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Abstract: Intracranial aneurysms represent a potentially life-threatening condition and occur in
3–5% of the population. They are increasingly diagnosed due to the broad application of cranial
magnetic resonance imaging and computed tomography in the context of headaches, vertigo, and
other unspecific symptoms. For each affected individual, it is utterly important to estimate the rupture
risk of the respective aneurysm. However, clinically applied decision tools, such as the PHASES score,
remain insufficient. Therefore, a machine learning approach assessing the rupture risk of intracranial
aneurysms is proposed in our study. For training and evaluation of the algorithm, data from a single
neurovascular center was used, comprising 446 aneurysms (221 ruptured, 225 unruptured). The
machine learning model was then compared with the PHASES score and proved superior in accuracy
(0.7825), F1-score (0.7975), sensitivity (0.8643), specificity (0.7022), positive predictive value (0.7403),
negative predictive value (0.8404), and area under the curve (0.8639). The frequency distributions
of the predicted rupture probabilities and the PHASES score were analyzed. A symmetry can be
observed between the rupture probabilities, with a symmetry axis at 0.5. A feature importance
analysis reveals that the body mass index, consumption of anticoagulants, and harboring vessel are
regarded as the most important features when assessing the rupture risk. On the other hand, the
size of the aneurysm, which is weighted most in the PHASES score, is regarded as less important.
Based on our findings we discuss the potential role of the model for clinical practice in geographically
confined aneurysm patients.

Keywords: unruptured intracranial aneurysm; rupture risk; machine learning; PHASES score

1. Introduction

Unruptured intracranial aneurysms (UIAs) occur in approximately 3% of the popula-
tion [1] and represent one of the most common unexpected findings in brain imaging studies
of healthy subjects [2]. Related to the increased availability of cranial magnetic resonance
imaging (cMRI) for the workup of relatively unspecific but common central nervous system
(CNS) symptoms, such as vertigo, headaches, and impaired memory, UIAs have been diag-
nosed much more frequently in recent years. They may remain clinically silent for years to
decades, they can manifest with focal neurological deficits due to their space-occupying
effects, or they might rupture and cause subarachnoid hemorrhage (SAH). Although only a
minority of UIAs will eventually rupture, the consequences are grave—12.4% of all SAH
patients will succumb to the hemorrhage prior to reaching a hospital [3] and only 55%
recover in a way that functional independence is regained [4]. Therefore, UIAs represent a
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potentially life-threatening condition and the risk of the individual UIA must be weighted
against the risk of preventive treatment, which is associated with significant morbidity or
mortality in approximately 4% and, hence, is non-negligible [5].

As a consequence, estimating the risk of rupture of an UIA is crucial for the decision
as to whether to perform preventive treatment or to watch and wait. A number of studies
have therefore investigated factors that are linked to rupture [6]. Among others, the size of
the aneurysm, the presence of daughter aneurysms, or irregular outpouches, the specific
location in the cerebral vessels, active smoking, elevated blood pressure, and the patients
age have been identified as most significant [7]. Nevertheless, there is ongoing controversy
regarding the suitability of each of those factors for risk prediction [8]. Based on those
factors, a number of clinical scoring systems, such as the PHASES and UIATS score [9,10],
have been developed with the aim to aid optimal decision making in neurovascular pro-
cedures. However, exemplarily related to the ethnic and biological differences between
the patients treated in a local neurovascular center and the patients included in trans-
continental multi-center studies, the appropriateness of those scores for the counseling of
individual patients has been recently questioned [11,12].

Artificial intelligence (AI) is increasingly implemented into the clinical routine as an
adjunct for physicians in order to increase diagnostic accuracy and reduce workload [13].
The performance of AI technologies, in particular machine learning (ML) in context of
rupture risk stratification, is also promising [14], but clinical evidence is scarce and studies
in this context are wanted. Our study therefore aims to investigate the potential and
performance of a machine learning approach for the prediction of the UIA rupture risk
based on a cohort of 421 aneurysm patients treated in a single neurovascular center.

2. Materials and Methods
2.1. Data Acquisition

In four complete consecutive years (2014 to 2017), data were assessed from 221 patients
who had suffered an aneurysmal SAH as well as 200 patients who presented to the outpa-
tient clinic for UIA diagnosis. Taken together, this resulted in a data set of 446 aneurysms
(221 ruptured and 225 unruptured, including 25 patients with 2 aneurysms).

Patient records were obtained during outpatient follow-up visits and from the inten-
sive care unit database. The retrospective time frame spanned from 1997 to 2017, beginning
with an UIA in January 1997 and an aneurysmal SAH in January 1998. The raw data in
the form of patient histories and images were gathered retrospectively and exclusively at
University Hospital Leipzig.

2.2. Clinical Features

The information documented for the above patient cohort includes clinical features.
Some of these are general, patient-specific features, which are known to be accompanying
risk factors: age, body mass index (BMI), sex, hypertension, diabetes mellitus, the con-
sumption of anticoagulants, or nicotine. Furthermore, aneurysm-specific features were
used: the length (and width) of the aneurysm manually measured as the diameter vertically
to the harbouring vessel (resp. parallel to the harbouring vessel), the harbouring vessel
itself, the shape of the aneurysm, the PHASES score, the number of intracranial aneurysms,
and vascular anomalies. Cerebral vessel imaging was reviewed for concurrent vascular
anomalies, such as atherosclerotic changes or dysplastic or aberrant vessel formations.

Aneurysm shapes were stratified into four groups, the berry-like “saccular” shape
with a narrow neck, and the saccular shape with a broad neck “saccular broad-based”,
defined as the diameter of the neck being larger than the diameter of the harbouring vessel.
Third, the “irregular” shape comprised aneurysm domes with satellite aneurysms or blebs,
as well as lobulated forms and wall indentations. Fourth, the fusiform “blister-like” shape.
To put the aneurysm length and width into proportion, additionally the width divided by
the length was added to the set of features. Missing entries regarding the above numerical
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features were substituted by the mean. For categorical features, one-hot encoding was
performed with pandas and missing entries were ignored [15,16].

2.3. Gradient Boosting Machine

A gradient boosting machine (implementation taken from the library scikit-learn [17])
is a modern and popular machine learning algorithm for classification and regression.
It creates multiple decision trees and combines their results for the final prediction. We
applied it in this context to stratify aneurysms with a high and low risk of rupture. How
the algorithm learns can be controlled via so-called hyperparameters. We combined hy-
perparameter tuning with a stratified five-fold cross validation and grid search to find the
parameters with the highest accuracy on unseen data (Table 1). This best hyperparameter
combination was subsequently used to train the final gradient boosting models (again with
five-fold cross validation). These final models output a value v ∈ [0, 1] for each aneurysm
in the test data set (which has not been seen by the respective model during training). By
varying the threshold tmodel and classifying the values v ≥ tmodel as aneurysms with a high
risk of rupture and the values v < tmodel as aneurysms with a low risk of rupture, a ROC
curve can be obtained for each fold. Since the validation was conducted on data that had
not been seen during training in each of the five-folds, the results of the folds could then be
combined in a total ROC curve.

Table 1. used hyperparameters and their search space as a bounded domain of hyperparameter
values. They refer to the scikit-learn implementation. The optimal hyperparameters for the prediction
model were found using grid search.

Hyperparameter Domain Space Optimum after
Grid Search

n_estimators {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000} 100
learning_rate {0.1, 0.01, 0.001, 0.0001} 0.1
criterion {‘friedman_mse’, ’mse’, ’mae’} ‘friedman_mse’
max_features {‘auto’, ‘sqrt’, ‘log2’} ‘sqrt’
max_depth {5, 15, 25, 35, 45, 55, 65, 75, 85, 95, None} 5
min_samples_split {2, 4, 6, 8, 10} 2
min_samples_leaf {2, 4, 6, 8, 10} 2

2.4. Evaluation

To make the gradient boosting model comparable to the PHASES score, we determined
a threshold t(SE)

model such that the model had at least the sensitivity of the PHASES score
(which is one of its strengths). This allows an easier comparison of all other statistical
measures (accuracy, F1-score, specificity, positive predictive value (PPV), and negative
predictive value (NPV)) between the model and the PHASES score. Bijlenga et al. [18]
stated that patients with a PHASES score ≥4 were more likely to be treated, whereas a
score <4 was predictive for observation. This PHASES threshold was applied for rupture
prediction on aneurysms where the PHASES score information was available (437 in total).
We also compared the total ROC curve of the gradient boosting model and the PHASES
score as well as the areas under the curve (AUC). The difference was tested for significance
using the pROC R package and its bootstrapping method roc.test [19].

In order to estimate the influence of each feature on the model prediction result, the
feature importances (based on the Gini criterion [20,21]) were computed. Roughly speaking,
this measures how homogeneously a feature splits the data, summed over all splits in a
decision tree and averaged over all decision trees.
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3. Results
3.1. Gradient Boosting Model

Gradient boosting was applied with a five-fold cross-validation on the acquired data
set consisting of 446 aneurysms. By varying the threshold tmodel , a ROC curve was com-
puted for each fold. Taken together, they formed a total ROC with an AUC of 0.8639
(Figure 1). Repeating this experiment 100 times with random seeds resulted in a similar
mean AUC (0.8492 ± 0.0085). By setting t(SE)

model = 0.37, the gradient boosting model had,
at least, the sensitivity of the PHASES score. This facilitated a comparison between the
gradient boosting model and the PHASES score. The confusion matrix for the model is
shown in Table 2(a), the resulting statistical measures in Table 3.

Table 2. Confusion matrices of (a) the gradient boosting model and (b) the PHASES score as predictor;

(a) is a composition of 5 confusion matrices for t(SE)
model = 0.37. The results refer exclusively to the

test data of the cross validation folds. In (b), the PHASES threshold is applied, where a score ≥ 4 is
predictive for rupture, as proposed by Bijlenga et al. [18].

(a) Gradient Boosting Model

Rupture

Positive Negative Total

Rupture prediction

Positive 191 67 258

Negative 30 158 188

Total 221 225 446

(b) PHASES Score

Rupture

Positive Negative Total

Rupture prediction

Positive 183 157 340

Negative 29 68 97

Total 212 225 437

Table 3. Statistical analysis of the results of the gradient boosting model compared to the PHASES
score. The threshold of the model tSE

model is chosen such that the sensitivity of the model is at least as
high as the sensitivity of the PHASES score to facilitate a comparison between the two approaches.

Statistical Measure Model (tSE
model = 0.37) PHASES Score

Accuracy 0.7825 0.5744
F1-Score 0.7975 0.6630
Sensitivity 0.8643 0.8632
Specificity 0.7022 0.3022
PPV 0.7403 0.5382
NPV 0.8404 0.7010

AUC 0.8639 0.5637
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Figure 1. ROC curves of the cross validated gradient boosting model in comparison with the PHASES
score. Each of the 5 CV-folds is represented by a ROC curve. The dark blue curve is the ROC of the
accumulated test sets. The orange curve is the ROC of the PHASES scores from the data set. The
PHASES heuristic from Bijlenga et al. [18] is plotted on the curve as threshold 4.

The histogram in Figure 2a shows the frequency distribution of the model predic-
tions. The interval [0, 0.1] contains 88.66% (86/97) UIAs and interval (0.9, 1] covers
92.55% (87/94) ruptured aneurysms. The closer the predicted rupture probabilities are to
0.5, the more the ratio of actually unruptured to ruptured aneurysms tends towards 1:1. In
other words, the reliability of the model increases exponentially the closer the predicted
probability approaches either the interval boundary 0 or 1. This property reveals a certain
symmetry in the diagram, with the rupture probability P(R) = 0.5 forming the axis of
symmetry. The mean probability for ruptured aneurysms is 0.7247, respectively 0.2699
for UIAs. Thus, they have an almost equal distance to P(R) = 0.5, which again confirms
the symmetry.

(a) (b)

Figure 2. Frequency distribution of (a) rupture probabilities predicted by the model and (b) PHASES
scores. The black bars represent aneurysms that actually ruptured (resp. hatched bars for unruptured
aneurysms).
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The feature importance analysis (Figure 3) reveals that the model heavily weighs
the BMI (feature importance = 0.1615). This is closely followed by the consumption of
anticoagulants (0.1157) and the harbouring vessel (0.1100). The hypertension (0.0183),
nicotine consumption (0.0190), gender (0.0194), and diabetes mellitus (0.0212) seem to have
the least influence on the decision-making of the model.

Figure 3. Feature importance ranked by the gradient boosting model. Vessel abbreviations: ICA—
internal carotid artery, ACoA—anterior communicating artery, ED—extradural, PCoA—posterior
communicating artery, VA—vertebral artery, BA—basilar artery. Anomaly abbreviations: DV—
duplicated vessel, ID—infundibular dilation, Ect—ectasia, Dol—dolicho-basilaris, FPCA—fetal-type
posterior cerebral artery, VAD—vertebral artery dissection, St—stenosis, AS—arteriosclerosis, H—
hypoplastic vessel, C—collateral vessel. Shape abbreviations: sac.—saccular, irreg.—irregular.

3.2. Comparison to PHASES Score

The PHASES threshold (as proposed by Bijlenga et al. [18]) was applied for all
437 patients for whom the required information was available. The results for the PHASES
score are shown in the confusion matrix in Table 2, the resulting statistical measures in
Table 3.

In addition, a ROC curve was computed for the PHASES score, which can directly
be compared to the ROC curves of the gradient boosting models (Figure 1). The peak of
the ROC curve at PHASES = 4 shows that the threshold proposed by Bijlenga et al. [18] is
the best possible within the PHASES scale. This observation is confirmed in the histogram
(Figure 2b), where the UIAs predominate in the interval [0, 3]. Within [4, 5], the SAH
portion outweighs slightly, and no clear pattern can be identified for [6, 16].

Nevertheless, the AUC of the gradient boosting model (0.8639) is significantly higher
(p = 2.2× 10−16) than the AUC of the PHASES score (0.5637), which is only slightly better
than random (0.5) on this data set.
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4. Discussion

Aiming to improve patient counseling and decision making in aneurysm care, a
respectable number of risk scoring systems have been developed and then investigated
to better understand the aneurysm-related hazard, but only few—most significantly the
PHASES score—have shown practical value and were eventually established in the clinical
routine [22–24]. However, the suitability of the PHASES score in general, and even more for
patients in geographically constrained areas, has been questioned by several authors [8,14].
Facing the problem of counseling patients with UIA on a daily basis, our study was initiated
with the aim to provide those affected with a more accurate tool for risk assessment. For
this purpose, we used gradient boosting, a state-of-the-art machine learning algorithm
based on multiple decision trees, for risk evaluation and compared its performance with
the performance of the PHASES score in a substantial number of locally acquired patients
with unruptured and ruptured brain aneurysms.

Our results demonstrate the clear superiority of the machine learning approach over
the PHASES score in our patient collective. More specifically, gradient boosting allowed
predicting rupture and outperformed the well-established PHASES score as follows. With
a probability of 84.04%, the intracranial aneurysm of a patient with a negative prediction
will indeed not rupture when applying the threshold tmodel = 0.37 (see NPV in Table 3).
Therefore 13.94 (84.04–70.1%) percentage points (pp) more negative predictions can be
trusted compared to the PHASES score. Respectively 20.21 pp (74.03–53.82%) more positive
diagnoses are trustworthy, which practically means 20.21 pp less unnecessary invasive
treatments (see PPV in Table 3). By moving the decision threshold tmodel closer to 0, the
sensitivity and NPV can be be increased to the desired value. Similarly, a higher specificity
and PPV can be achieved by using tmodel > 0.5 and shifting it towards 1. Moreover, the
prediction probabilities computed by the model are relatively reliable near the interval
boundaries 0 and 1 (see Figure 2a). The symmetry of the rupture probabilities to 0.5 in-
dicates that maximum accuracy can be achieved near tmodel = 0.5. The comparison of
the ROC curves also confirm that the model clearly outperforms the PHASES score in
terms of classification (see Figure 1). Since the PHASES score heavily weighs the size of
an aneurysm, a high score mostly indicates the presence of a large aneurysm. For those
high scores, e.g., 6 and greater, its ROC fluctuates around the diagonal line, which implies
that from this point on, the PHASES score does not perform better than randomly tossing
a coin.

Since the model is trained on a balanced data set, patients with and without ruptured
aneurysms are well represented. Other studies on rupture prediction of intracranial aneurysms
with machine learning are based on imbalanced data sets, such as in Shi et al. (395 ruptured,
109 unruptured) [25], Ou et al. (68 ruptured, 306 unruptured) [26], and Liu et al. (124 un-
stable, 296 stable) [27]. This leads to a high accuracy a priori (even before applying an
algorithm). However the AUC in those three studies (0.88, 0.882, 0.853) is barely different
to the AUC achieved by our model (0.8639). Another approach, a convolutional neuronal
network trained with three-dimensional digital subtraction angiographies, yielded an infe-
rior AUC of 0.755 [28]. The same holds for an extreme gradient boosting algorithm trained
with blood biomarkers and clinical features, which hits an AUC of 0.765 [29] and, therefore,
is also significantly lower.

Considering the relevance of the different features included in this study, our findings
further contribute to the scientific body of evidence questioning the historically estab-
lished role of the pure size of UIAs for risk prediction. In line with, e.g., the study of
AlMatter et al. [8], the size of the aneurysm plays a subordinate role in the model’s decision-
making, as illustrated in Figure 3. In fact, the ratio of width and length (width/length),
which roughly represents the aneurysm shape, proves more important but still has moder-
ate impact. Interestingly, our results show an extraordinary significance of BMI and patient
age for rupture risk in our cohort. Both variables have been linked to the risk of hemorrhage
in previous work [30,31], with the yet unexplained phenomenon of the obesity paradox in
context of UIAs, i.e., obese patients with growing age are less likely to suffer from aneurys-



Symmetry 2022, 14, 943 8 of 10

mal SAH. As a consequence, BMI, age, and the aneurysm localization should have a greater
weighting for the risk evaluation. However, it should be noted that feature importance
based on the Gini criterion tends to overestimate continuous features [32]. In addition, the
diagram should not be used to infer “the higher or lower the BMI resp. age, the more likely
is SAH”. Those relationships may be nonlinear for the gradient boosting machine and the
structure of the underlying decision trees must be analyzed in greater detail.

The weighting of the individual features for the risk of hemorrhage notoriously varies
between distinct populations [33], which is certainly based on different Mendelian and
lifestyle backgrounds, among other factors. Therefore, using the proposed model in spa-
tially confined patient cohorts has the potential to improve aneurysm care at the individual
level. Our study is based on a retrospectively maintained database of a single neurovascular
center. Cross-validation of our model with patients of further distinct, but also spatially
confined catchment areas is wanted, and will certainly improve the understanding of the
influence of features on the risk of hemorrhage.

5. Conclusions

This study demonstrates that the machine learning approach is superior to the PHASES
score for rupture prediction of UIAs. Since the patient cohort is geographically constrained,
the model can enhance risk evaluation and patient counselling in this specific area.
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