networks and the improvement of
sensor camera technologies, pose estimations have dramatically developed in the computer
vision community during recent years. Research on pose estimations is not limited to
humans and hands, but also extends to animal pose studies. Animal pose estimations
are a key step in animal behavior research. Related animal research has confronted a
set of increasing demands in the neuroscience [1], genetics [2], pharmacology [3], and
psychology [4] domains. Traditional analyses of animal poses rely on manual recognitions
and analyses of videos. This does not meet the needs of current research. Therefore,
researchers in various disciplines have come to rely on computer vision systems for precise
and detailed estimations of the pose.

With the rapid prosperity and maturity of pose estimation technologies of humans [5–7],
animal pose estimations have been introduced in recent years. As a more challenging task,
animal pose estimations have been drawing substantial attention. Existing research on
pose estimations of various animal species include mice [8], cattle [9], birds [10], pigs [11],
chimpanzees [12], fruit flies [13], etc. Among these, mice are a mammalian species that is
frequently used in bioscientific research. They have the features of a small size, fast growth,
and low price and are easy to breed and use [14], and as such, they are widely used in
various research fields. Therefore, it is necessary to study mouse pose estimations based
on computer vision. It is well known that pose estimation technologies have matured for
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human pose estimation applications. Diverse and precise systems have been proposed in
human pose estimations, as well as behavior analyses [15–20]. However, due to different
the physiological characteristics between humans and mice, the same methods cannot be
migrated to mouse pose estimations directly. Specifically, the mouse is highly deformable,
and its limbs are normally sheltered by its body. Therefore, it is a difficult task to make
accurate, fast, and robust measurements of mice behaviors.

Thus far, there exists a range of algorithms, frameworks, and approaches on mouse
pose estimations [21–24]. However, they are hindered either by diverse and possibly incon-
sistent principles or by unstandardized image data captured through different equipment.
In detail, regarding the aspect of image data, they have been generated by retrieving from
camera sensors [2,25] or by using existing publicly available datasets [26]. The quality of
such training data is inconsistent. Hence, the need for a large and uniform dataset for
estimating full mouse poses has emerged.

In this paper, we introduce a real-world novel and large-scale mouse pose dataset.
The dataset was captured from continuous color video and ground-truth 2D behaviors
among interacting mice. Profiting from 10 pairs of mice raised in a stable laboratory
environment, we collected recorded top-view videos and extracted abundant frames.
Various improvements were also made in both the number and the quality of mouse poses.
Our mouse pose dataset can assist to advance the state-of-the-art mouse pose estimations
and provide a wider range of possibilities for future research.

Under normal circumstances, the limbs of mice are obscured by their bodies. This
phenomenon makes precise annotations a difficult problem. To address this problem, we
creatively define five locations of keypoints: the mouth, the left ear, the right ear, the
neck, and the tail root. Among these, the keypoint neck is located in the center of an
image, while the other two pairs of keypoints are symmetric. This symmetric feature
makes the keypoints conspicuous and simple to operate, as well as observe. In the 40,000
RGB images of the mouse pose dataset, accurate annotations were well labeled by us on
the locations of the keypoints of the mice. Each picture shows the location of a mouse
in detail: its bounding box, the X and Y image coordinates of its five joint positions.
Meanwhile, diversity is completely demonstrated here. Various postures of multiple mice
at different times profoundly expanded the profusion of our dataset, such as upright,
climbing, feeding, etc.

We also designed a hardware device to collect the videos of the mice. The hardware
device is equipped with a camera for videos’ acquisition and an LED lamp for balance
in illumination. Additionally, annotating data is an essential step for the training of
neural networks and machine learning. The work of fast and accurate data annotation is
a non-negligible long-lasting bottleneck of various applications in these fields. Despite
the availability of software for annotating human datasets, they are not suitable to be
used for mice. Underlying this fact, we developed specific software for annotating our
mouse dataset. The software not only relatively alleviates the work of humans in this
time-consuming and tedious task, but it is also easy to reproduce. It has potential wide
applications in related work. For completeness, we present a baseline for mouse pose
estimations based on the previous work by [27]. This simple, yet strong method will help
researchers come up with new ideas, as well as simplify the evaluation.

The main contributions of this article are as follows:

• We propose a large-scale mouse pose dataset for mouse pose estimation. It makes up
for the shortage of uniform and standardized datasets in mouse pose estimation.

• We design a fast and convenient keypoint annotation tool. The features of being easy to
reproduce and employ make it have extensive potential applications in related work.

• A simple and efficient pipeline as a benchmark is proposed for evaluation on our dataset.

Our paper is organized as follows. In Section 2, we review the existing datasets of the
mouse in the deep learning area and analyze their features. Related work in pose estimation
is also presented in this section. In Section 3, we describe our capturing device used for
collecting the data. Section 4 describes the dataset we propose in detail. Section 5 describes
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our benchmark used for mouse pose estimation, including experimental networks, evalua-
tion standards, experimental settings, and results. The paper ends with the conclusions,
which is Section 6.

2. Related Work
2.1. Datasets for the Mouse Poses

There exists a range of 2D mouse pose datasets varying in multifarious aspects. Hu et al. [8]
created a dataset of the mouse composed of 4627 frames of 2D poses (20 keypoints) from
three sets of video data. The dataset was collected in the dark cycle with infrared illumi-
nation. Within this, 32 mice were distributed into four different classes. They were caged
independently to capture mostly daily behaviors. The PDMB dataset [28] contains four
videos of four mice, and each video was divided into six ten-minute clips with 9248 images
used. Both of the datasets above were collected from real-world videos. Additionally,
Xu et al. [29] provided 3253 depth images of two different lab mice, which successfully
helped them acquire distinct poses, as well as depth noise patterns. However, unlike the
above datasets, they tripled the size of the dataset through additional transformations.
Another special dataset was released by Mu et al. [30]. This dataset is constituted by
synthetic images based on the Coco val2017 dataset. Obviously, synthesis techniques are
also becoming increasingly prevalent in the domain.

A set of systematic datasets of mice has also been proposed in recent years. The
CalMS21 dataset was produced from raw 30 Hz videos [31]. It consists of not only six
million frames of unlabeled tracked poses of interacting mice, but also over one million
frames of tracked poses and corresponding frame-level behavior annotations (seven key-
points). Unfortunately, all the data of CalMS21 were designed to be targeted for studying
behavior classifications. It does not match work in pose estimations to some extent. The
Paired Acquisition of Interacting oRganisms–Rat (PAIR-R24M) dataset was prepared for
multi-animal 3D pose estimations [32]. It contains 24.3 million frames of RGB video of
18 different pairs of laboratory rats (11 keypoints) from 24 viewpoints and 3 interaction
categories. Dissecting a mass of existing mouse datasets, various problems are ubiqui-
tous, including few research objects and unclear descriptions of the process of obtaining
datasets [13,33].

Thus far, the need for 3D pose estimations is growing with the advancement of deep
learning technologies. Two-dimensional images are not only key to their analyses, but also
fundamental for further research [8,34–37]. However, after analyzing the datasets men-
tioned above, several universal limitations are obvious among existing mouse datasets: The
collecting environments were not uniform, which largely limits the efficiency of employing
the data; the datasets were collected for a specific target, but not for pose estimation, which
does not match the pose estimation work; some datasets were created by transformation
techniques, which are not real data.

Therefore, our work aims to provide a large-scale standardized and annotated mouse
pose dataset. The data were collected from pairs of mice in a stable environment. Each
image is very clear and high quality such that it can satisfy not only our work—the
estimations of mice poses—but also, it can be easily utilized in other aspects of related
research on the mouse based on deep learning technologies. Evidently, our dataset has a
more extensive application prospect. More details about the dataset will be introduced in
Section 4.

2.2. Annotating Software and Hardware Devices

Currently, the need for automated and efficient software for annotating pose images
has sharply increased with massive images. At the beginning of the development of
pose estimations, most image annotation was performed by humans [25,26]. This largely
increases the cost and complexity of research. Under the necessity of relieving the work
of humans, simple but effective annotating software has arisen in response to the time
and conditions. Object detection with semi-annotated weak labels (ODSAWLs) needs the
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image-level tags for a small portion of the training images [20]. It cooperates with object
detectors, which can be learned from a small portion of the weakly labeled training images,
as well as from the remaining unlabeled training images. Recently, DeepLabCut has been
utilized in this field [38,39]. It is a method for markerless pose estimations based on transfer
learning with minimal training data. On this basis, automatic software and devices are
created to aid in freeing humans from these time-consuming tasks [40,41]. However, in
order to amplify the application scope of our mouse dataset, we introduce a simple, but
effective annotating software for fast, vigorous, and available image markers.

In parallel, it is common to find capturing devices set up in the field of pose estimations.
They satisfy various requirements of the observation angles. Hsien et al. [25] built a
hardware setup with a behavior apparatus, a sensor device, and a personal computer.
Wang et al. [42] set up an experimental device for data acquisitions. Here, we also built a
hardware device for data collection, illustrated in Section 3.

2.3. Algorithms and Baselines of Pose Estimation

Simple, yet effective baseline methods are beneficial to inspire and evaluate new ideas
for the field [27]. Recent advances in human pose estimations have resulted in various
baselines of human behavior being proposed. CPN [17] aimed to handle the keypoints
that were occluded, invisible, or in a complex background through integrating all levels of
the feature representations from the GlobalNet. Xiao ed al. [27] proposed a baseline that
was validated to outperform other methods for 2D human pose estimation and tracking.
Andriluka et al. [15] proposed two baselines that performed well on easy sequences with
well-separated upright people; however, this is not well suited for fast camera motions
and complex articulations. InterHand2.6M [43] contains both a dataset and a baseline
for 3D interacting hand pose estimations from RGB images and built a solid foundation
for future works. Marinez et al. [44] released a high-performance, yet lightweight and
easy-to-reproduce baseline of 3D human pose estimations. Their work sets a bar for future
works in this field. However, compared with the quick maturity of baselines in human pose
estimations, simple and effective baselines of animal pose estimations need to be explored
in the mouse pose estimation field.

3. Capturing Device

We designed a device suitable for the laboratory environment to collect the data. The
device was used for data acquisitions of real-time pose information of the interacting mice,
including a capturing apparatus, the Logitech C270 sensor camera, and a personal computer
(Figure 1). To stabilize the equipment, a black steel plate was placed at the bottom of the al-
loy body. The capturing apparatus consisted of a cube metalbody (30 cm × 30 cm × 30 cm),
two hinged rotating metalarms (140 cm), and a circular fill light modulator (r = 13 cm). The
sensor camera was inserted into the center of our light modulator, mounted 80 cm above
the steel plate at the bottom to obtain clear, accurate, and stable RGB image data of the mice.
The two hinged rotating arms were fixed at approximately 130° and 165°, respectively, to
provide consecutive stable video shooting. Both the height, as well as the angle can be
adjusted at will.

The Logitech C270 camera provides high-quality images with a resolution of up to
720p. Despite it having the function of multi-person calls, we did not use this function, as
we wanted to concentrate more on our precise data collections and minimize the negative
performance effect while capturing the images. As shown in Figure 1, the camera was
connected to a personal computer for recording the videos of the laboratory mice and
storing them. The process of extracting the frames of RGB images from recorded videos
was implemented on the computer, in which the sampling rate was set at 30 frames/s
(30 Hz).

Furthermore, four Yagli boards were utilized to create a space for the movement of
the mice. The boards not only guarantee the overall activities of the mice in the range of
the customized capturing device, but also makes the environment closer to the biological
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mouse laboratory. The experimental device was able to acquire abundant accurate video
information on the activities, as well as the movements of the mice.

Figure 1. Capturing device.

4. Data Description

Our proposed mouse pose dataset was designed to provide abundant quantities of
training data for mouse pose estimations. The dataset was structured into RGB images,
mouse area locations, and 2D keypoint positions, for which each image was composed of
captured frames under the rate of 30 frames/s (30 Hz). In particular, the composition of
this dataset was as follows:

• A series of 2D RGB images of mice in the experimental setting.
• The bounding box for positioning the mouse in the image.
• Annotated mouse keypoint coordinates.

Additionally, the uniformity in the species, illumination, living environment, and
observation angles profoundly ensured the reliability, as well as the quality of the mouse
pose dataset. Controlling these variables will definitely make the mouse pose dataset have a
well-directed and functional role in pertinent fields, advancing the efficiency of the primary
work in machine learning.

4.1. Definitions of Mouse 2D Joint Points

For each frame in the dataset, a set of 2D points is provided. These two-dimensional
points correspond to the keypoints of the mice in the laboratory environment, requiring no
further preprocessing.

Table 1 lists the ID of each point and its semantic correspondence. In Figure 2, five
different points are marked on one mouse with their corresponding X and Y coordinates.
As the analysis above, we set up five keypoints based on experience [37]: mouth, left ear,
right ear, neck, and tail root.

Figure 2. Five keypoints marked on one mouse with their corresponding X and Y coordinates.
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Table 1. The ID of each keypoint of a mouse in the software and its semantic name.

Joint ID Semantic Name

Tag 1 Mouth
Tag 2 Left Ear
Tag 3 Right Ear
Tag 4 Neck
Tag 5 Tail Root

4.2. Color Images of a Mouse

The dataset we created is mainly for mouse pose estimation systems based on deep
learning, while other fields were also considered. Within all these systems, the acceptable
loss of pose estimations is related to the quality of the input RGB mouse images. Therefore,
the quality of the input images holds great importance at present. As stated before, every
frame of the mouse pose dataset is a color image, which is recorded from a top-down view.
Notably, there were slight deformations while the vision sensor was capturing the images.
Fortunately, the camera we used has the ability to handle image distortions, which allowed
the images to meet our requirements.

4.3. Mouse 2D Joint Point Annotations

In the past, the traditional method of capturing keypoints was to install sensors at
the joints of humans or animals and obtain joint point coordinates by analyzing sensor
data. However, it is very difficult to install sensors on the joint points of the body of small
animals, especially mice. In this way, we chose to shoot active videos of these small animals
at first. Then, we took the frames to obtain images and mark the joints of animals on the
images. This method can overcome the problem of not being able to install sensors on
small animals.

The keypoints of our dataset were the five most easily observable in the top-down
perspective (Figure 3). At the same time, these five keypoints can simulate the daily
behavior of most mice. Therefore, they can be well applied in the laboratory environment.
To obtain the annotated 2D pose data of mice, we divided the annotation task into two
parts. In the first part, we used the LabelImg application [45] to annotate the mouse
locations. Then, we cut out the mouse images from the original images based on the mouse
localization coordinates.

Figure 3. The top-down perspective of a mouse pose captured by the hardware device.

In the second part, we performed keypoint annotation on cropped mouse images.
To facilitate the execution of keypoint annotations, we produced a universal mouse pose
estimation labeling software (Figure 4). The software is based on PyQt5, a Python language
implemented on the basis of the graphical programming framework Qt5, which consists
of a set of Python modules. The PyQt5 API has more than 620 classes and 6000 functions.
These well-packaged classes and functions make it easier and more convenient for users
to instantiate classes and call functions. It is a cross-platform toolkit that can run on all
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major operating systems, including Windows, Linux, and Mac OS. All the advantages
shown above contributed to our choice of PyQt5 as the means to process the images. It can
annotate not only the joints of mice, but also the joints of other animals in the image. At
present, no labeling software on the market is specifically aimed at labeling the keypoints
of objects in an image. Our self-created annotating software is based on the python3.6 and
PyQt5 libraries. The basic functions of this software are to visualize the labeling process
and save the coordinates of the annotated keypoints in a text document file. At the same
time, in order to improve the efficiency of the labeling, we also added some functions that
facilitate the labeling process, such as adding a quick interface, switching between multiple
files, and removing labeling points.

Figure 4. The basic interface of the annotating software.

Finally, it is worth mentioning that the reason why we determined the top-down
mouse pose capture perspective was to ensure that we could observe every joint point
of the mouse without interfering with the daily activities of the mouse, which made our
mouse pose estimation dataset more accurate.

4.4. Variability and Generalization Capabilities

Releasing our dataset of mouse pose estimations is for the purpose of providing high-
precision ground-truth data. However, the progress was hindered by the characteristics of
mouse activities, which are autonomous, uncontrolled, and unscheduled. This is mainly
due to individual differences: a large proportion of experimental mice with independent,
yet unfixed postures will be obscured by their bodies. In parallel, exceptional cases also
occurred in the course of continuous observations. For example, multiple mice overlapped
each other. Therefore, in the process of labeling, eight skilled annotators were engaged,
and they manually checked, as well as eliminated such unqualified data. Specifically, when
the feature points in the image were covered by other parts of the body, we directly deleted
such data to ensure the correctness and validity of the dataset. Furthermore, cross-checking
was applied to the examination process of the annotated dataset, effectively avoiding
artificial errors. Every mouse in our laboratory was a healthy and normal individual.

To this end, we used multiple mice for video data acquisitions in different permu-
tations and combinations and excluded those frames that were clustered together. In
conclusion, our mouse pose dataset contains 40,000 2D RGB images of mice living in the
laboratory environment. Profiting from the manual elaboration, each image of the dataset
can thoroughly represent the pose of a mouse. With the need to generate training data
and test segmentation data, the mouse pose dataset was recombined, and 20% served for
testing, while the remaining 80% were for training.

5. Benchmark—2D Keypoint Estimations

In this section, we propose a benchmark model based on deep learning algorithms,
which includes the process of mouse detection, mouse pose estimation, the evaluation
standard, the experimental settings, and the experimental results. To this end, a pipeline
from mouse images to 2D keypoints is proposed.
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5.1. Mouse Detection

First, our detection device utilizes a Logitech C270 camera to record video segments of
mice and arranges the video into a series of RGB images at a constant 30 frames per second
rate. In the second part, all eligible data are transported through the trained network
YOLOv4 [46], which is applied to determine the locations of mice that appeared in the
scene. The YOLOv4 network structure is shown in Figure 5.

Figure 5. The structure of the YOLOv4 network.

YOLOv4 has a relatively big change compared to YOLOv3. First, the original Leaky-
ReLU is replaced by the Mish function in the network structure of feature extraction, as
shown in Equation (1).

Mish = x × tanh(ln(1 + ex)) (1)

This change guarantees the flow of information while ensuring that negative values
are not completely truncated, thereby avoiding the problem of gradient saturation. At the
same time, the Mish function compared with ReLU also makes sure there is no smoothing
effect, making the effect of gradient descent better than that of ReLU. In the equation, x
represents the pixels of the input image; the outputs of YOLOv4 include both the bounding
box of the mice and the score representing the detection confidence.

5.2. Mouse Pose Estimation

Mouse pose estimation is the third process of our benchmark. Within this process,
each image of the mice is cropped based on the output of YOLOv4 and is adjusted to
256 × 256 pixels. It is fed to the 2D pose estimation network [27] for themouse keypoint
coordinates. We found that the best choice was Adam, whose learning rate was 0.003. The
loss function we used was the MSE. This is an end-to-end process. The overall pipeline is
displayed in Figure 6.

Our baseline method was verified in the test, which was processed with test segmen-
tation cross-validation, and the average absolute error of validation for 256 × 256 mouse
images was 0.02%, i.e., 10-pixel error. The results based on the real image data were also
acquired in the experiment, which will be presented in Section 5.5.

Figure 6. The structure of the pipeline.

Moreover, due to the single video background and controllable external disturbances,
the operation of pruning the network of pipelines properly was very beneficial. For
example, we used a backbone network with fewer parameters. That not only reduced
the cost of the computation during training, but also promoted the efficiency of mouse
pose estimation.
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5.3. Evaluation Standard

Our baseline model consists of two parts, object detection and pose estimation. In
the object detection part, the images in the test set are input into the algorithm. If the
intersection over union (IOU) of the bounding box of the mouse detected in the test image
and the bounding box in the label is greater than or equal to the threshold, we set (0.6); the
mice were considered to be successfully detected. In this paper, the accuracy rate (precision
(P)) was used as the evaluation index of the accuracy of the target detection model. The
calculation formula is as follows:

P =
TP

TP + FP
(2)

In Equation (2), TP indicates the number of correctly detected mice in the test set; FP
indicates the number of falsely detected mice in the test set. In the pose estimation part, the
percentage of correct keypoints (PCK) was used as the average error in each keypoint and
label data to evaluate the effect of the algorithm in pixels.

5.4. Experimental Settings

In this section, we gradually introduce our experimental environment and pose esti-
mation results from the configuration of the experiment.

All the results of our pose estimations were obtained by experiments with the following
experimental equipment: Ubuntu 20.04 as the operating system of the experiment, Pytorch
1.6 as the deep learning framework used in all experiments, and an NVIDIA Geforce
RTX 2080s GPU, with a video memory of 8 GB, from which all experimental results
were obtained.

In the pose estimation process, the total pose was estimated to run at 27 frames per
second and can be tuned in the code to run at 30 frames per second or 15 frames per
second. In the object detection process, we used 30 frames per second. For example, on the
NVIDIA Geforce RTX 2080, the mouse pose was estimated to take only 10 ms per frame.
Our model framework was initially trained and tested on the COCO dataset [47], running
on Ubuntu20.04, using CMake 3.16.3, GCC 7.5.0, CUDA 11.4, and cuDNN 8.24.

5.5. Experimental Results

In the mouse detection experiment, it is worth noting that we trained the YOLOv4
network independently. For the purpose of improving the efficiency and relevance of the
experiment, we actively selected the output parameters, which were all required by the
experiment not only when evaluating experiments, but also when demonstrating baseline
performance. Thus, there no suspicious parameters needed to be excluded. During the
process, there were 7844 ground-truth images, among which 7535 images were successfully
detected. They were the input of the Yolov4 network. With the rate of 30 frames per second
in the training procedure, the counting accuracy was 0.96 and the average precision was
0.91. Table 2 shows the relevant parameters of our object detection experiment for training
the YOLOv4 network.

Table 2. The relevant data on the experiment of object detection.

Item Object Detection

Ground Truth 7844
Detected 7535

Average Precision 0.91
Counting Accuracy 0.96
Frames Per Second 30

When it comes to the mouse pose estimation experiment, there were 37,502 ground-
truth real images used as the input of the pose estimation network. Since our experimental
parameters were not complicated and our method was to actively choose the parameters,
all the output parameters were essential. With the rate of 27 frames per second in this
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procedure, the percentage of correct keypoints was 85%. Table 3 shows the relevant
parameters of our pose estimation experiment.

Table 3. The relevant data on the experiment of mouse pose estimation.

Item Pose Estimation

Ground-Truth 37,502
Percentage of Correct Keypoints (PCK) 85%

Frames Per Second 27

The evaluation results of our experiments are shown in Table 4. The high accuracy
of the mouse object detection was due to the fact that our object was specific, that is mice,
with less background noise, so even if we used a small-scale network, we could achieve a
high-accuracy detection. The percentage of correct keypoints in pose estimation was 85%,
which still needs to be improved in future experiments.

Table 4. The evaluation results of the object detection and pose estimation experiments.

Method Intersection over Union (IOU) Percentage of Correct Keypoints (PCK)

Object Detection 0.9 \
Pose Estimation \ 85%

6. Conclusions

We introduced a mouse pose dataset, a novel dataset with each image annotated to
estimate the keypoints of mice in a laboratory setting. The proposed mouse pose dataset is
the first standardized large-scale 2D mouse pose dataset and involves 40,000 single and
interacting mouse images from pairs of laboratory mice. A creative software for annotating
the images was produced, which largely frees humans from the time-consuming work.
In addition, a simple, yet effective baseline was provided here using the deep learning
network. Our dataset provides a solid guarantee for various potential future applications
on animal pose estimations. In future work, we will continue to expand our dataset from
2D mouse poses to 3D mouse poses. At the same time, we will try to introduce newer
methods, such as self-supervised and unsupervised methods, to achieve better 2D and 3D
pose estimations of mice.
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