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Abstract: Multibody mechanical systems (i.e., serial, and parallel robots) have a wide range of
applications in the industrial field. In technological processes, these systems perform mechanical
movements, in which the active forces have a certain time variation law and, hence, induce higher-
order accelerations in the mechanical system, which become central functions in acceleration energies.
The advanced dynamics study of multibody systems, often characterized by symmetry, is conducted
by applying the differential and variational principles. Lagrange–Euler equations and their time
derivatives are commonly used. Here, the central function is the kinetic energy and its higher-order
time derivatives. Additionally, the generalization of Gibbs–Appell equations, where the central
function is represented by the first and higher-order acceleration energy, can be applied. This
paper aims to establish a relation between the kinetic energy and acceleration energy for different
material systems. This purpose is achieved by applying the absolute second-order time derivative
on the expressions of kinetic energy, corresponding to different material systems. Following this
differential calculation and by applying some constraints, the relationship between kinetic energy and
acceleration energy is obtained. For validating the relation between kinetic energy and acceleration
energy of the first, second and third order, an application is presented.

Keywords: kinetic energy; acceleration energies; applied mechanics; analytical dynamics

1. Introduction

The notion of kinetic energy is present even in Galileo’s work, where he encompasses a
concept of interconvertibility between the kinetic and potential energy. The study regarding
this notion continued along the years, catching the interest of several mathematicians such
as Descartes or Leibnitz. The product mv2 was first referred to as ‘energy’ by Thomas
Young in 1807 and in 1853 William Rankine determined a distinction between ‘potential
energy’ and ‘actual energy’, which was previously called ‘kinetic energy’ by Kelvin. The
notion of kinetic energy, with its modern meaning, started being used widely only after
1870 [1].

Today, kinetic energy is a fundamental notion in Newtonian dynamics, and its use is
found in the theorem of kinetic energy as a general form of mathematical representation,
the differential form. By successive transformations, this theorem can degenerate into the
other two fundamental theorems, the momentum theorem, and the angular momentum
theorem [2–5].

The decisive role of kinetic energy is found in analytical dynamics as a central function
in Lagrange’s equations of second order, in Hamilton’s equations and in the Hamilton–
Ostrogradski variational principle [6].
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For the first time, the phrase “acceleration energy” was highlighted by Paul Appell
in 1899 when establishing the dynamics equations of nonholonomic mechanical systems.
Through the contribution of J. W. Gibbs to these equations, they received the name Gibbs–
Appell equations. In fast-moving mechanical systems, such as serial and parallel robots,
rapid movements develop, in which higher-order linear and angular accelerations play an
important role. Starting from the Appell function, then called acceleration energy, over
time, higher-order acceleration energies developed in analytical dynamics for any material
system subjected to rapid motion, especially for bodies in absolute general motion. As a
result, higher-order equations of analytical dynamics have been developed to reflect the
presence of accelerations specific to fast motions [3,7–9]. Experimentally, the presence of
higher-order accelerations was found when the first-order acceleration was a ≥ 1.5 g.

This paper aims to establish mathematical relations between kinetic energy and
first-order acceleration energy for bodies in general motion and for multibody systems. The
first part of the paper is devoted to the expressions of kinetic energy known in the
literature [10–13], starting from the material point and the system of material points,
continuing with König’s theorem specific to general motion and ending with multibody
systems, the last one considering the serial structures of robots as an example. Additionally,
some expressions of kinetic energy based on higher-order accelerations are presented.

The second part of this paper is devoted to the acceleration energy of first order
with expressions for the material point and the system of material points and with new
expressions for the body in general motion and multibody systems, highlighting the
components consisting in higher-order accelerations.

The third part of this paper is devoted to establishing the relations between the
kinetic energy and acceleration energy of first order, as well as their implementation in the
equations of dynamics starting from the generalization of the Gibbs–Appell equations. For
justifying the validity of the obtained relation, an application is presented. It refers to a 2TR
robot structure, which was mathematically modeled for the purpose of being implemented
in a technological process involving the hot rolling and the processing of pipes by using any
other methods than welding. The expression for kinetic energy using classic formulations
in the case of the 2TR robot structure is determined. By applying the relation between the
kinetic and acceleration energy presented in the paper, the expression of the acceleration
energy is obtained. The robot is implemented in a work process and modelled using the
polynomial interpolation functions.

Using MATLAB, the time variation laws for the generalized variable, kinetic energy
and acceleration energies of first, second and third order are obtained.

2. Formulations on Kinetic Energy
2.1. Material Point and Discrete System of Material Points

In a real physical process, any change in the dynamic state of a material system
represents a mechanical motion whose measurement at a given moment is the kinetic
energy considered a dynamic-state quantity. The transfer of the kinetic energy between
two physical states of a material system is measured by the mechanical work considering a
dynamic process quantity. From the equivalence between the mechanical work and the
energy transfer in an infinitely short elementary time interval, it resulted in the current
form of kinetic energy for a material point and for a system of material points.

According to Figure 1, it is considered a point and a system of n material points
subjected to mechanical interactions and to exterior links.

The vector equation that expresses the position of each material point is given by:

ri = ri
(
qj(t); j = 1→ k

)
and i = 1→ n, (1)

where qj = qj(t), j = 1→ k, k ≤ 3n represent the independent parameters that univocally
express the motion of the system.



Symmetry 2022, 14, 896 3 of 19Symmetry 2022, 14, x FOR PEER REVIEW 3 of 20 
 

 

 
(a)  

(b) 

Figure 1. The kinematic and dynamics parameters in the general motion of a material point and for 
a discrete system of material points. (a) Material point. (b) System of material points. 
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Figure 1. The kinematic and dynamics parameters in the general motion of a material point and for a
discrete system of material points. (a) Material point. (b) System of material points.

According to [11], the following expressions define the velocity and acceleration
corresponding to each material particle:

vi =
k

∑
j=1

∂ri
∂qj
· .

qj (2)

ai =
.
vi =

k

∑
j=1

∂ri
∂qj
· ..

qj +
k

∑
j=1

k

∑
m=1

∂2ri
∂qj · ∂qm

· .
qj ·

.
qm (3)

To determine the mathematical relations between the kinetic energy and the accelera-
tion energy, for any mechanical system, we had to know the time derivative of higher order.
Therefore, according to [12], the following identity exists between the partial derivatives of
higher orders of the position vectors, the linear velocity and acceleration:

∂ri
∂qj

=
∂vi

∂
.
qj

=
∂ai

∂
..
qj

=
∂

.
ai

∂
...
q j

=
∂

..
ai

∂
....
q j

= . . . =
∂
(m)

ri

∂
(m)
qj

(4)

where m = 1, 2, 3, . . . are the derivative order.
The kinetic energy for a material particle and its derivatives of first and second order

with respect to time are given by:

EC = 1
2 ·m · v

2 = 1
2 ·m · v

T · v = 1
2 ·m ·

.
r

T
·

.
r = 1

2 ·m · Trace
[

.
r ·

.
r

T
]

where r =
(

q1 q2 q3
)T , v =

.
r =

( .
q1

.
q2

.
q3
)T

(5)

As a result, the following expressions were obtained:

EC = 1
2 ·m ·

( .
q2

1 +
.
q2

2 +
.
q2

3

)
+ m ·

( .
q1 ·

.
q2 +

.
q1 ·

.
q3 +

.
q2 ·

.
q3
)

.
EC = m ·

( .
q1 ·

..
q1 +

.
q2 ·

..
q2 +

.
q3 ·

..
q3
)
+ m ·

( ..
q1 ·

.
q2 +

.
q1 ·

..
q2 +

..
q1 ·

.
q3 +

.
q1 ·

..
q3 +

..
q2 ·

.
q3 +

.
q2 ·

..
q3
)

..
E
∗
C = m ·

( ..
q2

1 +
..
q2

2 +
..
q2

3

)
+ 2 ·m ·

( ..
q1 ·

..
q2 +

..
q1 ·

..
q3 +

..
q2 ·

..
q3
) (6)

where
..
E
∗
C =

..
EC −

..
EC

( .
q4

i ,
...
q i, i = 1→ 3

)
=

..
E
∗
C
(
qi,

.
qi,

..
qi, i = 1→ 3

)
.
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In case of a discrete system of material points (i = 1→ n), the kinetic energy was:

EC =
1
2
·

n

∑
i=1

mi · v2
i =

1
2
·

n

∑
i=1

k

∑
j=1

k

∑
m=1

mi · ∂2ri
∂qj · ∂qm

· .
qj ·

.
qm (7)

For the same discrete system of material points, the time derivative of the order (k ≥ 1)
of kinetic energy was defined by the expression:

(k)
EC = 1

2 ·
n
∑

i=1

dk

dtk

[
vT

i · vi
]
·mi =

n
∑

i=1




(k)

vT
i · vi

 ·mi +
k
0! ·


(k−1)

vT
i ·

.
vi

 ·mi+

+δk · (k− ∆ k) · [k− (j + 1− ∆ k)] ·


(k−2)

vT
i ·

..
vi

 ·mi+

+ δkk · k · [k− (2− ∆ k)] ·


(k−2)

vT
i ·

(3)
vi

 ·mi + ∆ k · (k− 1) · [k− 2 · (1− δkk)] ·


(k−j)

vT
i ·

(k−j)
vi

 ·mi


(8)

where:

1 ≤ k ≤ 8 ,


(k−j)

vT ;
(k−j)

v

 = 0, ⇐ f or j ≥ k, ∆ k = {(1; k = 2 · j); (0; k 6= 2 · j), and j = 1, 2, 3, 4, . . .}, (9)

δk = {(0; k ≤ 4); (1; k ≥ 4)} and δkk = {(0; k ≤ 6); (1; k ≥ 6)} (10)

The expressions presented above were further used in the following sections for
establishing the mathematical relation between the dynamic quantities EC and EA.

2.2. Multibody Systems

For multibody systems (for example, a robot mechanical structure), the generalized
coordinates which define the mechanical motion become a function of time. Thus, the time
derivatives, as well as the partial derivatives, could be applied.

The column vector of the generalized coordinates θ, for a certain configuration different

from the initial configuration θ
(0)

, had the following mathematical expression [3]:

θ 6= θ
(0)

; θ(t) =
[
qj(t); j = 1→ n

]T (11)

where qj(t) are called the generalized coordinates (the degrees of freedom for the mechani-
cal system).

Figure 2 represents the mechanical structure of a serial robot, considered as a multi-
body system.

The generalized variables of higher order could be developed according to [12], con-
sidering the current and fast mechanical motions as:θ(t);

.
θ(t);

..
θ(t); · · · ;

(m)

θ (t)

 =

 qi(t);
.
qi(t);

..
qi(t); · · · ;

(m)
qi (t)

i = 1→ n, m ≥ 1

 (12)

where the index m is the order of the time derivative (m ≥ 1).
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Considering multibody systems, with i = 1→ n kinetic ensembles, the kinematic
parameters that expressed the absolute translation motion of each kinetic ensemble were
determined as a function of the generalized variables qj(t) with the following relations:

rCi = rCi

[
qj(t); j = 1→ n

]
vCi =

.
rCi =

n
∑

j=1

∂rCi
∂qj
· .

qj
(13)

aCi =
.
vCi =

..
rCi =

n

∑
j=1

∂rCi

∂qj
· ..

qj +
n

∑
j=1

n

∑
m=1

d
dt

(
∂rCi

∂qj

)
· .

qj (14)

They are called the vector equation of the absolute translation motion, of the absolute
velocity and acceleration, respectively, of the mass center of each kinetic ensemble from the
mechanical system. Like (4), the following differential identities could also be written:

∂rCi

∂qj
=

∂vCi

∂
.
qj

=
∂aCi

∂
..
qj

=
∂

.
aCi

∂
...
q j

=
∂

..
aCi

∂
....
q j

= . . . =
∂
(m)

rCi

∂
(m)
qj

, (15)

where m = 1, 2, 3 . . . are the order of the time derivative.
Additionally, according to [12], the following relations could be written between the

time derivatives of the kinematic parameters:

d
dt

(
∂rCi

∂qj

)
=

∂

∂qj

(
k∗

∑
m=1

∂rCi

∂qm
· .

qm

)
=

1
m + 1

·
∂
(m−1)

aCi

∂
(m)
qj

=
1

m + 1
·

∂
(m+1)

rCi

∂
(m)
qj

, (16)

dk−1

dtk−1

(
∂rCi

∂qj

)
=

(k− 1)! ·m!
(m + k− 1)!

·
∂
(m+k−1)

rCi

∂
(m)
qj

, (17)

where i = 1 → n, k ≥ 1; k = {1; 2; 3; . . .} ; m ≥ (k + 1) and m = {2; 3; 4; 5 . . .}. The
resultant rotation motion was defined by the angular vector:

ψ(t) = 0 Jψ[αu(t) − βv(t) − γw(t)] · ψ(t) = ψ
[
qj(t) · ∆j; j = 1→ k∗, t

]
(18)
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0 Jψ[αu(t) − βv(t) − γw(t)] = [u R(u; αu) · v R(u; αu) · R(v; βv) · w] (19)

where 0 Jψ is the angular transfer matrix which is a function of the orientation angles.
The same angular vector could be expressed using functions of the matrix exponentials

as shown in [3]:

ψ(t) = ψ
[
qj(t) · ∆ j; j = 1→ k∗, t

]
=

= αu(t) · {exp[0]} · u(0) + βv(t) · {exp[u(t)× αu(t)]} · v(0)+

+γw(t) · {exp[u(t)× αu(t)] · exp[v(t)× βv(t)]} · w(0)

(20)

where u, v and w are the Cartesian axes and u, v, w are the unit vectors of the axes around
which the rotations were performed with the angles αu, βv, γw.

In the papers [11,12], the existence of the following identities was proven:

dk−1

dtk−1

(
∂ψi
∂qj
· ∆j

)
= (k−1)!·m!

(m+k−1)! ·
∂
(m+k−3)

εi

∂
(m)
qj

· ∆j =
(k−1)!·m!
(m+k−1)! ·

∂
(m+k−1)

ψi

∂
(m)
qj

· ∆j,

k ≥ 1; k = {1; 2; . . .} ; m ≥ (k + 1); m = {2; 3; . . .}
(21)

where εi represents the angular acceleration vector and for m = 2, k = 1,
(m+k−3)

εi = ωi, the
angular velocity in the resultant rotation motion. The operator ∆j, given by:

∆j =
{(

0, qj(p) ∈ rC

)
;
(

1, qj(p) ∈ ψ
)}

(22)

determines the difference between the kinematic parameters of the resultant translation
and the ones of the resultant rotation.

Considering paper [11], the linear velocity and acceleration of the mass center above
shown in (13) and (14) the angular velocity that characterized each ensemble of the me-
chanical system were established with the expressions:

vCi (t) =
k∗=n

∑
j=1

∂rCi (t)
∂qj

· .
qj(t) =

k∗=n

∑
j=1

∂
(m)

rCi (t)

∂
(m)
qj

· .
qj(t) (23)

ωi(t) =
k∗=n

∑
j=1

∂ψi(t)
∂qj

· ∆j ·
.
qj(t) =

k∗=n

∑
j=1

∂
(m)

ψi(t)

∂
(m)
qj

· ∆j ·
.
qj(t) (24)

When dealing with fast motions, the higher-order time derivatives were used.

(k−1)
aCi (t) =

(k)
vCi (t) =

k∗=n

∑
j=1

dk−1

d tk−1

∂
(m)

rCi (t)

∂
(m)
qj

· ..
qj(t)

+
k∗=n

∑
j=1

dk−1

d tk−1

 1
m + 1

·
∂
(m+1)
rCi (t)

∂
(m)
qj

· .
qj(t)

 (25)

(k−1)
εi (t) =

(k)
ωi(t) =

k∗=n

∑
j=1

dk−1

d tk−1

∂
(m)

ψi(t)

∂
(m)
qj

· ∆j ·
..
qj(t)

+
1

m + 1
·

k∗=n

∑
j=1

dk−1

d tk−1

∂
(m+1)

ψi

∂
(m)
qj

· ∆j ·
.
qj(t)

 (26)

The significance of the terms contained by these expressions was found in (16) and (21).
Remark: The above differential expressions (15), (16) and (21)–(26) were compulsorily

used in the relation between the kinetic energy and acceleration energy.
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According to König’s theorem for kinetic energy, the kinetic energy of a multibody
mechanical system can be determined using the expression:

EC

[
θ(t);

.
θ(t)

]
=

n
∑

i=1
Ei

C

[
θ(t);

.
θ(t)

]
= (−1)∆ M · 1−∆ M

1+3·∆ M
·

n
∑

i=1

{
1
2 ·Mi · ivT

Ci
· ivCi

}
+

∆ 2
M ·

1
2 ·

n
∑

i=1

iωT
i · i I∗i · iωi =

n
∑

i=1
EiTR

C

[
θ(t);

.
θ(t)

]
+

n
∑

i=1
EiROT

C

[
θ(t);

.
θ(t)

] (27)

∆M = {(−1, General motion); (0, Translation motion); (1, Rotation motion)}. (28)

and i = 1→ n is the number of kinetic ensembles of the mechanical system.
Considering (23) and (24), the two components of the kinetic energy specific for the

resultant translation and resultant rotation, respectively, were written as:

n

∑
i=1

EiTR
C

[
θ(t);

.
θ(t)

]
= (−1)∆ M · 1− ∆ M

1 + 3 · ∆M
· 1

2
·

n

∑
i=1

Mi ·
k∗=n

∑
j=1

1
m + 1

·
∂
(m+1)

rCi

∂
(m)
qj

· .
qj (29)

n

∑
i=1

EiROT
C

[
θ(t);

.
θ(t)

]
=

∆ 2
M

2
·

n

∑
i=1

k∗=n

∑
j=1

∂
(m)

ψi

∂
(m)
qj

· ∆j ·
.
qj

 · I∗i ·
k∗=n

∑
p=1

∂
(m)

ψi

∂
(m)
qp

· ∆p ·
.
qp

 (30)

According to [2,4], in the expression (30), the symbol I∗i represents the axial-centrifugal
inertia tensor, that defines the variation law with respect to concurrent frames in the mass
center: {I∗} and {0∗}. It was expressed with the following matrix formula:∫ (

(i)r∗×
)
·
(
(i)r∗×

)T
· dm = (i) I∗i (31)

where:
I∗i = 0

i [R] ·
i I∗i · 0i [R]

T versus {0∗}

where
(
(i)r∗×

)
is the skew symmetric matrix associated with the position of vector (i)r∗.

The time derivatives of the higher order of kinetic energy necessary to study its relation
to acceleration energy can be written as follows:

(k)
EC = 1

2 ·
∫ dk

dtk

[
vT · v

]
· dm =

∫(k)

vT · v

 · dm + k
0! ·
∫(k−1)

vT ·
.
v

 · dm+

+δk · (k− ∆ k) · [k− (j + 1− ∆ k)] ·
∫(k−2)

vT ·
..
v

 · dm+

+δkk · k · [k− (2− ∆ k)] ·
∫(k−2)

vT ·
(3)
v

 · dm + ∆ k · (k− 1) · [k− 2 · (1− δkk)] ·
∫(k−j)

vT ·
(k−j)

v

 · dm

(32)

where the symbols from (32) have the significance from (9) to (10).

3. The Acceleration Energy of First Order

The present paragraph is devoted to a fundamental study of the existence within
the mechanical systems, of some superior forms of energy, corresponding to higher-order
accelerations. As a result, the expression that defines the energy of first-order accelerations,
also known as Appell’s function, was shown in an explicit form [4,8]. Starting from the
case of a material point or the system of material points analyzed by Appell within this
paragraph, the energy of first-order accelerations for a mechanical system in absolute
general motion was determined. The dynamic study was applied to a mechanical system
(material point, body and body systems) and acted by a system of active external forces,
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characterized by a certain law of variation with time. Thus, the system of active forces,
which generates a uniformly varied mechanical movement, generally becomes a function
of position, velocity and acceleration, and by the time parameter [14–19].

Under the action of the active forces, the mechanical system was subjected to fast
movements, for which it was proved experimentally that the linear acceleration had the
following value: |g| ≥ 15 m/s2. Thus, within the mechanical system, the so-called higher-
order accelerations were developed. From a dynamical point of view, the higher-order
accelerations were included in expressions of the acceleration energies.

From a material point, considering (36), the acceleration was defined according to:

a =
..
r =

( ..
q1

..
q2

..
q3
)T , (33)

As a result, the acceleration energy of first order, in the case of a material point, became:

E(1)
A = 1

2 ·m · a
2,

E(1)
A = 1

2 ·m ·
( ..

q2
1 +

..
q2

2 +
..
q2

3

)
+ m ·

( ..
q1 ·

..
q2 +

..
q2 ·

..
q3 +

..
q1 ·

..
q3
) (34)

In the case of a discrete system of material points, according to (4) and (33), the
acceleration energy of first order (Appell’s function) was expressed with the relations:

E(1)
A =

1
2
·

n

∑
i=1

mi · a2
i , (35)

where:

ai =
.
vi =

k

∑
j=1

∂ri
∂qj
· ..

qj +
k

∑
j=1

k

∑
m=1

∂2ri
∂qj · ∂qm

· .
qj ·

.
qm

After a few transformations, the following form was obtained:

E(1)
A

(
qj ;

.
qj ;

..
qj ; j = 1→ k

)
= 1

2 ·
n
∑

i=1
mi · aT

i · ai =
1
2 ·

n
∑

i=1

k
∑

j=1

k
∑

m=1
mi · ∂ri

∂qj
· ∂ri

∂qm
· ..

qj ·
..
qm+

+ 1
2 ·

n
∑

i=1

k
∑

j=1

k
∑

l=1

k
∑

p=1
mi · ∂ ri

∂ qj
· ∂2ri

∂ ql ·∂ qp
· ..

qj ·
.
ql ·

.
qp+

+ 1
2 ·

n
∑

i=1

k
∑

j=1

k
∑

m=1

k
∑

l=1
mi · ∂2 ri

∂ qj ·∂ qm
· ∂ ri

∂ ql
· .

qj ·
.
qm ·

..
ql+

+ 1
2 ·

n
∑

i=1

k
∑

j=1

k
∑

m=1

k
∑

l=1

k
∑

p=1
mi · ∂2ri

∂qj ·∂qm
· ∂2ri

∂ql ·∂qp
· .

qj ·
.
qm ·

.
ql ·

.
qp

(36)

For the fast motions, the time derivative of the higher order of the acceleration energy
of first order was determined by means of the following expression:

(k)

E(1)
A = 1

2 ·
n
∑

i=1

dk

dtk

[
aT

i · ai
]
·mi =

n
∑

i=1




(k)

aT
i · ai i

 ·mi +
k
0! ·


(k−1)

aT
i ·

.
ai

 ·mi+

+δk · (k− ∆ k) · [k− (j + 1− ∆ k)] ·


(k−2)

aT
i ·

..
ai

 ·mi+

+ δkk · k · [k− (2− ∆ k)] ·


(k−2)

aT
i ·

(3)
ai

 ·mi + ∆ k · (k− 1) · [k− 2 · (1− δkk)] ·


(k−j)

aT
i ·

(k−j)
ai

 ·mi


(37)
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The significance of the terms contained in (37) is presented below:

where 1 ≤ k ≤ 8 ;


(k−j)

aT ;
(k−j)

a

 = 0, ⇐ f or j ≥ k (38)

δk = {(0; k ≤ 4); (1; k ≥ 4)}; δkk = {(0; k ≤ 6); (1; k ≥ 6)} (39)

∆ k = {(1; k = 2 · j); (0; k 6= 2 · j), and j = 1, 2, 3, 4, . . .} (40)

According to [11], in the case of body systems (i.e., robot structures), the acceleration
energy of first order was defined as:

E(1)
A

[
θ(t);

.
θ(t);

..
θ(t)

]
= (−1)∆M · 1−∆M

1+3·∆M

n
∑

i=1

[
1
2 ·Mi · (i)

.
v

T
Ci
· (i)

.
vCi

]
+

+∆2
M ·

n
∑

I=1

1
2 · (i)

.
ω

T
i · (i) I∗i · (i)

.
ωi+∆2

M ·
n
∑

i=1

[
(i)

.
ω

T
i ·
(
(i)ωi × (i) I∗i · (i)ωi

)]
+ E(1)

A

[
θ(t);

.
θ

4
(t)
] (41)

E(1)
A

[
θ(t);

.
θ

4
(t)
]
= ∆2

M ·
n

∑
i=1

{
1
2
· (i)ωT

i ·
[
(i)ωT

i · (i) I∗i · (i)ωT
i

]
· (i)ωT

i

}
(42)

The significance of the terms contained in (41) and (42) was already explained in the
previous sections. Considering the fast motions of the mechanical systems, the acceleration
energy could be written as a function of higher-order time derivatives of the position
vectors of the mass center and of the angular vectors of the resultant rotation. Therefore,
based on [12], the following differential identities were written:

d2

dt2

(
∂rC
∂qj

)
= d

dt

(
∂ vC
∂qj

)
= ∂ aC

∂qj
= d

dt

[
∂

∂qj

(
n
∑

m=1

∂ri
∂qm
· .

qm

)]
= ∂

∂qj

[
d
dt

(
n
∑

m=1

∂ri
∂qm
· .

qm

)]
=

=

 1
m+1
∑

k=1
k

 · ∂
(m)
aC

∂
(m)
qj

= 2
(m+1)·(m+2) ·

∂
(m)
aC

∂
(m)
qj

= 2
(m+1)·(m+2) ·

∂
(m+2)

rC

∂
(m)
qj

(43)

where m = {0, 1, 2, 3, 4, 5, . . . } and
(0)
aC = aC;

(0)
qj = qj.

ε =
.

ω =
k∗

∑
j=1

∂
(m)

ψ

∂
(m)
qj

· ∆j ·
..
qj +

1
m + 1

· ∂
(m+1)

ψ

∂
(m)
qj

· ∆j ·
.
qj

 (44)

Based on these differential expressions, the translational and rotational components of
the acceleration energies defined according to (41) were determined as follows:

E(1)TR
A = 1

2 ·
n
∑

i=1
Mi · a2

Ci
=

= 1
2 ·

n
∑

i=1
Mi·

k∗=n
∑

j=1

k∗=n
∑

p=1

 ∂2
(m)
rCi

∂
(m)
qj ·∂

(m)
qp

· ..
qj ·

..
qp + 1

(m+1)2 ·
∂2

(m+1)
rCi

∂
(m)
qj ·∂

(m)
qp

· .
qj ·

.
qp +

1
m+1 ·

∂
(m)
rCi

∂
(m)
qj

· ∂
(m+1)

rCi

∂
(m)
qp

· ..
qj ·

.
qp

 (45)

E(1)ROTε
A = 1

2 ·
n
∑

i=1
εi

T · I∗i · εi =
1
2 ·

n
∑

i=1

k∗=n
∑

j=1

 ∂
(m)

ψi

∂
(m)
qj

· ∆j ·
..
qj +

1
m+1 ·

∂
(m+1)

ψi

∂
(m)
qj

· ∆j ·
.
qj

T

· I∗i · εi

I∗i · ε = I∗i ·
k∗

∑
j=1

 ∂
(m)

ψi

∂
(m)
qj

· ∆j ·
..
qj +

1
m+1 ·

∂
(m+1)

ψi

∂
(m)
qj

· ∆j ·
.
qj

 (46)
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E(1)ROTωε
A =

n
∑

i=1
εi

T ·
(
ωi × I∗i ·ωi

)
=

=
n
∑

i=1

k∗=n
∑

j=1

 ∂
(m)

ψi

∂
(m)
qj

· ∆j ·
..
qj +

1
m+1 ·

∂
(m+1)

ψi

∂
(m)
qj

· ∆j ·
.
qj

T

· E(1)ROTωω
A

(47)

E(1)ROTωω
A = (ωi × I∗i ·ωi) =

n

∑
i=1

k∗=n

∑
j=1

k∗=n

∑
p=1

∂
(m)

ψi

∂
(m)
qj

×
I∗i ·

∂
(m)

ψi

∂
(m)
qp

 · ∆j · ∆p ·
.
qj ·

.
qp (48)

For the rapid (fast) motions, similar to the case of discrete systems of material points,
the higher-order time derivatives of the acceleration energies of first order were applied:

(k)

E(1)
A = 1

2 ·
∫ dk

dtk

[
aTa
]
· dm =

∫(k)

aTa

 · dm + k
0! ·
∫(k−1)

aT .
a

 · dm+

+δk · (k− ∆ k) · [k− (j + 1− ∆ k)] ·
∫(k−2)

aT ·
..
a

 · dm + δkk · k · [k− (2− ∆ k)] ·
∫(k−2)

aT ·
(3)
a

 · dm+

+∆ k · (k− 1) · [k− 2 · (1− δkk)] ·
∫(k−j)

aT ·
(k−j)

a

 · dm

(49)

The significance of the terms from (49) was contained in the relations (38)–(40).

4. The Acceleration Energy of Higher Order

According to [11,12], the acceleration energy of first order analyzed in the previous sec-
tion was extended in the general case to establish the higher-order equations in the dynamic
behavior of the fast-moving mechanical systems (for example: serial or parallel robots).

Using the notations from the previous section specific to a discrete system of material
points, the acceleration energy of order p could be written as:

E(p)
A =

1
2
·

n

∑
i=1

mi ·
(p−1)

a2
i =

1
2
·

n

∑
i=1

mi ·
(p+1)

r2
i , where p ≥ 1→ k, k ≥ 1 (50)

The linear acceleration of order p, one of the components of expression (50), was
determined with the following general form:

p
ai =

p+1
vi =

k
∑

j=1

∂ri
∂qj
·

p+2
qj + (p + 2) ·

k
∑

j=1

k
∑

m=1

∂2ri
∂qj ·∂qm

·
p+1
qj ·

.
qm + . . .

+ . . . +


k
∑

(
jz = 1

z = 1→ p + 2
)

 ∂p+2ri
p+2
∏

m=1
∂qjm

·
(

p+2
∏

m=1

.
qjm

)


(51)

where

k

∑
((

jz = 1
z = 1→ p + 2

))


∂p+2ri

p+2
∏

m=1
∂qjm

·
(

p+2

∏
m=1

.
qjm

) =
k

∑
j1=1

k

∑
j2=1

. . .
k

∑
jp+2=1

∂p+2ri
p+2
∏

m=1
∂qjm

·
(

p+2

∏
m=1

.
qjm

)
. (52)
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By applying some differential and higher-order transformations, the acceleration
energy of order p, for a system of material points, was expressed using:

E(p)
A = 1

2 ·
n
∑

i=1
mi ·

(p−1)

a2
i = 1

2 ·
k
∑

i=1

k
∑

j=1

∂2ri
∂qj ·∂qm

·
(p+2)

qj ·
(p+2)
qm + . . .+

+ 1
2 ·


k
∑

((
jz = 1

z = 1→ p + 3 ))

 ∂p+3ri
p+3
∏

m=1
∂qjm

·
(

p+3
∏

m=1

.
qjm

)
+ . . . + 1

2 ·


k
∑

((
jz = 1

z = 1→ 2p + 3 ))

 ∂2·p+3ri
2·p+3

∏
m=1

∂qjm

·
(

2·p+3
∏

m=1

.
qjm

)


(53)

For a multibody system, based on the notations from the previous section, the acceler-
ation energy of order p was expressed using the following equation:

E(p)
A

θ(t);
.
θ(t);

..
θ(t);

...
θ (t);

....
θ (t);

(5)

θ(t); . . .
(p+1)

θ(t)

 =

= (−1)∆m · 1−∆m
1+3·∆m

·
n
∑

i=1

 1
2 ·Mi ·

(p)
ivT

Ci
·
(p)

ivCi

++∆2
m ·

n
∑

i=1

 1
2 ·

(p)
iωT

i · i I∗i ·
(p)
iωi + . . .

+

+ . . . + ∆2
m ·

n
∑

i=1

{
p

∏
j=1

ET
j ·
(iωT

i · i I∗i · iωi
)
·

p
∏
j=1

Ej

}
, where Ej =

iωi

(54)

These expressions constituted the link elements between the kinetic energy and accel-
eration energy of higher order.

5. Mathematical Relations between Kinetic and Acceleration Energy

In the case of a material point, the kinetic energy and its time derivative of second
order were established using Equation (5). Considering the definition expression for the
acceleration energy of first order for a material point (34), the following relation between
the kinetic energy and acceleration energy resulted in the case of a material point:

E(1)
A =

1
2
·

..
E
∗
C
(
qi,

.
qi,

..
qi, i = 1→ 3

)
(55)

where ..
E
∗
C =

..
EC −

..
EC

( .
q4

i ,
...
q i, i = 1→ 3

)
=

..
E
∗
C
(
qi,

.
qi,

..
qi, i = 1→ 3

)
. (56)

For a discrete system of material points, the kinetic energy was determined using (7),
while the acceleration energy used Equation (36).

Starting from the mathematical finding (8) and (55), the relation between the kinetic
energy and acceleration energy of first order was given by:

E(1)
A = 1

2 ·
..
E
∗

C = 1
2 ·

n
∑

i=1

∂EC
∂qi
· ..

qi +
1
2 ·

n
∑

i=1

∂2EC
∂q2

i
· .

q2
i +

n−1
∑

i=1

n
∑

j=i+1

∂2EC
∂qi ·∂qj

· .
qi ·

.
qj+

+
n
∑

i=1

n
∑

j=1

∂2EC
∂qi ·∂qj

· .
qi ·

..
qj +

n−1
∑

i=1

n
∑

j=i+1

∂2EC
∂

.
qi ·∂

.
qj
· ..

qi ·
..
qj +

1
2 ·

n
∑

i=1

∂2EC
∂q2

i
· ..

q2
i

(57)

where the generalized variables expressed the motion of the material system in consonance
with the aspects presented in the second and third sections.

For a multibody system, the kinetic energy was expressed with (27), while the acceler-
ation energy of first order was expressed with (41) and (42) its extensions (46)–(48). Starting
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from the same mathematical remark (8) and considering the existence of the generalized
variables of first and second order as part of these dynamic notions, the relation became:

E(1)
A = 1

2 ·
..
E
∗
C =

k−1
∑

j=1

k
∑

i=j+1

∂
∂qi

(
∂EC
∂

.
qj

)
· .

qi ·
..
qj +

k
∑

j=1

k
∑

i=j+1

∂
∂

.
qi

(
∂EC
∂

.
qj

)
· ..

qi ·
..
qj+

+ 1
2 ·

k
∑

j=1

∂2EC

∂
.
q2

j
· ..

q2
j +

k
∑

j=1

∂EC
∂qj
· ..

qj+

+∆ EA ·
[

k
∑

j=1

d
dt

[
∂

∂qj

(
∂EC
∂

.
qj

)]
· .

q2
j +

1
2 ·

k
∑

j=1

k
∑

i=1

∂
∂

.
qi

(
∂EC
∂

.
qj

)
· .

q2
i ·

.
q2

j +

+ 1
2 ·

k
∑

j=1

k
∑

i=1

k
∑

m=1

k
∑

p=1

(
∂

∂qp

(
∂

∂
.
qi

(
∂

∂
.
qj

(
∂EC
∂

.
qm

)
· .

qi ·
.
qj ·

.
qm ·

.
qp

]
,

(58)

where ∆ EA = {(0, current motions); (1, sudden motions)}.
The relation between the kinetic energy and the acceleration energy of first order could

be determined by also starting from the fact that the acceleration energy of first order was a
function of the generalized variables and their time derivates of first and second order:

E(1)
A = E(1)

A

[(
qj , j = 1→ k

)
;
( .

qj , j = 1→ k
)

;
( ..

qj , j = 1→ k
)]

(59)

As a result, the following differential equation of the acceleration energy was deter-
mined according to (69) and (72):

dEA =
k

∑
j=1

∂EA
∂qj
·dqj +

k

∑
j=1

∂EA

∂
.
qj
· d .

qj +
k

∑
j=1

∂EA

∂
..
qj
· d ..

qj (60)

Substituting (69) and (72) in (74), the following integral expression was obtained for
the relation between the kinetic energy and acceleration energy of first order:

E(1)
A =

1
2
·

..
E
∗

C =
1
2
·
∫

∂

∂qj

d2E∗C
dt2 · dqj +

1
2
·
∫

∂

∂
.
qj

d2E∗C
dt2 · d .

qj +
∫ d

dt
∂EC

∂
.
qj
· d ..

qj −
∫

∂EC
∂qj
· d ..

qj (61)

Remark: The mechanical power, a dynamic quantity that characterizes the energetic
behavior of a mechanical system, represents the mechanical work produced per time unit.
Its expression is equivalent according to the theorem of kinetic energy with the following:

P =
dL
dt

=
dEc

dt
=

.
EC (62)

As a result, the acceleration energy became a function of the mechanical power:

E(1)
A =

1
2
·

..
E
∗

C =
1
2

.
P
∗

(63)

where the mechanical power was expressed according to the motion executed by the
multibody system.

For holonomic mechanical systems, the relation between the kinetic energy and accel-
eration energy of first order was based on the identity between Lagrange’s equations of
second kind and the generalization of Gibbs–Appell’s equations [11,12]:

d
dt

(
∂EC

∂
.
qj

)
− ∂EC

∂qj
=

∂E(1)
A

∂
..
qj

=

(m−2)

∂E(1)
A

∂
(m)
qj

, m ≥ 2 (64)
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After several differential transformations, the relation between the kinetic energy and
acceleration energy of first order was expressed according to the expressions:

∂ E(1)
A

∂
.
qj

= 1
2 ·

n
∑

i=1

∂3EC

∂
.
q2

i ·∂
.
qj
· ..

q2
i +

n−1
∑

i=1

n
∑

k=i+1

∂3EC
∂

.
qi ·∂

.
qj ·∂

.
qk
· ..

qi ·
..
qk+

+
n
∑

i=1

n
∑

k=1

∂3EC
∂

.
qi ·∂

.
qj ·∂ qk

· ..
qi ·

.
qk −

n
∑

i=1

∂2 EC
∂ qi ·∂

.
qj
· ..

qi

(65)

Hence, generalizing this differential study for the advanced dynamics equations,
according to [11,12], the mathematical relations between the time derivatives of the kinetic
energy and time derivatives of the acceleration energy of higher-order derivatives were
expressed using the following equations:

1
m ·

dk−1

d tk−1

[
∂
(m)
EC

∂
(m)
qj

− (m + 1) · ∂ EC
∂qj

]
=

= dk−1

d tk−1

 ∂

(m−2)

E(1)
A

∂
(m)
qj

 = (k−1)!·m!
(m+k−1)! ·

∂

∂
(m)
qj


(

k
∑

p=1
∆p

)
·
(m+k)−(2·p+1)

E(p)
A


(66)

where

E(p)
A = E(p)

A

θ(t);
.
θ(t); · · · ;

(p+1)

θ(t)

, and

(
k

∑
p=1

∆p

)
=

k

∑
p=1

[
p · (p + 1)

2
− δp

]
. (67)


p = 1→ k ; δp = {{0 ; p = 1} ; {1 ; p > 1}}
and k ≥ 1; k = {1; 2; 3; 4; 5; . . . . . .}
m ≥ (k + 1); m = {2; 3; 4; 5; . . . . . .}

 (68)

Remark: It is noticed that when the kinetic energy and acceleration energy of the
pth order were well defined, to determine the dynamic equations, a smaller number of
mathematical operations was required when applying the expression of the acceleration
energy than in case when using kinetic energy.

6. Application

To illustrate the relation between the kinetic energy and acceleration energy of the
first, second and third order, this section presented an application. For this purpose, the
mechanical structure of a serial robot with three degrees of freedom, (2TR type), presented
in Figure 3, was considered. The kinematical structure of the considered robot was charac-
terized by two prismatic joints (the first two joints) and a rotational joint (the last one). The
robot structure, symbolized in Figure 3, was modeled for the purpose of being implemented
in the technological process of hot rolling and the processing of pipes by using any other
methods than welding.

Based on the geometric and kinematic data contained in Figure 3, and by using the
expression (27), the kinetic energy of the robot 2TR structure was obtained:

EC = 1
2 ·
[
(M1 + M2 + M3) ·

.
q2

1ik(τ) + (M2 + M3) ·
.
q2

2ik(τ)+M3 · a2
2 ·

.
q2

3ik(τ)−

−2 · (M3 · a2 · sq3ik(τ)) ·
.
q1ik(τ) ·

.
q3ik(τ) + Iz ·

.
q2

3ik(τ)
] (69)

In the expression (69), index k = 1→ m denotes the sequence of the working process
in which the robot is implemented and m is the total number of working sequences. In
the same expression, index i = 1→ n represents the number of intervals corresponding to
each sequence of the working process and τ is the time variable.
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To improve the computation accuracy, each working sequence had to contain more
than three intervals. In expression (69), M1, M2 and M3 represent the masses of the robot’s
kinetic links, q1, q2 and q3 are the generalized coordinates from each robot joint and a2
represents the distance from the geometrical center of the third joint and the characteristic
point P, also considered in the geometric center of the robot end effector.

According to [2], the generalized coordinates are functions of time and can define a ro-
tation angle (in the case of rotational joints) or a linear displacement (for the prismatic joints).
Using the general expression (41) and by performing some successive transformations, the
acceleration energy of first order for the 2TR robot structure was obtained:

E(1)
Aik(τ) =

1
2 ·
[
(M1 + M2 + M3) ·

..
q2

1ik(τ)+

+(M2 + M3) ·
..
q2

2ik(τ) +
(

M3 · a2
2 +

3 Iz
)
· ..

q2
3ik(τ)

]
−

−
[

M3 · a2 ·
.
q2

3ik(τ) · c(q3ik(τ))
]
· ..

q1ik(τ)−M3 · a2 · sq3ik(τ) ·
..
q1ik(τ) ·

..
q3ik(τ)

(70)
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E(2)
Aik(τ) =

1
2 ·
[
(M1 + M2 + M3) ·

...
q 2

1ik(τ) + (M2 + M3) ·
...
q 2

2ik(τ)+(
M3 · a2

2 +
3 Iz
)
·
[...

q 2
3ik(τ)− 2 · .

q3
3ik(τ) ·

...
q 3ik(τ) + 9 · .

q2
3ik(τ) ·

..
q2

3ik(τ) +
.
q6

3ik(τ)
]]
−

−M3 · a2 · sq3ik(τ) ·
...
q 1ik(τ) ·

...
q 3ik(τ) + M3 · a2 · sq3ik(τ) ·

...
q 1ik(τ) ·

.
q3

3ik(τ)−

−3 ·M3 · a2 ·
.
q3ik(τ) · cq3ik(τ) ·

...
q 1ik(τ) ·

..
q3ik(τ)

(71)

The significance of the terms contained in (70) was explained in the previous sections.
Customizing relation (54), and by applying differential transformations, the expressions for
the acceleration energies of second and third order were determined:

E(3)
Aik(τ) =

1
2 ·
[
(M1 + M2 + M3) ·

....
q 2

1ik(τ) + (M2 + M3) ·
....
q 2

2ik(τ)
]

(
M3 · a2

2 +
3 Iz
)
·
....
q 2

3ik(τ)− 6 ·
(

M3 · a2
2 +

3 Iz
)
· .

q2
3ik(τ) ·

..
q3ik(τ) ·

....
q 3ik(τ)

+M3 · a2 · cq3ik(τ) ·
.
q4

3ik(τ) ·
....
q 1ik(τ)−M3 · a2 · sq3ik(τ) ·

....
q 1ik(τ) ·

....
q 3ik(τ)

−3 ·M3 · a2 · cq3ik(τ) ·
..
q2

3ik(τ) ·
....
q 1ik(τ) + 6 ·M3 · a2 · sq3(τ) ·

.
q2

3(τ) ·
..
q3ik(τ) ·

....
q 1ik(τ)−

−4 ·M3 · a2 · cq3ik(τ) ·
.
q3ik(τ) ·

...
q 3ik(τ) ·

....
q 1ik(τ) + 8 ·M3 · a2

2 ·
.
q2

3ik(τ) ·
...
q 2

3ik(τ)+

+15 ·M3 · a2
2 ·

.
q4

3ik(τ) ·
..
q2

3ik(τ)− 4 ·M3 · a2
2 ·

.
q5

3ik(τ) ·
...
q 3ik(τ)+

+12 ·M3 · a2
2 ·

.
q3ik(τ) ·

..
q2

3ik(τ) ·
...
q 3ik(τ) +

1
2 ·
[
9 ·M3 · a2

2 ·
..
q4

3ik(τ) + M3 · a2
2 ·

.
q8

3ik(τ)
]

(72)

Using (69) and (70) by applying the second-order time derivative on expression (69)
along with the restrictive condition (56), the identity was verified:

E(1)
A
(
qi,

.
qi,

..
qi, i = 1→ n

)
=

1
2
·

..
E
∗
C
(
qi,

.
qi,

..
qi, i = 1→ n

)
(73)

Thus, the mathematical relation between the kinetic energy and acceleration energy of
first order was validated.

Expression (73) validates the demonstrations presented in the previous sections re-
garding the mathematical relation that could be established between the kinetic energy and
acceleration energy of first order. This relation represents another approach that could be
used in the dynamic study of mechanical systems.

For the graphical representation of the variation in time, in the case of the kinetic (Ec)
and acceleration energy (EA), for the generalized variables, the interpolation polynomial
functions were used. Based on these functions, the generalized variables became time
functions. For the serial robot structure presented in Figure 3, a work process was modeled
from which the motion trajectory was determined. In the case of industrial robots, the
motion trajectory was defined as the reunion of all polynomial interpolation functions
characterizing all selected time intervals and sequences of the working process. The
simulated work process required the functioning of all three robot joints.

To achieve this goal, according to [11], a linear interpolation polynomial function
corresponding to

....
q was considered. This function had the following form:

....
q jik(τ) =

τi − τ

ti
·
....
q jik(τi−1) +

τ − τi−1

ti
·
....
q jik(τi) (74)
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By integrating the expression (74), it was obtained that is:

qjik(τ) =
(τi − τ)5

120 · ti
·
....
q ji−1k +

(τ − τi−1)
5

120 · ti
·
....
q jik + ajik1 ·

τ3

6
+ ajik2 ·

τ2

2
+ ajik3 · τ + ajik4 (75)

The integration constants ajik1, ajik2 . . . ajik4 were obtained by applying the continuity
conditions, on each time interval and for each work sequence:

(τ0) ⇒
{

h0k = qj0k ; v0k =
.
qj0k ; a0k =

..
qj0k;

..
a0k =

....
q j0k

}
(76)

(τn) ⇒
{

hnk = qjnk ;
..
ank =

....
q jnk

}
(77)

(τi)⇒
{

aik =
..
qjik ; i = 1→ n− 1 ; i ⊂ k ; k = 1→ m{

hik(t+) = hi+1k(t−); vik(t+) = vi+1k(t−) ;
.
aik(t+) =

.
ai+1k(t−)

} }
(78)

where k = 1→ m represents the number of work sequences and i = 1→ n is the number
of time intervals; each sequence was divided. In the application, k = 1→ 4 and i = 1→ 4 .

Thus, using a MATLAB application, the polynomial interpolation functions for each
sequence and time interval were obtained. Further, we presented the interpolation functions
corresponding to the first work sequence which was divided into four work intervals,
according to Table 1.

Table 1. The polynomial time functions for the generalized coordinates.

Sequence
k = 1

Time Interval
i = 1→4

Polynomial Time Functions for Generalized Coordinates

q1ik 〈m〉 q2ik 〈m〉 q3ik 〈rad〉

1

1 0.7681 · τ5 1.0973 · τ5 1.646 · τ5

2
−2.3045 · τ5 + 2.3045 · τ4−
−0.6913 · τ3 + 0.1037 · τ2−
−0.0077 · τ + 0.0002

−3.2921 · τ5 + 3.2921 · τ4−
−0.9876 · τ3 + 0.1481 · τ2−
−0.0111 · τ + 0.0003

−4.9382 · τ5 + 4.9382 · τ4−
−1.4814 · τ3 + 0.2222 · τ2−
−0.0166 · τ + 0.0005

3
2.3045 · τ5 − 4.609 · τ4+

+3.4567 · τ3 − 1.1407 · τ2+
+0.1788 · τ − 0.0109

3.2921 · τ5 − 6.5843 · τ4+
+4.9382 · τ3 − 1.6296 · τ2+

+0.2555 · τ − 0.0156

4.9382 · τ5 − 9.8765 · τ4+
+7.4074 · τ3 − 2.4444 · τ2+

+0.3833 · τ − 0.0235

4
−0.7681 · τ5 + 2.3045 · τ4−
−2.7654 · τ3 + 1.6592 · τ2−
−0.4511 · τ + 0.0457

−1.0973 · τ5 + 3.2921 · τ4−
−3.9506 · τ3 + 2.3703 · τ2−
−0.6444 · τ + 0.0653

−1.646 · τ5 + 4.9382 · τ4−
−5.9259 · τ3 + 3.5555 · τ2−
−0.9666 · τ + 0.098

Based on the higher-order polynomial interpolation functions (5th order), presented
in [11], the variation of the generalized variables q,

.
q,

..
q and

...
q was presented in a graphical

form in Figure 4.
Figure 4 represents the variations in time of the generalized variables for a work

sequence from the simulated work process. Substituting the results presented above in
(69)–(72), the time variation laws for the kinetic energy and the acceleration energies of
higher order were obtained. The variations are presented in Figure 5.

The results presented above represent the compulsory input functions in the dynamic
study of the robot mechanical structure, materialized by the time variation laws of the
generalized driving forces as they resulted from the study encompassed in [13].
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7. Conclusions

In the industrial field, a wide range of applications is based on multibody mechanical
systems, including, for example, parallel and serial robots. These multibody systems are
characterized, in general, by rapid movements due to the active forces as time functions and
due to the occurrence of higher-order accelerations within the mechanical system subjected
to different technological processes.

This paper focused on establishing a mathematical relation between the kinetic energy
and acceleration energy for different material systems that can be systems of material
points, bodies and multibody systems. In terms of dynamics, higher-order accelerations
became the central functions in acceleration energies. Generally, in advanced dynamics,
the study of multibody systems is conducted by applying the differential and variational
principles of analytical mechanics. Lagrange–Euler equations and their time derivatives
are commonly used. In these types of equations, the central function becomes the kinetic
energy and its higher-order time derivatives. The same study in advanced dynamics can
be conducted by applying the generalization of the Gibbs–Appell equations, in which the
central function becomes the first-order and higher-order acceleration energy.

To reach the main objective of the paper, in the second section, several formulations
on kinetic energy were presented, while in the third section, the expression that defined
the acceleration energy of first order, also known as Appell’s function, was presented in an
explicit form. In the fourth section, the study then focused on extending the analysis of the
acceleration energy of first order in the general case, with the purpose of establishing the
higher-order equations in the dynamic behavior of the fast-moving mechanical systems.
The next section, the fifth one, was dedicated to presenting the mathematical relations
between the kinetic and acceleration energy in the case of a material point, of a discrete
system of material points and of a multibody system. This section also encompassed a
generalization of the differential study for advanced dynamics equations by presenting the
mathematical relations between kinetic energy and its higher-order derivatives and the
acceleration energy of higher order and its derivatives.

To illustrate the main results of the paper, namely, the mathematical relations between
the kinetic energy and acceleration energy of the first, second and third order, an illustrative
application was encompassed in the final part of the paper.

Author Contributions: Conceptualization, I.N.; methodology, I.N.; investigation and software, A.C.
and I.N.; validation, I.N.; formal analysis, I.N. and S.V.; resources, I.N., A.C. and F.S, .; data curation,
I.N., A.C. and F.S, .; writing—original draft preparation, A.C. and F.S, .; writing—review and editing,
I.N., A.C., F.S, . and S.V.; visualization, A.C. and F.S, .; supervision, I.N. and S.V. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the Technical University of Cluj-Napoca, Roma-
nia, for providing technical support in conducting the research. At the same time, the authors are
grateful to the unknown reviewers and the academic editor for their very useful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Frontali, C. History of physical terms: ‘Energy’. Phys. Educ. 2014, 49, 564–573. [CrossRef]
2. Negrean, I.; Duca, A.; Negrean, C.; Kacso, K. Advanced Mechanics in Robotics; UT Press: Cluj-Napoca, Romania, 2008.
3. Appell, P. Traité de Mécanique Rationnelle, 1st ed.; Garnier Frères: Paris, France, 1903.
4. Pars, L.A. A Treatise on Analytical Dynamics; Heinemann: London, UK, 2007; Volume 1.
5. Jazar, R.N. Theory of Applied Robotics: Kinematics, Dynamics, and Control, 2nd ed.; Springer: Cham/Basel, Switzerland, 2010.
6. Cassel, K. Variational Methods with Applications in Science and Engineering; Cambridge University Press: Cambridge, MA, USA,

2013; p. 413.
7. Appell, P. Sur Une Forme Générale des Equations de la Dynamique, 1st ed.; Gauthier-Villars: Paris, France, 1899.
8. Mirtaheri, S.M.; Zohoor, H. The Explicit Gibbs-Appell Equations of Motion for Rigid-Body Constrained Mechanical System; Book

Series: RSI International Conference on Robotics and Mechatronics ICRoM; IEEE: Piscataway, NJ, USA, 2018; pp. 304–309.

http://doi.org/10.1088/0031-9120/49/5/564


Symmetry 2022, 14, 896 19 of 19

9. Amini, S.; Dehkordi, S.F.; Fahraji, S.H. Motion equation derivation and tip-over evaluations for K mobile manipulators with the
consideration of drivings mass by the use of Gibbs-Appell formulation. In Proceedings of the 5th RSI International Conference on
Robotics and Mechatronics (IcRoM), Tehran, Iran, 25–27 October 2017.

10. Schiehlen, W.; Eberhard, P. Applied Dynamics, 1st ed.; Springer: Cham, Switzerland, 2014; p. 215.
11. Negrean, I.; Cris, an, A.-V. Synthesis on the Acceleration Energies in the Advanced Mechanics of the Multibody Systems. Symmetry

2019, 11, 1077. [CrossRef]
12. Negrean, I.; Cris, an, A.-V.; Vlase, S. A New Approach in Analytical Dynamics of Mechanical Systems. Symmetry 2020, 12, 95.

[CrossRef]
13. Thompson, P. Snap, Crackle, and Pop; Systems Technology: Hawthorne, CA, USA, 2011.
14. Vlase, S.; Negrean, I.; Marin, M.; Scutaru, M.L. Energy of Accelerations Used to Obtain the Motion Equations of a Three-

Dimensional Finite Element. Symmetry 2020, 12, 321. [CrossRef]
15. Eager, D.; Pendrill, A.M.; Reinstad, N. Beyond velocity and acceleration: Jerk, snap and higher derivatives. Eur. J. Phys. 2016, 37,

065008. [CrossRef]
16. Negrean, I.; Negrean, D.C. The Acceleration Energy to Robot Dynamics. In Proceedings of the A&QT-R International Conference

on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 23–25 May 2002; pp. 59–64.
17. Gao, C.J. Generalized modified gravity with the second-order acceleration equation. Phys. Rev. D 2012, 86, 103512. [CrossRef]
18. Korayem, M.H.; Dehkordi, S.F. Derivation of dynamic equation of viscoelastic manipulator with revolute-prismatic joint using

recursive Gibbs-Appell formulation. Nonlinear Dyn. 2017, 89, 2041–2064. [CrossRef]
19. Wheaton, B.J.; Maybeck, P.S. 2nd-Order Acceleration Models for an MMAE Target Tracker. IEEE Trans. Aerosp. Electron. Syst.

1995, 31, 151–167. [CrossRef]

http://doi.org/10.3390/sym11091077
http://doi.org/10.3390/sym12010095
http://doi.org/10.3390/sym12020321
http://doi.org/10.1088/0143-0807/37/6/065008
http://doi.org/10.1103/PhysRevD.86.103512
http://doi.org/10.1007/s11071-017-3569-z
http://doi.org/10.1109/7.366291

	Introduction 
	Formulations on Kinetic Energy 
	Material Point and Discrete System of Material Points 
	Multibody Systems 

	The Acceleration Energy of First Order 
	The Acceleration Energy of Higher Order 
	Mathematical Relations between Kinetic and Acceleration Energy 
	Application 
	Conclusions 
	References

