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Abstract: Ensuring a consistent, continuous, and efficient spare parts supply is a critical issue that
must be addressed in the equipment support system. In order to effectively improve the coverage
level and handle the common asymmetry information present in practical applications, the spare parts
transport vehicle routing and scheduling model was further optimized. We integrated supportability
requirements and uncertainty theory into the model to better describe the actual uncertain demand
of each site. We selected three critical supportability indicators as constraints, redefined them
with uncertain variables, and then completed the chance-constrained model on this basis. Once
the confidence level is specified, the uncertain constraints can be transformed into deterministic
constraints, and finally, the equivalent deterministic model can be solved easily. In addition, a feasible
solution can be found through a genetic algorithm, and a numerical example is provided to validate
the model’s rationality. The proposed method successfully seeks the balance between the total cost
and supportability.

Keywords: uncertainty theory; uncertain chance-constrained programming; equipment support
system; vehicle routing problem

1. Introduction

The equipment support system refers to the organic combination of all support re-
sources and management required by the equipment during the operation and support
phases. It can meet the requirements of operational readiness and sustainability by intercon-
necting and coordinating the resources required. The design of the support system is critical
because the final efficiency of the support system affects the smooth realization of equip-
ment functions. With the development of science and technology, equipment complexity
and maintenance difficulty increase, and support issues become more prominent. As a
result, it is becoming increasingly important to develop a scientific and efficient support
system to maintain, restore, and improve the overall performance of the material system.

Support resources are the foundation of the equipment support system. The ability
to support spare parts has a direct impact on the reliability, availability, and maintenance
of the material system. Therefore, ensuring a consistent, continuous, and efficient spare
parts supply is essential. In order to guarantee the spare parts supply, Wong et al. proposed
a double-layer and multi-variety spare parts inventory optimization method under the
background of allowing parallel supply in emergencies [1]. Holmström et al. integrated
rapid manufacturing into the spare parts supply system [2]. Liu et al. proved that layered
manufacturing technology could effectively increase the capacity of spare parts supply
and reduce total cost [3]. These methods included storing more spare parts at each site to
prevent demand fluctuations or storing fewer or no spare parts at each site until a shortage
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occurs, then delivering. However, these methods paid little attention to the optimal choice
of transportation routes. In reality, due to the supply system’s limited transportation
capacity, reasonable transportation routes must be planned in order for spare parts to be
delivered to the site in demand on time. At present, the multi-level support system is
common and practical. In this case, optimizing the spare parts transportation strategy
across all levels of sites could effectively reduce spare parts shortages and improve spare
parts supply capacity. In this way, it is possible to avoid the situation where the equipment
is in maintenance or waiting for support for too long. Finally, the purpose of accurate
support is achieved.

Recently, in the study of supply networks, researchers chose many different factors
as constraints of the vehicle routing planning model for various reasons [4,5]. Ettl et al.
took lead time, demand, service level, and other factors into consideration when estab-
lishing the optimization model [6]. Edyta Kucharska took into account various elements
causing dynamism [7]. Touboulic et al. discussed how participatory research supports the
development of supply chain management (SCM) theory and practice [8]. Gayialis et al.
considered various parameters and restrictions such as traffic congestion, working hours,
and state regulations in a holistic way when designing an innovative vehicle routing and
scheduling system in an urban environment [9]. However, solutions to these vehicle routing
problems are not entirely suitable for spare parts transportation. They did not consider the
vehicle routing planning model from the perspective of supportability, which led to the
neglect of the losses caused by the untimely spare parts supply. Furthermore, each site’s
supply priority varies due to the different rates of spare parts loss. If these factors are not
considered when transporting spare parts, equipment downtime may be prolonged. In the
end, it results in more losses.

To summarize, we discovered two problems. First, spare parts supply pays little
attention to optimizing transportation routes. Second, the existing transportation route
optimization methods are seldom considered from the standpoint of supportability.

Croston emphasized the importance of demand forecasting in 1972 and put forward
many models for spare parts demand estimation and forecasting [10–12]. In the process
of further research, we found that many researchers use probability theory to predict
supply through historical data. According to different supply backgrounds, the prob-
ability distribution varies. Liu et al. studied the three-level supply structure model of
repairable spare parts in wartime and gave the spare parts supply formula under Poisson
distribution [13]. Ronzoni et al. put forward the spare parts management method using
probabilistic dynamic programming, assuming that spare parts demand obeys Bernoulli
distribution [14]. Methods for constructing confidence intervals for the extreme values of
any continuous distribution were developed [15]. Therefore, data analysis inaccuracies
caused by outliers can be efficiently avoided. The continuous distribution, such as trun-
cated normal distributions and Weibull distributions, can also be used to fit the data [16–20].
When considering the long-term supply situation, a stochastic process is also a solution [1].
In addition to determining the demand based on classic random distribution or random
process, simulation or artificial intelligence methods are also used to predict the spare parts
demand in the case of a large amount of historical data [21,22].

However, we have two questions: Can we collect enough historical data? Can we
believe that the distribution fitted by historical data is close to the actual distribution?

The new equipment has a technological leap-forward update as a result of technolog-
ical innovation. However, because historical spare parts consumption data are scarce, it
is difficult to grasp the statistical law that influences spare parts supply. Considering that
there are many uncertain factors affecting the spare parts demand, and the current under-
standing level is limited, it is not easy to understand the demand from probability [23].
Moreover, because of the limitation of the Law of Large Numbers, we have reservations
about applying probability theory to deal with uncertain demands. In view of this problem,
some researchers have put forward a simulation method based on empirical data and tradi-
tional prediction models [23,24]. Thus, we believe that the uncertain spare parts demand
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can also be described by collecting empirical data. For example, after the new equipment is
put into production, we can learn about the information of spare parts by asking experts.
However, the difference in experience between expert A and expert B makes them give
different consumption estimated amounts [25,26]. Therefore, developing an optimization
model that takes into account the existing uncertainty caused by human cognition is a
pressing issue.

Liu first formulated a project-scheduling problem where the duration times were
expressed as uncertain variables [27]. Subsequently, many uncertain programming models
were studied to handle project-scheduling problems under an uncertain environment.
Furthermore, Zhou et al. defined the route optimality constraints of uncertain expected
minimum spanning tree (MST) and uncertain α-MST [28]. Recently, Majumder et al.
proposed a multi-objective minimum spanning tree problem (MMSTP) with indeterminate
problem parameters and successfully applied it to optimize the distribution of petroleum
products [29]. According to these studies, we believe that uncertainty theory can effectively
describe the uncertainty in demand and successfully solve the route optimality problem
under an uncertain environment.

This article intends to establish a vehicle routing optimality model in the background
of comprehensive support applications, with the goal of lowering total cost while improving
system support capability. Simultaneously, uncertainty theory is introduced to address the
constraints of missing historical spare parts consumption data. The structure of this paper
is as follows: in the second section, some definitions and theorems of uncertainty theory
are introduced, which provides a mathematical basis for the establishment of the model. In
section three, we describe the problem, explain the hypothesis and representation method
of the model, and further give the spare parts transportation optimization method based
on an uncertain chance-constrained model. The fourth section gives the concrete steps of
solving the model through a genetic algorithm. Finally, an example is given to verify the
operability of the model and algorithm.

2. Preliminaries on Uncertainty Theory

In the current practical engineering applications, the historical data of many new spare
parts are missing. Therefore, it is necessary to rely on expert experience data to evaluate
the relevant spare parts information. However, when experts provide empirical data,
subjective judgments and asymmetry information exist. In other words, the data are heavily
influenced by the individual’s cognitive level. Thus, during analysis, epistemic uncertainty
should not be ignored; otherwise, it may lead to inaccuracy or underestimation of the
supportability indicators of spare parts. In order to analyze this uncertain phenomenon
better, we take uncertainty theory as a choice.

The uncertainty theory was founded by Liu in 2007 and subsequently studied by many
researchers [30,31]. This section mainly introduces some basic definitions and theorems of
uncertainty theory to provide a theoretical basis for the optimization model of spare parts
transportation under uncertain demand.

The uncertain measure is a set function that satisfies the axioms of uncertainty theory.
Γ is a nonempty set (sometimes called a universal set) and L is a σ-algebra over Γ. Each
element Λ in L is called a measurable set, and the uncertain measureM is defined on the
σ-algebra L. That is, a numberM{Λ} is assigned to each event Λ to indicate the belief
degree with which we believe Λ will happen [30].

Axiom 1. (Normality Axiom [30])M{Γ}= 1 for the universal set Γ.

Axiom 2. (Duality Axiom [30])M{Λ}+M{Λc}= 1 for any event Λ.

Axiom 3. (Subadditivity Axiom [30]) For every countable sequence of events Λ1, Λ2, . . . , we have

M
{

∞
∪

i=1
Λi

}
≤

∞

∑
i=1
M{Λi}. (1)
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Definition 1. (Uncertain Measure [30]) The set functionM is called an uncertain measure if it
satisfies the normality, duality, and subadditivity axioms.

Axiom 4. (Product Axiom [32]) Let (Γk, Lk, Mk) be uncertainty spaces for k = 1, 2, . . . The
product uncertain measure M is an uncertain measure satisfying

M
{

∞

∏
k=1

Λk

}
=

∞
Λ

k=1
Mk{Λk} (2)

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . . , respectively.
The uncertain variable is used to represent quantities with uncertainty.

Definition 2. (Uncertain Variable [30]) An uncertain variable is a function ξ from an uncertainty
space (Γ,L,M) to the set of real numbers such that {ξ ∈ B} is an event for any Borel set B of
real numbers.

Definition 3. (Uncertainty Distribution [30]) The uncertainty distribution Φ of an uncertain
variable ξ is defined by

Φ(x) =M{ξ ≤ x} (3)

for any real number x.

Definition 4. (Zigzag Uncertainty Distribution [27]) An uncertain variable ξ is called zigzag if it
has a zigzag uncertainty distribution

Φ(x) =


0, i f x ≤ a

x−a
2(b−a) , i f a ≤ x ≤ b
(x+c−2b)

2(c−b) , i f b ≤ x ≤ c
1, i f x ≥ c

(4)

denoted by Z(a,b,c) where a, b, c are real numbers with a < b < c. See Figure 1.
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Theorem 1. (Measure Inversion Theorem [27]) Let ξ be an uncertain variable with uncertainty
distribution Φ. Then for any real number x, we have

M{ξ ≤ x}= Φ(x), M{ξ > x}= 1−Φ(x). (5)

Definition 5. (Regular Uncertainty Distribution [27]) An uncertainty distribution Φ(x) is said to be
regular if it is a continuous and strictly increasing function with respect to x at which 0 < Φ(x) < 1, and

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1. (6)
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Definition 6. (Inverse Uncertainty Distribution [27]) Let ξ be an uncertain variable with regular
uncertainty distribution Φ(x). Then the inverse function Φ−1(α) is called the inverse uncertainty
distribution of ξ.

Theorem 2. (Liu [33]) Let ξ be an uncertain variable with inverse uncertainty distribution
Φ−1(α). Then

M{ξ ≤ c} ≥ α (7)

if and only if
Φ−1(α) ≤ c (8)

where α and c are constants with 0 < α < 1.

Theorem 3. (Liu [33]) A function Φ−1 : (0, 1)→ < is the inverse uncertainty distribution of an
uncertain variable ξ if and only if it is continuous and

M
{

ξ < Φ−1(α)
}
= α (9)

for all α ∈ (0, 1).

Theorem 4. (Sufficient and Necessary Condition [34]) A function Φ−1 : (0, 1)→ < is an inverse
uncertainty distribution if and only if it is a continuous and strictly increasing function.

The independence of two uncertain variables means that knowing the value of one
does not change our estimation of the value of the other [33].

Definition 7. (Independence [32]) The uncertain variables ξ1, ξ2, . . . , ξn are said to be independent if

M
{

n⋂
i=1

(ξi ∈ Bi)

}
=

n
Λ

i=1
M{(ξi ∈ Bi)} (10)

for any Borel sets B1, B2, . . . , Bn of real numbers.

Theorem 5. (Liu [33]) Let ξ1, ξ2, . . . , ξn be independent uncertain variables, and let f1,f2, . . . ,fn
be measurable functions. Then f1(ξ1), f2(ξ2), . . . , fn(ξn) are independent uncertain variables.

Theorem 6. (Operational Law [27]) Let ξ1, ξ2, . . . , ξn be independent uncertain variables with
regular uncertainty distributionsΦ1, Φ2, . . . , Φn, respectively. If f (x1, x2, . . . , xn) is contin-
uous, strictly increasing with respect to x1, x2, . . . , xm and strictly decreasing with respect
toxm+1, xm+2, . . . , xn, then

ξ = f (ξ1, ξ2, . . . , ξn) (11)

has an inverse uncertainty distribution

Ψ−1(α) = f
(

Φ−1
1 (α), . . . , Φ−1

m (α), Φ−1
m+1(1− α), . . . , Φ−1

n (1− α)
)

. (12)

3. Uncertain Chance-Constrained Model of Spare Parts Transportation

The role of a spare parts warehouse is to provide new spare parts for its surrounding
sites in demand to ensure their reliable operation. We assume that there are multiple vehi-
cles available for transportation. Because of the restrictions on transportation capacity and
cost, choosing a good transportation strategy is critical to improving the support system’s
efficiency. In order to reach the goal of improving the supply capability, a transportation
optimization model should be established that can strike a balance between satisfying
supportability requirements and lowering total costs. Given the low replacement rate of
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some new spare parts, there are few or no samples of historical data on their reliability. At
the same time, the spare parts demand at each site is uncertain due to the different working
environments of the equipment at each site. In this case, the information received by the
spare parts warehouse is asymmetrical. Therefore, we choose to use uncertainty theory to
infer the spare parts demand from expert belief degree data.

The chance-constrained models can be used to deal with programming problems with
uncertain variables. Because of the uncertainty, constraints are frequently not expressed
by a specific formula, and it is impossible to guarantee that the constraints can be met
before the uncertainty variables are observed. The principle of confidence level is put
forward at this point: to some extent, the decision is allowed to fail to meet the constraint
conditions, but the constraints must be established above a certain confidence level. In
solving the chance-constrained programming, once the confidence level is given in advance,
the uncertain constraints can be transformed into deterministic constraints, respectively,
and finally, the equivalent deterministic model can be solved.

3.1. Model Assumption

We made the following assumptions:

1. The equipment supply network consists of a spare parts warehouse and multiple sites,
and only one kind of spare parts is transported;

2. The spare parts demand of each site is an uncertain variable, and the site’s demand is
independent of each other;

3. The transportation paths of spare parts storage and maintenance sites are all connected.
The transportation cost is only related to the distance between sites;

4. The importance level of each site is the same;
5. All transport vehicles are the same, and each vehicle can transport spare parts to

any site.

3.2. Symbol Description

Some symbols are used in the model, and they are described in Tables 1 and 2.

Table 1. Parameter description table.

Symbol Description

n total number of work sites
i, j index of work sites, i, j= 1, 2, . . . , n, i= 0 means warehouse
m total number of transport vehicles
k index of transport vehicles, k= 1, 2, . . . , m

d(i, j) the distance between site i and j, i, j= 1, 2, . . . , n
ξi the uncertain spare parts demand of site i, i= 1, 2, . . . , n

Φi(x) the uncertainty distribution of ξi, i= 1, 2, . . . , n
Φ−1

i (x) the inverse uncertainty distribution of ξi, i= 1, 2, . . . , n
Ni number of equipment at site i, i= 1, 2, . . . , n
Z number of spare parts installed per equipment
c1 transportation cost per unit distance
c2 ordering cost of a single spare part
Ri the distance between site i and warehouse, i= 1, 2, . . . , n
Ai the lower limit of supply availability for site i, i= 1, 2, . . . , n
Di the maximum supply delay time for site i, i= 1, 2, . . . , n
A0 the lower limit of system availability
l penalty coefficient
V the average speed of transport vehicles per unit distance

ξi (i = 1, 2, . . . , n) is an uncertain variable with zigzag uncertainty distribution Φi(x), which is denoted by
Z(ai , bi , ci), ai < bi < ci .
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Table 2. Variable description table.

Symbol Description

xijk indicator variable xijk =

{
1 vehicle k transport from site i to j
0 else

zik indicator variable zik =

{
1 vehicle k deliver spare parts for site i
0 else

yi spare parts supply for site i, i= 1, 2, . . . , n

3.3. Constraint Functions

Supportability refers to the ability of the equipment’s logistics support, supplies, and
services to meet the requirements of its normal operation in the ready working states.
Supportability, as an integral performance parameter of any integrated system, influences
the final performance of the equipment [35,36]. Therefore, designing for supportability
is critical in engineering applications. From many optional supportability indicators, we
screened out three indicators as constraints of the model, which are the support rate of spare
parts, delay time, and supply availability [37]. In order to achieve the overall optimization
goal, we must also meet other vehicle transport requirements. In order to satisfy the
constraints, all indicators’ confidence levels should be greater than or equal to the values
specified. The constraints are outlined below.

3.3.1. Support Rate of Spare Parts Constraint

The support rate of spare parts refers to the proportion that the existing spare parts
can meet demand within a specified period. In short, it is the possibility that spare parts
are sufficient when spare parts are needed. To avoid a spare part shortage, the support rate
of spare parts should be greater than or equal to αi:

M{ξi ≤ yi} ≥ αi, i = 1, 2, . . . , n (13)

where ξi has regular uncertainty distribution Φi(x) and inverse uncertainty distribution
Φ−1

i (x).

3.3.2. Delay Time Constraint

Supply response time refers to the time between receiving a request from the site and
the site receiving spare parts, which is mainly related to the distance of delivery. Then the
supply response time of the site is Ti:

Ti =
m

∑
k=1

zik

i

∑
j=1

n

∑
l=0

xl jkd(l, j)
V

. (14)

The delay time refers to the time spent due to a lack of spare parts related to support
rate and supply response time. Thus, the delay time of site i is:

Tdelay
i = (1−M{ξi ≤ yi})

m

∑
k=1

zik

i

∑
j=1

n

∑
l=0

xl jkd(l, j)
V

. (15)

The constraint that the delay time of site i should not exceed Di is:

(1−M{ξi ≤ yi})
m

∑
k=1

zik

i

∑
j=1

n

∑
l=0

xl jkd(l, j)
V

≤ Di, i = 1, 2, . . . , n. (16)

3.3.3. Supply Availability Constraint

Supply availability can be used to measure the impact of spare parts shortage on the
use of equipment. In practical applications, it is the ratio of equipment not shut down due
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to any spare parts shortage to the total amount of equipment [37]. The system requires that
the availability of the site i is not less than Ai. One of the chance constraints for supply
availability is the uncertain measure of the availability of the site i, which is satisfied at Ai
should be greater than or equal to:

M
{[

1− (ξi − yi)
1

NiZ

]Z
≥ Ai

}
≥ βi, i = 1, 2, . . . , n. (17)

A further requirement is the uncertain measure of the availability of a support system
which is satisfied at A0 should be greater than or equal to γ:

M
{

n

∑
i=1

Ni

[
1− (ξi − yi)

1
NiZ

]Z
/

n

∑
i=1

Ni ≥ A0

}
≥ γ, i = 1, 2, . . . , n. (18)

3.3.4. Vehicle Transport Constraint

There is a total of k spare parts vehicles, which start from the spare parts warehouse
and deliver spare parts to each site in demand. At most, one vehicle is required to deliver
spare parts for the site i:

m

∑
k=1

zik ≤ 1, i = 1, 2, . . . , n (19)

There is at most one transport vehicle leaving the site i:

zik ≤
n

∑
j=0

xijk, i = 1, 2, . . . , n, k = 1, 2, . . . , m. (20)

There is at most one transport vehicle arriving at the site j:

zjk ≤
n

∑
i=0

xijk, j = 1, 2, . . . , n, k = 1, 2, . . . , m. (21)

3.4. Objective Function

The objective function of the optimization model mainly considers transportation cost
and spare parts ordering cost.

The transportation cost is related to the transport distance and the spare parts support
rate of each site to the power of l. Here, l is used as a penalty coefficient. The penalty
coefficient represents the loss caused by insufficient supply under different situations. In
brief, the transportation cost from site i to site j positively correlates with the distance
between them and is related to the spare parts support rate of site i. Therefore, the cost of
transporting spare parts from site i to site j is:

C1 =
n

∑
i=0

n
∑

j=0

m
∑

k=1
c1xijkd(i, j)

[1−M{ξi ≤ yi}]l
. (22)

The spare parts ordering costs are only related to the spare parts supply quantity of
the site:

C2 = c2

n

∑
i=0

yi (23)

We can finally obtain the objective function, which is the sum of the overhead costs:

C0 = C1 + C2. (24)
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Then, we can obtain the goal of the model shown as follows, which is to minimize the
total cost of transporting spare parts:

Min
n

∑
i=0

n
∑

j=0

m
∑

k=1
c1xijkd(i, j)

[1−M{ξi ≤ yi}]l
+ c2

n

∑
i=0

yi. (25)

In summary, an optimization model of uncertain chance-constrained for multi-vehicle
spare parts transportation path optimization is established, as shown below:

Min
n
∑

i=0

n
∑

j=0

m
∑

k=1
c1xijkd(i,j)

[1−M{ξi≤yi}]l
+ c2

n
∑

i=0
yi

s.t.
M{ξi ≤ yi} ≥ αi, i = 1, 2, . . . , n

(1−M{ξi ≤ yi})
m
∑

k=1
zik

i
∑

j=1

n
∑

l=0

xl jkd(l,j)
V ≤ Di, i = 1, 2, . . . , n

M
{[

1− ξi−yi
NiZ

]Z
≥ Ai

}
≥ βi, i = 1, 2, . . . , n

M
{

n
∑

i=1
Ni

[
1− ξi−yi

NiZ

]Z
/

n
∑

i=1
Ni ≥ A0

}
≥ γ

m
∑

k=1
zik ≤ 1, i = 1, 2, . . . , n

zik ≤
n
∑

j=0
xijk, i = 1, 2, . . . , n, k = 1, 2, . . . , m

zjk ≤
n
∑

i=0
xijk, j = 1, 2, . . . , n, k = 1, 2, . . . , m

xijk ∈ {0, 1}
zik ∈ {0, 1}.

(26)

When the confidence level is specified, the uncertain chance-constrained condition
can be transformed into a deterministic problem for solving. The justification of the
deterministic counterpart of the model is depicted here.

Since ξi (i = 1, 2, . . . , n) is an uncertain variable with regular uncertainty distribu-
tion Φi(x) in Model (26), therefore, the equationM{ξi ≤ yi} = Φi(yi) follows from the
definition of uncertainty distribution immediately. Subsequently, the second constraint
in Model (26)

(1−M{ξi ≤ yi})
m

∑
k=1

zik

i

∑
j=1

n

∑
l=0

xl jkd(l, j)
V

≤ Di

can be correspondingly expressed as

1−Φi(yi)
m

∑
k=1

zik

i

∑
j=1

n

∑
l=0

xl jkd(l, j)
V

≤ Di.

Following the definition of inverse uncertainty distribution, we obtain that the in-
verse uncertainty distribution of ξi is Φ−1

i (α). It follows fromM{ξi ≤ yi} = Φi(yi) that
M{ξi ≤ yi} ≥ αi if and only if Φi(yi) ≥ αi, i.e., Φ−1(αi) ≤ yi. The corresponding expres-
sion of the first constraint in Model (26) is thus obtained. According to the basic properties
of inequalities, it suffices to prove the equation

M
{[

1− ξi − yi
NiZ

]Z
≥ Ai

}
≥ βi



Symmetry 2022, 14, 891 10 of 17

is equivalent to the equation

M
{

ξi ≤
[(

1− A1/Z
i

)
· NiZ + yi

]}
≥ βi.

An argument similar to the one used in the proof of the first constraint shows that

Φi
−1(βi) ≤

(
1− A1/Z

i

)
· NiZ + yi, i = 1, 2, . . . , n.

The corresponding expression of the third constraint in Model (26) can be finally
obtained. The remainder of the argument is analogous to that mentioned above and is left
to the reader. Consequently, Model (27) becomes the crisp equivalent of the Model (26).

Min
n
∑

i=0

n
∑

j=0

m
∑

k=1
c1xijkd(i,j)

[1−Φi(yi)]
l + c2

n
∑

i=0
yi

s.t.
Φi
−1(αi) ≤ yi, i = 1, 2, . . . , n

(1−Φi(yi))
m
∑

k=1
zik

i
∑

j=1

n
∑

l=0

xl jkd(l,j)
V ≤ Di, i = 1, 2, . . . , n

Φi
−1(βi)−

(
1− A1/Z

i

)
· NiZ ≤ yi, i = 1, 2, . . . , n

n
∑

i=1
Ni

[
1− (Φ−1

i (γ)− yi)
1

NiZ

]Z
/

n
∑

i=1
Ni ≥ A0

m
∑

k=1
zik ≤ 1, i = 1, 2, . . . , n

zik ≤
n
∑

j=0
xijk, i = 1, 2, . . . , n, k = 1, 2, . . . , m

zjk ≤
n
∑

i=0
xijk, j = 1, 2, . . . , n, k = 1, 2, . . . , m

xijk ∈ {0, 1}
zik ∈ {0, 1}.

(27)

4. Genetic Algorithm

In the previous section, the uncertain chance-constrained model was successfully
converted to the equivalent deterministic constraint model. The genetic algorithm is used
in this section to find the feasible solution for the minimum objective function value.

A genetic algorithm is a classic algorithm for solving VRP problems, and its stability
and usability were extensively demonstrated [38]. Since the development of the genetic
algorithm, its theoretical system has matured significantly. In order to avoid deviations
in the calculation algorithm and results, this article chooses to use this classical genetic
algorithm to solve the problem. The optimization process of genetic algorithms is very
similar to that of path optimization, so the application of the genetic algorithm in path
optimization is relatively standardized. The basic principle of the algorithm is to perform an
iterative search for possible solutions. Initialization, fitness evaluation, selection, crossover,
and mutation are the general procedures of the genetic algorithm [39,40].

4.1. Initialization Operation

Because the vehicle routing problem is essentially a combinatorial optimization prob-
lem, the chromosomes can be encoded as integers. However, in this study, demand can
be considered as a continuous parameter that must be encoded as real numbers, which
can considerably improve the operation’s accuracy. When generating chromosomes, the
structures can be divided into three parts: site, vehicle, and supply, each with its own
encoding method. Following that, the various sections of the chromosome are operated
separately during selection, crossover, and mutation operations.
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4.2. Fitness Function

The fitness function is a function that describes the correspondence between an indi-
vidual and their fitness. From the objective value of the model, it seeks for minimum, so

1
object value is defined as the fitness function.

4.3. Selection Operation

The aim of the selection operation is to select better chromosomes to be the parent.
The idea is to give preference to individuals with high fitness scores and allow them to
pass their genes to successive generations. This paper adopted the roulette wheel selection
method for the selection operation. The scale on the roulette wheel is not average since it is
divided according to the fitness of each chromosome. The larger the chromosome’s region
on the roulette wheel is, the more probable it is to be chosen.

4.4. Crossover Operation

The crossover operation represents mating between individuals. Two individuals are
selected as parent chromosomes according to the selection operator, and crossover sites are
chosen at random. The genes at these crossover sites are then exchanged, thus creating a
completely new individual. The parent chromosome mainly passes on its good traits to the
next generation. If a chromosome uses two coding methods at the same time, the crossover
can only be operated between the same coding segments. See Figure 2 for an example.
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4.5. Mutation Operation

The fundamental goal of mutation operation is to inject random genes into offspring
to keep the population diverse and avoid premature convergence. The mutation itself can
be considered as a randomized algorithm, which is an auxiliary algorithm used to generate
new individuals. See Figure 3 for an example.
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4.6. The Whole Calculation Process

Each chromosome is divided into three sections: site, vehicle, and supply, and each
generation has 100 chromosomes. The roulette algorithm then selects two individuals for
subsequent crossover, mutation, and other operations—the crossover exchange chromo-
somes in the site area, vehicle area, and supply area, respectively. Following the crossover
and mutation operations, chromosome screening is performed to ensure that the population
can evolve in the preferred direction, and the individual’s quality is measured by fitness
value. After the final iteration, the individuals with high fitness values are the optimal
individuals to be found, and all individuals in this process must meet all constraints.
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The steps of the algorithm are described as follows (see Figure 4):
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Step 1: Randomly generate a population as the primary solution;
Step 2: Perform chromosome screening, which means removing individuals from the

population that do not meet the constraints in Model (27);
Step 3: Calculate the fitness of each individual, and we define the fitness function as

the reciprocal of the objective function:

1
f itness

=
n

∑
i=0

n
∑

j=0

m
∑

k=1
c1xijkd(i, j)

[1−M{ξi ≤ yi}]l
+ c2

n

∑
i=0

yi; (28)

Step 4: Renew the record of the individuals with the highest fitness;
Step 5: Determine whether the maximum number of generations has been reached.

If so, proceed to Step 6; if not, perform genetic manipulation (reproduction, crossover,
mutation) to form the population’s next generation, and then return to Step 2;

Step 6: The last reserved individual with the highest fitness is the optimal solution.

5. A Numerical Example

This section provides a numerical example to verify the model’s validity. A spare parts
warehouse and 19 locations were developed as part of the network structure. There are
five cars ready to transport spare parts. Tables 3 and 4 illustrate the key parameters for the
entire model.



Symmetry 2022, 14, 891 13 of 17

Table 3. Relevant parameters of spare parts transportation and genetic algorithm.

Parameter Value

n 19
m 5

the order cos t of each spare part c1 6
the delivery cos t per unit distance c2 1

Z 6
the penalty coefficient l 3

V 1
the number of iterations 5000

the number of chromosomes of each iteration 100
the probability of chromosomal crossover 0.8
the probability of chromosomal mutation 0.8

Table 4. Relevant parameters of spare parts delivery sites.

i Location
Z(ai, bi, ci)

Ni Ri αi βi γi Ai
ai bi ci

1 88.91 47 126 221 30 210 0.9 0.9 0.85 0.8
2 43.11 116 133 178 40 120 0.9 0.9 0.85 0.8
3 44.90 21 88 163 30 180 0.9 0.9 0.85 0.8
4 11.37 7 62 109 18 80 0.9 0.9 0.85 0.8
5 80.67 18 130 202 28 120 0.9 0.9 0.85 0.8
6 22.85 40 102 196 25 180 0.9 0.9 0.85 0.8
7 66.44 60 110 160 30 90 0.9 0.9 0.85 0.8
8 72.61 15 75 115 20 80 0.9 0.9 0.85 0.8
9 52.24 72 140 208 28 90 0.9 0.9 0.85 0.8

10 45.61 110 162 206 34 100 0.9 0.9 0.85 0.8
11 14.69 104 137 182 30 80 0.9 0.9 0.85 0.8
12 34.33 57 104 135 20 90 0.9 0.9 0.85 0.8
13 82.30 100 110 160 25 120 0.9 0.9 0.85 0.8
14 57.19 28 95 182 25 100 0.9 0.9 0.85 0.8
15 62.32 55 105 175 25 140 0.9 0.9 0.85 0.8
16 29.40 18 140 222 30 130 0.9 0.9 0.85 0.8
17 72.46 59 103 135 25 140 0.9 0.9 0.85 0.8
18 62.10 98 150 202 40 120 0.9 0.9 0.85 0.8
19 30.52 59 118 185 35 110 0.9 0.9 0.85 0.8

Questionnaires are designed to obtain experience data from professionals in the field
of spare parts. The spare parts demand for each site is derived from the questionnaire
data. Considering that the demand is always non-negative for such an uncertain parameter,
we think uncertain variables with positive endpoints better match the reality. We believe
that following zigzag uncertainty distribution is a good choice for the demand because it
better reflects the statistical data and simplifies the calculation. The parameters can then be
calculated. Therefore, the uncertainty distribution of the uncertain spare parts demand ξi
of site i could be represented in Equation (29)

Φi(x) =


0 (x ≤ ai)

x−ai
2(bi−ai)

(ai ≤ x ≤ bi)
(x+ci−2bi)

2(ci−bi)
(bi ≤ x ≤ ci)

1 (x ≥ ci)

(29)

which is denoted by Z(ai, bi, ci), ai < bi < ci.
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Then, the inverse uncertainty distribution of ξi is represented below [27].

Φi
−1(α) =

{
(1− 2α)ai + 2αbi (α < 0.5)
(2− 2α)bi + 2(2α− 1)ci (α ≥ 0.5)

. (30)

The computation time of the algorithm is acceptable. The configuration of the laptop
we use is Processor: Intel(R) Core (TM) i7-7500U CPU @ 2.70GHz 2.90 GHz, with RAM:
8.00 GB. The total calculation time for the simulation is around 121.649 s.

Figure 5 and Table 5 depict the results. For this spare parts transportation task, we may
acquire the optimal supply strategy as shown below. Table 5 shows the supply amounts
of spare parts from the warehouse to 19 sites, with a minimum total cost of 5232.7647.
Figure 5a depicts the spare parts delivery route planned for each site.
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Figure 5. The calculation result of the example: (a) Optimal supply plan: spare parts delivery route
diagram for each site; (b) The convergence of genetic algorithm.

Table 5. Optimal supply plan: spare parts delivery route diagram for each site.

i Location Spare Parts Supply

1 88.91 170
2 43.11 168
3 44.90 130
4 11.37 105
5 80.67 166
6 22.85 167
7 66.44 127
8 72.61 94
9 52.24 161
10 45.61 181
11 14.69 178
12 34.33 129
13 82.30 145
14 57.19 134
15 62.32 132
16 29.40 164
17 72.46 122
18 62.10 183
19 30.52 147
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6. Discussion and Conclusions

In this paper, we proposed a spare parts transportation route optimization method
under the premise of systematically considering the supportability indicators. In the
research of comprehensive support, this paper provided a new direction for improving the
equipment support capability and spare parts management efficiency. Due to the existing
uncertainty in demand for new equipment spare parts, we proposed using uncertainty
theory to reasonably quantify the site’s demand.

This study analyzed the existing problems in spare parts support. On the one hand,
the chaos of transportation route planning complicates spare parts management and
reduces support efficiency. On the other hand, the irrational allocation of spare parts
supply raises the cost of spare parts support. In order to solve these problems, this paper
proposed combining the previous research on transportation route optimization with the
supportability requirements of the spare parts supply system.

In addition, in the early stages of equipment renewal, the historical data of many
new spare parts are inadequate, which often happens in the operation and support phases
of equipment. In this case, there are deviations in our understanding of the actual spare
parts demand, and the spare parts demand prediction model based on these deviations is
likely to be subject to epistemic uncertainty. In the presence of such uncertainty, using a
random distribution to fit the spare parts demand is inaccurate because it does not conform
to the premise of probability theory—the Law of Large Numbers. In order to address
this issue, we devised a more reasonable allocation method in the face of uncertain spare
parts demand.

In this study, the uncertain spare parts demand forecast was combined with the
vehicle routing problem, and the uncertain chance-constrained spare parts routing planning
model of a multi-site equipment maintenance support system was established. In order
to solve this model, we used a genetic algorithm. This method effectively incorporates
supportability indicators into the route planning model to some extent. It is possible to
strike a balance between the supportability requirements and the overall cost. It introduces
a novel concept for the transportation of spare parts, which is critical to the equipment
support system.

However, there are some limitations to our work. In our modeling process, only the
transportation cost of a single variety of spare parts was considered. The transportation of
various types of spare parts will be involved in the actual operation of the support system.
The capacity limitation of the transport vehicles, as well as the existence of different types
of transport vehicles, were not taken into account in the transportation process assumed
by the model [41]. At the same time, the process of choosing the supportability indicators
might be a little straightforward. In practice, many factors, such as delay time, are involved
in supporting indicators, and the calculation is also more complicated. Further analysis
of relevant indicators to make them more applicable to reality is also a pressing issue that
must be addressed.

Green supply chain research has gradually become a trend in recent years. People are
becoming more aware of the importance of environmental protection. Mohtashami et al.
presented a bi-objective NLP model for a green supply chain network with reverse logistics
consideration. They reduced transportation and waiting time in loading centers, which
reduced energy consumption and the environmental impact of the transportation fleet [42].
Kechagias et al. also proposed an urban freight transportation system to reduce emis-
sions [43]. We believe that it may be a good plan to add consideration of factors affecting
environmental quality to our study. Furthermore, in this model, we only considered the
demand of each site that has the greatest impact on the optimization results, treating it as
an uncertain variable. There are some other uncertain factors that can be considered in
practical applications. Similarly, given the limitations of the genetic algorithm, the solution
algorithm of our model has further research value [44]. Thus far, despite the fact that we
proposed and demonstrated the feasibility of a new theoretical method, we still need to
investigate its application effects.
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