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Abstract: In this paper we consider the ChaCha20 stream cipher in the related-key scenario and
we study how to obtain rotational-XOR pairs with nonzero probability after the application of the
first quarter round. The ChaCha20 input can be viewed as a 4× 4 matrix of 32-bit words, where the
first row of the matrix is fixed to a constant value, the second two rows represent the key, and the
fourth some initialization values. Under some reasonable independence assumptions and a suitable
selection of the input, we show that the aforementioned probability is about 2−251.7857, a value greater
than 2−256, which is the one expected from a random permutation. We also investigate the existence
of constants, different from the ones used in the first row of the ChaCha20 input, for which the
rotational-XOR probability increases, representing a potential weakness in variants of the ChaCha20
stream cipher. So far, to our knowledge, this is the first analysis of the ChaCha20 stream cipher from
a rotational-XOR perspective.
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1. Introduction

The ChaCha20 stream cypher, published in 2008 [1], was developed by Daniel J.
Bernstein as a modification of Salsa20 [2], another stream cypher designed in 2005 by the
same author and then later submitted to the eSTREAM project. The aim of ChaCha20
is to increase diffusion and performance on some architectures with respect to Salsa20.
Google has selected ChaCha20 along with Bernstein’s Poly1305 message authentication
code as a replacement for RC4 in TLS, and its specifications can be found in [3]. Both
ciphers are ARX (Add-Rotate-XOR) ciphers, i.e., built on a pseudorandom function based
only on the following three 32-bit word operations: modular addition, circular rotation,
and bitwise exclusive or (XOR). This pseudorandom function is itself built upon a 512 bit
permutation. According to [4], both permutations are not designed to simulate ideal
permutations: they are designed to simulate ideal permutations with certain symmetries,
i.e., ideal permutations of the orbits of the state space under these symmetries. The input
of the ChaCha20 function is partially fixed to specific asymmetric constants, ensuring that
different inputs lie in different orbits. As a consequence of the ChaCha20 design, some
cryptanalytic techniques, such as rotational cryptanalysis, seem hard to apply.

Related works. Rotational cryptanalysis studies the propagation of rotational pairs
(x, x≪ r) throughout the encryption steps of an ARX scheme. It is a probabilistic chosen-
plaintext attack that turns to be an effective cryptanalytical tool against ciphers and hash
functions that are based on the three ARX operations.

A rotational pair of keys was considered for the first time in the pioneering work
on related keys by Biham [5]. This approach was extended by Kelsey et al. in several
related-key attacks on block ciphers [6]. A rotational pair of inputs was later adopted in the

Symmetry 2022, 14, 1087. https://doi.org/10.3390/sym14061087 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14061087
https://doi.org/10.3390/sym14061087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-2423-6061
https://orcid.org/0000-0001-8837-5736
https://orcid.org/0000-0002-2349-0247
https://doi.org/10.3390/sym14061087
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14061087?type=check_update&version=1


Symmetry 2022, 14, 1087 2 of 18

cryptanalysis of the compression function of Shabal [7] (the term “rotational input” was
not used yet), but it was traced only through bitwise operations and not through additions.
Bernstein [8] explicitly prevented using rotational pairs in Salsa20 (and ChaCha20) by fixing
non-symmetric constants in the input of the permutation. However, he did not provide
any complexity or probability estimates for this kind of attack. The designers of the block
cipher SEA [9] described the technique of rotational cryptanalysis in 2006 and defended
against it with non-linear key-schedule and pseudorandom constants. In his Ph.D. thesis,
Daum [10] described the links between modular addition and bit rotations. In 2010, the
term “rotational cryptanalysis” appeared for the first time in the papers of Khovratovich
and Nikolić [11,12], were they cryptanalyzed the reduced-round Threefish cipher, which is
part of the Skein hash function, a SHA-3 competition candidate [13]. Their attack covered
53 rounds of Skein-256 and 57 rounds of Skein-512. In the aforementioned paper [11],
the authors proved that for ARX primitives, under the assumption that the cipher can be
modeled as a Markov chain, the probability to have a rotational pair of inputs which will
produce a rotational pair at the output depends on the number of additions only. This claim
was corrected in [14], where the authors showed that chained modular additions used in
ARX ciphers do not always form a Markov chain with regards to rotational analysis. They
provided a precise value of the probability of such chains and they gave a new algorithm
for computing the rotational probability of ARX ciphers. Then, they used the algorithm to
correct (from 12 to 7 rounds) the rotational attacks on BLAKE2 [15] and to provide valid
rotational attacks against the simplified version of Skein. In 2013, rotational cryptanalysis
was also applied to distinguish four rounds of KECCAK permutation [16] in time 2221. A
crucial requirement for rotational cryptanalysis to work effectively is that all constants used
in the ARX primitive must preserve their values when rotated. This requirement can be
relaxed to some extent and instead of assuming completely rotational constants, one can
work with constants that are almost rotational, i.e., the XOR difference between the initial
constants and the rotated ones gives words of small Hamming weight. A different approach
was taken by Ashur and Liu in 2016 [17]. They presented a way to compute the rotational
probability when constants are injected into the state and applied their approach to Speck.
In particular, they exposed, in the related-key scenario, a trail suggesting that a weak key
class of size 239 exists, leading to a 7-round distinguisher for Speck64/32. The technique was
later automated in [18], through the use of SAT solvers. In [19], a rotational cryptanalysis
of the Salsa core function was presented, also finding rotational distinguishers for the
Salsa and Chacha permutations: the rotational distinguisher for the ChaCha permutation
performs properly only up to 8 rounds with a probability of approximately 2−489.6, while the
rotational distinguisher for the Salsa permutation performs properly up to 32 rounds with
a probability of approximately 2−506.752, clarifying the weakness of the Salsa core function
with respect to rotational cryptanalysis. Finally, in [20] the authors applied rotational
cryptanalysis to Chacha20 permutation without considering the injected constants in the
state of the permutation, showing that it does not behave as a random permutation for
up to 17 rounds, since the related probability is less than 2−505 for 17 rounds of ChaCha
permutation, while, for a random permutation of the same input size, this probability
is 2−511.

Our contribution. In this paper we study the applicability to the ChaCha20 stream
cipher quarter round function of the techniques due to Ashur and Liu [17], used for the
rotational cryptanalysis of Speck in the presence of constants. In order to do this, we first
consider the quarter round function Q of Chacha20, described in Section 2, determining
the conditions which guarantee that, starting from randomly and independently chosen
w-bit words, inputs x1, x2, x3 and a w-bit constant c0 giving the w–bit words y0, y1, y2, y3 as
output, i.e.,

(y0, y1, y2, y3) = Q(c0, x1, x2, x3),

we can find a characteristics of the type

((y0 ≪ r)⊕ a, (y1 ≪ r)⊕ b, (y2 ≪ r)⊕ c, (y3 ≪ r)⊕ d) = Q(c0, f1, f2, f3),
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for some input relations fi = fi(r, c0, x1, x2, x3), i = 1, 2, 3, where r is an integer less than the
word size w and a, b, c, d are w-bit strings. Then, we search for a suitable selection of a, b, c, d,
and key/nonce/counter relations, the above mentioned input relations fi, i = 1, 2, 3, such
that, fixing the rotational amount r = 1, we can precisely determine which input constants
c0 yield rotational-XOR pairs with high or low probability, in a related-key scenario. We
determine a formula to compute this probability as a function of c0 and we show that in
the case of the constants commonly used in ChaCha20 it is greater than 2−256, revealing the
non-randomness of the quarter round permutation. Moreover we investigate the value of
this probability for different constants than the ones injected in the ChaCha20 initial state,
determining for which of them it increases. While in [19,20] it was only considered the core
of ChaCha/Salsa, not the full stream cipher construction, to our knowledge, this is the first
attempt to apply rotational analysis to the Chacha20 stream cipher in order to distinguish
the behavior of the Chacha20 quarter round from a random permutation and to relate this
behaviour to the values of the constants used in Chacha20.

Outline of the paper. In Section 2, we introduce the notation and the essential prelim-
inaries, describing the ChaCha20 stream cipher and the fundamentals of rotational and
rotational-XOR cryptanalysis.

In Section 3 we present our analysis. In particular, in Section 3.1, we derive a set of
necessary and sufficient conditions which need to be satisfied for a rotational-XOR pair to
appear in the output of ChaCha20 quarter round, given that the first word of the input is
fixed to a constant value. In Section 3.2, we discuss a suitable choice of the input relations
fi, i = 1, 2, 3, and of the parameters a, b, c, d, allowing them to meet the above conditions.In
Section 3.3, under the previous choice we compute the probability that these conditions are
satisfied by a randomly and independently chosen set of inputs xi, i = 1, 2, 3, as a function
of the constant c0, i.e., the probability that rotational-XOR pairs (with rotational amount
r = 1) (y, (y ≪ 1)⊕ δ) appear as outputs of the quarter round. In Section 4 we discuss
and resume our results. In particular, in Section 4.1 we evaluate this probability for the
special constants commonly used in the ChaCha20 stream cipher. We show that, in our
scenario, rotational-XOR pairs can appear in ChaCha20 after one round with probability
around 2−251.7857 against the value of 2−256 for a random permutation. In Section 4.2 we
describe the form of some initial constants for which these pairs are very likely. Finally, in
Section 5 we give our conclusions.

2. Notation and ChaCha20 Stream Cipher Description

In this section, we first define our notation, then we describe the specifications of
the ChaCha20 stream cipher and we provide the basics of rotational and rotational-XOR
cryptanalysis.

2.1. Notation

Let F2 be the binary field with two elements, andMn×n(Fw
2 ) be the set of all n× n

matrices with elements in Fw
2 . Depending on the context, lowercase letters stand for w-bit

words or for the corresponding non-negative integers they represent, i.e.,

x = (x[w− 1], x[w− 2], . . . , x[1], x[0]) ∈ Fw
2 ,

x =
w−1

∑
i=0

x[i]2i ∈ N

where x[i] ∈ F2 for all i = 0, . . . ,w− 1. In the case of ChaCha20, we have n = 4 and w = 32.
With uppercase letters we indicate a n× n matrix of n2 words, i.e., X ∈ Mn×n(Fw

2 ).
We also use the following notation:

• ⊕ for the bitwise exclusive or (XOR), i.e., the addition in Fw
2 ;

• � for the w-bit addition mod 2w;
• � for the w-bit subtraction mod 2w, i.e., the sum mod 2w with the opposite of an

element in Fw
2 ;
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• �k
i=1xi for the w-bit addition mod 2w of k words x1, . . . , xk;

• x|y for the vector bitwise OR operation between x and y;
• x||y for the concatenation of x and y;
• SHL(x) for a non–cyclic left shift by one bit of x;
• (I ⊕ SHL)(x) = x⊕ SHL(x);
• ≪ r and≫ r respectively for constant-distance left and right circular rotation of r

bits of a w-bit word with 1 ≤ r ≤ w− 1;
• ||x|| for the Hamming weight of x;
• |I| for the cardinality of a set I;
• 1Z for the characteristic function of a condition Z, which is equal to 1 when Z is

satisfied and equal to 0 otherwise;
• 1 = (0, 0, . . . , 0, 1) ∈ Fw

2 ;
• x 4 y if and only if we have x[i] ≤ y[i] for all i = 0, . . . ,w− 1;
• x = Lh(x)||Rh(x), where, for 1 ≤ h ≤ w− 1,

Lh(x) = (x[w− 1], x[w− 2], . . . , x[w− h])

Rh(x) = (x[w− h− 1], x[w− h− 2], . . . , x[1], x[0])

and, considering x ∈ N,

x = lh(x)2w−h + rh(x), where lh(x) = ∑h−1
i=0 x[w− h + i]2i and rh(x) = ∑w−h−1

i=0 x[i]2i

with 0 ≤ lh(x) ≤ 2h − 1 and 0 ≤ rh(x) ≤ 2w−h − 1;
• b·ch for the operator which gives for any x ∈ N the integer bxch satisfying

0 ≤ bxch ≤ 2h−1 and bxch ≡ x mod 2h.

2.2. ChaCha20 Specification

The ChaCha20 permutation has a state of 512 bits, which can be seen as a 4× 4 matrix
whose elements are binary vectors of w = 32 bits, i.e.,

X = {xi,j}i=0,...,3
j=0,...,3

=


x0,0 x0,1 x0,2 x0,3
x1,0 x1,1 x1,2 x1,3
x2,0 x2,1 x2,2 x2,3
x3,0 x3,1 x3,2 x3,3

 ∈ Mn×n(Fw
2 ) .

The initial state of ChaCha20 is initialized by setting the first row to a 128-bit constant
value, the second and third row are used to store a 256-bit key, and the fourth row contains
a 64-bit nonce and a 64-bit counter.

Definition 1 (ChaCha20 quarter round). Let xi, yi, i = 0, 1, 2, 3 be w-bit words, and let
(y0, y1, y2, y3) = Q(x0, x1, x2, x3), where Q is the ChaCha20 quarter round, defined as follows:

b0 = x0 � x1 (1)

b3 = (b0 ⊕ x3)≪ r1

b2 = b3 � x2 (2)

b1 = (b2 ⊕ x1)≪ r2

y0 = b0 � b1

y3 = (y0 ⊕ b3)≪ r3

y2 = y3 � b2

y1 = (y2 ⊕ b1)≪ r4.

We show in Figure 1 a schematic drawing of the ChaCha20 quarter round. The
permutation used in the ChaCha20 stream cipher performs 20 rounds or, equivalently,
10 double rounds. Two consecutive rounds (or a double round) of the ChaCha20 permutation
consist in applying the quarter round four times in parallel to the columns of the state
(first round), and then four times in parallel to the diagonals of the state (second round).
More formally:



Symmetry 2022, 14, 1087 5 of 18

≪ r1

≪ r2

≪ r3

≪ r4

x0 x1 x2 x3

y0 y1 y2 y3

b0

b1

b2

b3

Figure 1. The ChaCha20 quarter round scheme.

Definition 2 (ChaCha20 column/diagonal round). Let X = {xi,j}i=0,...,3
j=0,...,3

, Y = {yi,j}i=0,...,3
j=0,...,3

be

two matrices inMn×n(Fw
2 ).

A column round Y = RC(X) is defined as follows, with i = 0, 1, 2, 3:

(y0,i, y1,i, y2,i, y3,i) = Q(x0,i, x1,i, x2,i, x3,i) .

A diagonal round Y = RD(X) is defined as follows, for i = 0, 1, 2, 3 and where each
subscript is computed modulo n = 4:

(y0,i, y1,i+1, y2,i+2, y3,i+3) = Q(x0,i, x1,i+1, x2,i+2, x3,i+3) .

2.3. Rotational and Rotational-XOR (RX) Cryptanalysis

Rotational cryptanalysis is essentially a distinguishing attack that exploits rotational
offsets with probability higher than the one for a random permutation. If we consider a
w–bit word x and a rotational offset r, we call (x, x≪ r) a rotational pair and we define the
rotational property as the property that an operation with the input of a rotational pair gives,
as output, another rotational pair. Let us denote with S an ARX scheme with q modular
additions. Rotational cryptanalysis is based on the following facts:

• The rotational property is preserved through the XOR of rotational pairs and after a
rotation by a constant value r′:

(x⊕ y)≪ r = (x≪ r)⊕ (y≪ r), (x≪ r)≫ r′ = (x≫ r′)≪ r;

• The rotational property is preserved through a modular addition of two w–bit words
with a probability given by

Dr := Pr[(x� y)≪ r = (x≪ r)� (y≪ r)] =
1
4
(1 + 2r−w + 2−r + 2−w),

and computed in Corollary 4.12 of [10], this probability is a decreasing function of r,
thus it is maximized when r = 1;

• In the case of chained modular additions of more than two w–bit strings, Dr must be
evaluated using Lemma 2 in [14];

• S(x≪ r) = S(x)≪ r with probability (Dr)q

• Given a random function P : Fw
2 → Fw

2 , P(x≪ r) = P(x)≪ r with probability 2−w
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Thus, we can detect non-randomness in the ARX scheme S if (Dr)q > 2−w. For
example, when r = 1, an ARX scheme implemented with q not chained additions is
vulnerable to rotational cryptanalysis if q < w/1.415.

Rotational-XOR cryptanalysis is also a distinguishing attack, firstly introduced in [17]
where it was applied to SPECK. This attack studies the propagation of a rotational-XOR pair
(RX–pair), i.e., a couple (x, (x≪ r)⊕ α) having RX–difference α. Clearly RX cryptanalysis
is a generalization of rotational cryptanalysis, since they coincide when α = 0. Moreover
for RX–pairs (x, (x≪ r)⊕ α) and (y, (y≪ r)⊕ β) we have

• ((x⊕ y)≪ r)⊕ (α⊕ β) = ((x≪ r)⊕ α)⊕ ((y≪ r)⊕ β);
• ((x≪ r)⊕ α)≫ r′ = ((x≫ r′)≪ r)⊕ (α≫ r′) for a fixed rotational amount r′.

The propagation of RX–differences through modular addition when r = 1 can be
computed using the following theorem proved in [17], whose statement has been adapted
to our notation

Theorem 1 (Ashur-Liu [17]). Let x, y ∈ Fw
2 be independent random variables. Let the following

a1, b1, a2, b2, ∆1, ∆2 be constants in Fw
2 . Then the probability

Pr[(((x⊕ a1)� (y⊕ b1))⊕ ∆1)≪ r = (((x≪ r)⊕ a2)� ((y≪ r)⊕ b2))⊕ ∆2] (3)

when r = 1 and w is sufficiently large is equal to

1{(a⊕1)4b}2
−||b|| · p1 + 1{a4b} · 2−||b|| · p2,

where
a = (I ⊕ SHL)(δ1 ⊕ δ2 ⊕ δ3), b = SHL((δ1 ⊕ δ3)|(δ2 ⊕ δ3)), (4)

δ1 = R1(a1)⊕ Lw−1(a2), δ2 = R1(b1)⊕ Lw−1(b2), δ3 = R1(∆1)⊕ Lw−1(∆2), (5)

and p1 = 2−3, p2 = 3 · 2−3 ' 2−1.415.

3. Searching for Rotational/RX Pairs in ChaCha20

The aim of this section is to consider the ChaCha20 stream cipher, in which the first
row in its initial state has constant entries, giving general conditions on the propagation
of rotational/RX–pairs that we simply call rotational propagation. Moreover, by a suitable
choice of inputs and parameters, we find a special case in which the rotational propagation
can have a non-negligible probability depending on a certain family of these constants.

3.1. Conditions for the Rotational Propagation

Recalling that the first row of the ChaCha20 4× 4 matrix has constant entries, the
following proposition holds

Proposition 1. Let us consider the ChaCha20 quarter round Q, c0 a constant w–bit string and the
rotational amount r with 1 ≤ r ≤ w− 1. If we have

Q(c0, x1, x2, x3) = (y0, y1, y2, y3)

and we consider the w–bit strings a, b, c, d and the entries fi = fi(r, c0, x1, x2, x3), i = 1, 2, 3, then

((y0 ≪ r)⊕ a, (y1 ≪ r)⊕ b, (y2 ≪ r)⊕ c, (y3 ≪ r)⊕ d) = Q(c0, f1, f2, f3)

⇐⇒
((c0 � x1)≪ r)⊕ (x3 ≪ r)⊕ (a≫ r1)⊕ (d≫ (r1 + r3)) = (c0 � f1)⊕ f3

((b3 � x2)≪ r)⊕ (x1 ≪ r)⊕ (c≫ r2)⊕ (b≫ (r2 + r4)) = (((b3 ≪ r)⊕ a⊕ (d≫ r3))� f2)⊕ f1

(c0 � f1)� ((b1 ≪ r)⊕ c⊕ (b≫ r4)) = ((c0 � x1 � b1)≪ r)⊕ a

((y3 ≪ r)⊕ d)� ((b3 ≪ r)⊕ a⊕ (d≫ r3))� f2 = ((y3 � b3 � x2)≪ r)⊕ c .

We call input relations the functions fi = fi(r, c0, x1, x2, x3), i = 1, 2, 3.
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Proof. If we use the input (c0, f1, f2, f3) instead of the input (c0, x1, x2, x3), we find

b̃0 = c0 � f1 (6)

b̃3 =
(

b̃0 ⊕ f3

)
≪ r1 (7)

b̃2 = b̃3 � f2 (8)

b̃1 =
(

b̃2 ⊕ f1

)
≪ r2 (9)

ỹ0 = b̃0 � b̃1

ỹ3 =
(

ỹ0 ⊕ b̃3

)
≪ r3

ỹ2 = ỹ3 � b̃2

ỹ1 =
(

ỹ2 ⊕ b̃1

)
≪ r4.

We have to satisfy the following conditions

ỹ0 = (y0 ≪ r)⊕ a⇐⇒ b̃0 � b̃1 = ((b0 � b1)≪ r)⊕ a (10)

ỹ3 = (y3 ≪ r)⊕ d⇐⇒
(

ỹ0 ⊕ b̃3

)
≪ r3 = (((y0 ⊕ b3)≪ r3)≪ r)⊕ d (11)

ỹ2 = (y2 ≪ r)⊕ c⇐⇒ ỹ3 � b̃2 = ((y3 � b2)≪ r)⊕ c (12)

ỹ1 = (y1 ≪ r)⊕ b⇐⇒
(

ỹ2 ⊕ b̃1

)
≪ r4 = (((y2 ⊕ b1)≪ r4)≪ r)⊕ b (13)

where (11) and (13) easily give

b̃3 = (b3 ≪ r)⊕ a⊕ (d≫ r3) (14)

from conditions ỹ0 = (y0 ≪ r)⊕ a and

b̃1 = (b1 ≪ r)⊕ c⊕ (b≫ r4), (15)

since we have the condition ỹ2 = (y2 ≪ r)⊕ c. Now from (14) and (7) we find

b̃0 ⊕ f3 = (b0 ≪ r)⊕ (x3 ≪ r)⊕ (a≫ r1)⊕ (d≫ (r1 + r3)) (16)

and from (15) and (9) we have

b̃2 ⊕ f1 = (b2 ≪ r)⊕ (x1 ≪ r)⊕ (c≫ r2)⊕ (b≫ (r2 + r4)) (17)

Thus, the four conditions we need to satisfy are (16), (17), (10) and (12). If in (16)
we substitute (6) and we take in account (1) in Definition 1, we find the first condition of
our thesis

((c0 � x1)≪ r)⊕ (x3 ≪ r)⊕ (a≫ r1)⊕ (d≫ (r1 + r3)) = (c0 � f1)⊕ f3.

If we substitute (8), (14) and (2) in (17) we find the second condition of our thesis

((b3 � x2)≪ r)⊕ (x1 ≪ r)⊕ (c≫ r2)⊕ (b≫ (r2 + r4)) =

= (((b3 ≪ r)⊕ a⊕ (d≫ r3))� f2)⊕ f1.

Moreover, if we substitute (6), (15) and (1) in (10), we obtain the third condition of
our thesis

(c0 � f1)� ((b1 ≪ r)⊕ c⊕ (b≫ r4)) = ((c0 � x1 � b1)≪ r)⊕ a.

Finally if we substitute (11), (8), (14) and (2) in (12) we have the last condition of
our thesis

((y3 ≪ r)⊕ d)� ((b3 ≪ r)⊕ a⊕ (d≫ r3))� f2 = ((y3 � b3 � x2)≪ r)⊕ c.
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3.2. On the Choices of the Input Relations and of a, b, c, d

One can consider many different choices for the values of fi and a, b, c, d in order to
satisfy the conditions of Proposition 1. Our intention is to set these values in order to obtain
simplified conditions which can be satisfied with a non-negligible probability depending
on the values given to c0. Considering Equations (14) and (15), a first simplification we
apply is to choose a, b, c and d such that

a⊕ (d≫ r3) = 0, c⊕ (b≫ r4) = 0. (18)

With this setting the conditions of Proposition 1 become

(c0 � f1)⊕ f3 = ((c0 � x1)≪ r)⊕ (x3 ≪ r) (19)

((b3 ≪ r)� f2)⊕ f1 = ((b3 � x2)≪ r)⊕ (x1 ≪ r) (20)

(c0 � f1)� (b1 ≪ r) = ((c0 � x1 � b1)≪ r)⊕ a (21)

((y3 ≪ r)⊕ d)� (b3 ≪ r)� f2 = ((y3 � b3 � x2)≪ r)⊕ c, (22)

and we have (21) and (22) satisfied when

a = [(c0 � f1)� (b1 ≪ r)]⊕ [(c0 � x1 � b1)≪ r]

c = [((y3 ≪ r)⊕ d)� (b3 ≪ r)� f2]⊕ [(y3 � b3 � x2)≪ r].
(23)

Regarding the input relations, we consider expressions of the kind fi = fi(xi, c0, r),
which seem reasonable choices once we look to the remaining conditions (19) and (20).
Indeed we may select f3 and f2 as

f3 = x3 ≪ r, f2 = x2 ≪ r, (24)

in order to simplify (19) and to give an expression for (20) very similar to the condition of
rotational propagation through modular addition, obtaining

(c0 � f1) = (c0 � x1)≪ r (25)

((b3 ≪ r)� (x2 ≪ r))⊕ f1 = ((b3 � x2)≪ r)⊕ (x1 ≪ r). (26)

Now we have to think about f1 and, consequently, about how to manage condi-
tions (25) and (26). Clearly a possibility is to choose f1 = x1 ≪ r in order to reduce (26)
exactly to the condition for the rotational propagation through modular addition

(b3 ≪ r)� (x2 ≪ r) = (b3 � x2)≪ r. (27)

In this case (25) becomes

(c0 � x1)≪ r = c0 � (x1 ≪ r), (28)

which holds for some x1 only under particular conditions on c0. These conditions turn out
to be too restrictive for our purposes. At the end of this subsection, we will prove them in
Proposition 2, explaining why they give rise to a small number of possible choices for c0 in
order to obtain nonzero probability for (25). This part can be skipped over by the reader
without problems. Therefore we may choose f1 as something different from x1 ≪ r and
consequently we may consider (26) as a condition of the form

(b3 ≪ r)� (x2 ≪ r) = ((b3 � x2)⊕ σ(x1, c0, r))≪ r (29)

where σ in general is not a constant, since it depends on x1. But we may combine the law
of total probability with the Ashur-Liu Theorem 1 in [17] in order to find a probability
estimate for (29) in the case r = 1. So a good choice is to consider the case r = 1 and use (25)
in order to define f1 as we will do in the next subsection.
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Proposition 2. If we consider

c0 = lr(c0)2w−r + rr(c0),

c0 ≫ r = lr(c0 ≫ r)2w−r + rr(c0 ≫ r),

x1 = lr(x1)2w−r + rr(x1),

(30)

and
γL = 1{lr(c0≫r)+lr(x1)≥2r}, γR = 1{rr(c0)+rr(x1)≥2w−r}

then condition (28) holds if and only if we have

rr(c0) = brr(c0 ≫ r) + γLcw−r, lr(c0 ≫ r) = blr(c0) + γRcr (31)

or, in other words, if and only if

c0 � (c0 ≫ r) =
⌊
(−γR)2w−r + γL

⌋
w.

Proof. The proof is quite straightforward, since from (30) we have

c0 = (c0 ≫ r)≪ r = rr(c0 ≫ r)2r + lr(c0 ≫ r), x1 ≪ r = rr(x1)2r + lr(x1)

thus

c0 � (x1 ≪ r) = brr(c0 ≫ r) + rr(x1) + γLcw−r2
r + blr(c0 ≫ r) + lr(x1)cr (32)

and, since

c0 � x1 = blr(c0) + lr(x1) + γRcr2
w−r + brr(x1) + rr(c0)cw−r,

we obtain

(c0 � x1)≪ r = brr(x1) + rr(c0)cw−r2
r + blr(c0) + lr(x1) + γRcr. (33)

Therefore comparing (32) and (33) we find (31).

Following this choice, with arguments similar to the ones used by Daum in [10], we
may evaluate some probability different from zero for condition (28) only when one of the
following conditions is satisfied

• c0 � (c0 ≫ r) = 2w − 2w−r + 1, i.e., γL = γR = 1, which is equivalent to the equation

(lr(c0 ≫ r)− 1)(2w−r − 1) = rr(c0 ≫ r)(2r − 1)

and it gives 2gcd(w,r) − 1 possible values for c0;
• c0 � (c0 ≫ r) = 1, i.e., γL = 1, γR = 0, which is equivalent to the equation

rr(c0 ≫ r)(2r − 1)− lr(c0 ≫ r)(2w−r − 1) = 1

and it gives one value for c0 only when gcd(w, r) = 1 and otherwise it is impossible;
• c0 � (c0 ≫ r) = 0, i.e., γL = γR = 0, which is equivalent to the equation

lr(c0 ≫ r)(2w−r − 1) = rr(c0 ≫ r)(2r − 1)

and it gives 2gcd(w,r) possible values for c0;
• c0 � (c0 ≫ r) = 2w − 2w−r, i.e., γL = 0, γR = 1, which is equivalent to the equation

(lr(c0 ≫ r)− 1)(2w−r − 1)− rr(c0)(2r − 1) = 1

and it gives one value for c0 only when gcd(w, r) = 1 and otherwise it is impossible.
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The strong dependence from gcd(w, r) of the possible values of c0 for which (25) holds
for some x1 seems too limiting for our purposes. For example, when gcd(w, r) = 1 we
have only two suitable values for c0 from the third case and only a single value from the
remaining ones.

3.3. Probability of Rotational Propagation for 1 Bit Rotations

From what we have previously pointed out, we will consider from now on r = 1 with
the choices (24), (35) and (29), where

σ(x1, c0, 1) = ( f1 ≫ 1)⊕ x1. (34)

and we use condition (25) in order to define f1

c0 � f1 = (c0 � x1)≪ 1 ⇒ f1(x1, c0, 1) = ((c0 � x1)≪ 1)� c0 (35)

This definition of f1 seems reasonable since we can simultaneously have (25) auto-
matically satisfied and a better range of possible values for σ(x1, c0, 1) that may give a
non-negligible probability for condition (26).

We will follow this path: first we will prove the following Corollary 1 of Theorem 1,
then we will use it together with the law of total probability in order to find a formula for
the probability of (29) depending on c0 and in particular on the cardinalities of some sets
related to c0. Finally, we will evaluate these cardinalities in Lemma 1 and we will give in
Theorem 2 the value of this probability making explicit its dependence on c0.

Corollary 1. Let x, y ∈ Fw
2 be independent random variables, r = 1 and

σ = L1(σ)||R1(σ) = σ[w− 1]||(σ[w− 2], σ[w− 3], . . . , σ[1], σ[0])

a constant word in Fw
2 . If j, 0 ≤ j ≤ w− 1, is the index of the first bit equal to 0 in R1(σ) starting

from the right to the left, with the convention that j = w− 1 only when R1(σ) has all the entries
equal to 1, then

Pr[((x� y)⊕ σ)≪ 1 = (x≪ 1)� (y≪ 1)] = P(σ), (36)

where

P(σ) =


p2 if j = 0 and σ[i] = 0 for all i = 0, . . .w− 2
2−j p1 if j = w− 1 or, if j ≥ 1, σ[i] = 0 for all i = j + 1, . . . ,w− 2
0 otherwise.

(37)

Proof. We observe that (36) is a special case of (3) when a1 = a2 = b1 = b2 = ∆2 = 0,
σ = ∆1. Thus from (5) we find δ1 = δ2 = 0 and δ3 = R1(σ). Therefore

δ1 ⊕ δ2 ⊕ δ3 = R1(σ) (δ1 ⊕ δ3)|(δ2 ⊕ δ3) = (δ3|δ3) = δ3 = R1(σ)

b = SHL(R1(σ)) = (σ[w− 3], σ[w− 4], . . . , σ[1], σ[0], 0) (38)

and

a = (I ⊕ SHL)(δ1 ⊕ δ2 ⊕ δ3) = (I ⊕ SHL)(R1(σ)) = R1(σ)⊕ SHL(R1(σ)) =

= (σ[w− 2]⊕ σ[w− 3], . . . , σ[h + 1]⊕ σ[h], . . . , σ[1]⊕ σ[0], σ[0])
(39)

a⊕ 1 = (σ[w− 2]⊕ σ[w− 3], . . . , σ[h + 1]⊕ σ[h], . . . , σ[1]⊕ σ[0], σ[0]⊕ 1). (40)

We obtain 1{(a⊕1)4b} = 1 if and only if we have

σ[0]⊕ 1 ≤ 0⇒ σ[0] = 1
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and, for all 0 ≤ h ≤ w− 3,
σ[h + 1]⊕ σ[h] ≤ σ[h]. (41)

Clearly, condition (41) holds when all the bits σ[h] are equal to 1 for any σ[h + 1] ∈ F2,
while, if σ[j], j ≥ 1, is the first bit equal to 0 in R1(σ) starting from the right to the
left, condition (41) holds for h ≥ j if and only if σ[h + 1] = 0. Thus in order to have
1{(a⊕1)4b} = 1, we need R1(σ) such that ||R1(σ)|| = j ≤ w− 2, where all the first j bits
from σ[0] to σ[j− 1] are equal to 1 and the remaining ones from σ[j] to σ[w− 2] are equal to
0, or ||R1(σ)|| = w− 1, i.e., all the bits of R1(σ) are equal to 1. In these cases we find from
Theorem 1 that P(σ) = 2−j p1. On the other hand 1{a4b} is equal to 1 if and only if we have

σ[0] ≤ 0⇒ σ[0] = 0

and for all 0 ≤ h ≤ w− 3 condition (41) holds. Since σ[h] = 0 in (41) implies σ[h + 1] = 0
and we have σ[0] = 0, an easy inductive argument shows that all the bits of R1(σ) must
be equal to 0 in order to have 1{a4b} = 1. Thus ||R1(σ)|| = 0 and we find from Theorem 1
P(σ) = p2. We finally observe that the two characteristic functions 1{(a⊕1)4b} and 1{a4b}
can not be contemporarily equal to 1, and they are contemporarily equal to 0, with P(σ) = 0,
for any other value of R1(σ) different from the ones we have pointed out.

Thanks to the law of total probability, since for a fixed v we may assume σ(v, c0, 1) as
a constant while b3 and x2 are independent variables, we find

Pr[((b3 � x2)⊕ σ(x1, c0, 1))≪ 1 = (b3 ≪ 1)� (x2 ≪ 1)] =

= ∑
v∈Fw

2

Pr[x1 = v] · Pr[((b3 � x2)⊕ σ(x1, c0, 1))≪ 1 = (b3 ≪ 1)� (x2 ≪ 1)|x1 = v] =

=
1

2w ∑
v∈Fw

2

Pr[((b3 � x2)⊕ σ(v, c0, 1))≪ 1 = (b3 ≪ 1)� (x2 ≪ 1)] =

=
1

2w ∑
v∈Fw

2

P(σ(v, c0, 1)) = P(c0),

where we used the fact that x1 is uniformly distributed, so Pr[x1 = v] = 1
2w . In order to

explicitly evaluate P(c0) applying the results of Corollary 1, we now define sets of w–bit
words having a special form and, in the next Lemma 1, we will find their cardinalities,
depending on c0.

Definition 3. Let us consider the vectors u(δ, h) ∈ Fw
2 such that

u(δ, h) = (δ, 0, 0, 0, . . . , 0︸ ︷︷ ︸
w−1−h–zeros

, 1, 1, 1, . . . , 1︸ ︷︷ ︸)
h–ones

where h = 0, 1, . . .w− 1, δ ∈ F2 (42)

We define the sets Ih as

Ih = {v ∈ Fw
2 : σ(v, c0, 1) = u(δ, h), δ ∈ F2}. (43)

Therefore, from Corollary 1 we have the following explicit expression for P(c0)

P(c0) =
1

2w ∑
v∈Fw

2

P(σ(v, c0, 1)) =
1

2w

(
|I0|p2 + p1

w−1

∑
h=1
|Ih| · 2−h

)
=

=
1

2w+3

(
3|I0|+

w−1

∑
h=1
|Ih| · 2−h

)
,

(44)

where, for h = 0, . . . ,w− 1, we evaluate the cardinalities |Ih| in the following lemma.
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Lemma 1. Let us consider σ and f1 respectively defined as in (34) and (35). Then we have

|I0| =



2w−1 if c0 = (0, 0, 0, . . . , 0︸ ︷︷ ︸
w−1–zeros

, 1) or c0 = (1, 1, 1, 1, . . . , 1︸ ︷︷ ︸)
w–ones

2w if c0 = (0, 0, 0, 0, . . . , 0︸ ︷︷ ︸)
w–zeros

0 otherwise

(45)

and

|Ih| =



2 if h = w− 1, w− 2 and c0[0] = 1
2w−1−h if 1 ≤ h ≤ w− 3, c0[0] = 1

and c0[i] = j ∈ F2 for all i = h + 1, . . . ,w− 1
4 if h = w− 1, w− 2 and c0[0] = 0, c0[1] = 1
2w−h if 1 ≤ h ≤ w− 3, c0[0] = 0, c0[1] = 1

and c0[i] = j ∈ F2 for all i = h + 1, . . . ,w− 1
0 otherwise.

Proof. First of all, we recall that v ∈ Ih if and only if

σ(v, c0, 1) = ( f1(v, c0, 1)≫ 1)⊕ v = u(δ, h)

or, equivalently, if and only if

f1(v, c0, 1) = (u(δ, h)⊕ v)≪ 1

and if we use (35) we finally have the condition

v ∈ Ih ⇐⇒ (c0 � v)≪ 1 = ((u(δ, h)⊕ v)≪ 1)� c0. (46)

If we consider

c0 = l1(c0)2w−1 + r1(c0) = c0[w− 1]2w−1 +
w−2

∑
i=0

c0[i]2i,

v = l1(v)2w−1 + r1(v) = v[w− 1]2w−1 +
w−2

∑
i=0

v[i]2i,

(47)

we find

(c0 � v)≪ 1 = br1(c0) + r1(v)cw−1 · 2 + bc0[w− 1] + v[w− 1] + γRc1, (48)

where γR = 1{r1(c0)+r1(v)≥2w−1}. On the other hand, we have

(u(δ, h)⊕ v)≪ 1 = (v[w− 2]⊕ u[w− 2], v[w− 3]⊕ u[w− 3], . . . , v[0]⊕ u[0], v[w− 1]⊕ δ)

and, since

c0 = 2

(
c0[w− 1]2w−2 +

1
2

w−2

∑
i=1

c0[i]2i

)
+ c0[0] = 2

(
c0[w− 1]2w−2 +

r1(c0)− c0[0]
2

)
+ c0[0],

u(δ, h)⊕ v = l1((u(δ, h)⊕ v))2w−1 + r1((u(δ, h)⊕ v),
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where l1((u(δ, h)⊕ v) = v[w− 1]⊕ δ, and by Definition 3

v = r1((u(δ, h)⊕ v) =
w−2

∑
i=0

(v[i]⊕ u[i])2i =

=
w−2

∑
i=h

(v[i]⊕ u[i])2i +
h−1

∑
i=0

(v[i]⊕ u[i])2i =

=
w−2

∑
i=h

v[i]2i +
h−1

∑
i=0

(v[i]⊕ 1)2i,

(49)

we obtain

((u(δ, h)⊕ v)≪ 1)� c0 =

=

⌊
c0[w− 1]2w−2 +

r1(c0)− c0[0]
2

+ v + γL

⌋
w−1
· 2 + bc0[0] + (v[w− 1]⊕ δ)c1,

(50)

where γL = 1{c0[0]+(v[w−1]⊕δ)≥2}.
Therefore, comparing (48) and (50), we find that condition (46) is equivalent to the

system of congruencesr1(c0) + r1(v) ≡ c0[w− 1]2w−2 +
r1(c0)− c0[0]

2
+ v + γL mod 2w−1

c0[w− 1] + v[w− 1] + γR ≡ c0[0] + (v[w− 1]⊕ δ) mod 2,
(51)

where, using (47) and (49), and observing that

h−1

∑
i=0

(v[i] + (v[i]⊕ 1))2i =
h−1

∑
i=0

2i = 2h − 1,
r1(c0) + c0[0]

2
=

w−3

∑
i=0

c0[i + 1]2i + c0[0],

we can rewrite the first congruence of (51) as

w−3

∑
i=0

c0[i + 1]2i + c0[0] + 2h − 1 ≡ c0[w− 1]2w−2 + 2
h−1

∑
i=0

(v[i]⊕ 1)2i + γL mod 2w−1. (52)

Now, in solving (52) we have to consider the following cases.

• c0[0] = 1, h ≥ 1 : in this case when h = w− 1 congruence (52) becomes

w−3

∑
i=1

c0[i + 1]2i + c0[1] ≡

≡c0[w− 1]2w−2 +
w−3

∑
i=1

(v[i− 1]⊕ 1)2i + (v[w− 3]⊕ 1)2w−2 + γL mod 2w−1.

Comparing the two members it clearly holds if and only if

v[i− 1] = c0[i + 1]⊕ 1, i = 1, . . . ,w− 2, and c0[1] = γL (53)

and, by definition of γL, the second congruence in (51) holds if{
v[w− 1] ≡ c0[w− 1] + γR mod 2 and, if γL = 1 δ = v[w− 1]⊕ 1
v[w− 1] ≡ c0[w− 1] + γR + 1 mod 2 and, if γL = 0 δ = v[w− 1]

(54)

where γR is fixed by (53) and by the free choice of v[w− 2]. Therefore we always have
only 2 solutions when h = w− 1. When h = w− 2 congruence (52) becomes
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w−3

∑
i=1

c0[i + 1]2i + c0[1] + 2w−2 ≡

≡c0[w− 1]2w−2 +
w−3

∑
i=1

(v[i− 1]⊕ 1)2i + (v[w− 3]⊕ 1)2w−2 + γL mod 2w−1

giving v[w− 3] = [(1 + c0[w− 1]) mod 2]⊕ 1 and conditions similar to (53)

v[i− 1] = c0[i + 1]⊕ 1, i = 1, . . . ,w− 3, and c0[1] = γL

and the same conditions (54) for congruence (51). Thus also when h = w− 2 we find
that we do not have conditions on v[w − 2] and we always have only 2 solutions.
Finally if 1 ≤ h ≤ w− 3 both members of the congruence (52) are less than 2w−1 and
they have the same parity if and only if c0[1] = γL. Moreover, we have

2w−2 − 2h+1 =
w−3

∑
i=h+1

2i ≥
w−3

∑
i=h+1

c0[i + 1]2i,

where the equality holds if and only if c0[i + 1] = 1 for all i = h + 1, . . . ,w− 3, and

h−1

∑
i=1

c0[i + 1]2i ≤ 2h − 2,
h−1

∑
i=1

(v[i− 1]⊕ 1)2i ≤ 2h − 2,

where the equalities hold if c0[i + 1] = (v[h− 1]⊕ 1) = 1 for all i = 1, . . . , h− 1. Thus
we find

w−3

∑
i=h+1

c0[i + 1]2i + (c0[h + 1] + 1)2h +
h−1

∑
i=1

c0[i + 1]2i =

= c0[w− 1]2w−2 + (v[h− 1]⊕ 1)2h +
h−1

∑
i=1

(v[i− 1]⊕ 1)2i,

which gives v[i− 1] = c0[i + 1]⊕ 1 for all i = 1, . . . , h− 1 and, if c0[w− 1] = j ∈ F2, we
need c0[i + 1] = j for all i = h + 1, . . . ,w− 3 and v[h− 1] = j. Therefore we have solu-
tions only when the constant c0 is such that c0[i] = j ∈ F2 for all i = h + 1, . . . ,w− 1
and, since also in these cases the same conditions (54) for congruence (51) hold, we
have v[i] free for all i = h, h + 1, . . . ,w− 2 and 2w−1−h possible solutions.

• c0[0] = 0, h ≥ 1: in this case we necessarily have γL = 0 and v[w− 1]⊕ δ ∈ F2 since
γL = 1 only when c0[0] = v[w− 1]⊕ δ = 1, thus (52) becomes

w−3

∑
i=1

c0[i + 1]2i + c0[1] + 2h − 1 ≡ c0[w− 1]2w−2 + 2
h−1

∑
i=0

(v[i]⊕ 1)2i mod 2w−1 (55)

and we have solutions only when c0[1] = 1, in order to preserve the same parity for
both members. Under this supplementary condition, congruence (55) is equivalent to

w−3

∑
i=1

c0[i + 1]2i + 2h ≡ c0[w− 1]2w−2 + 2
h−1

∑
i=0

(v[i]⊕ 1)2i mod 2w−1, (56)

moreover in this case the second congruence in (51) gives

v[w− 1] ≡ c0[w− 1] + γR mod 2 and δ = v[w− 1]
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or
v[w− 1] ≡ c0[w− 1] + γR + 1 mod 2 and δ = v[w− 1]⊕ 1,

i.e., for every solution of (56) we have also two possibilities for v[w− 1]. Thus, since
(56) can be solved as in the previous case distinguishing between h = w − 1, h =
w− 2, and 1 ≤ h ≤ w− 3, the number of solutions is doubled. So, if c0[1] = 1 and
h = w− 1,w− 2, we find 4 solutions, while, if 1 ≤ h ≤ w− 3 and c0[i] = j ∈ F2 for all
i = h + 1, . . . ,w− 1, we have 2w−h solutions.

• h = 0: in this last case we have v = r1(v) in the first congruence in (51) so this
congruence becomes the equality

w−3

∑
i=0

c0[i + 1]2i + c0[0] = c0[w− 1]2w−2 + γL.

Since
w−3

∑
i=0

c0[i + 1]2i ≤ 2w−2 − 1, (57)

if c0[0] = 0 we have solutions only when c0[i] = 0 for all i = 1, . . . ,w− 1 and γL = 0,
with the two possibilities for v[w− 1] given by

v[w− 1] ≡ γR mod 2 and δ = v[w− 1]

or
v[w− 1] ≡ γR + 1 mod 2 and δ = v[w− 1]⊕ 1,

so all v ∈ Fw
2 are solutions. On the other hand, if c0[0] = 1 and c0[w− 1] = 1, from (57)

we also need c0[i] = 1 for all i = 1, . . . ,w− 2 and γL = 0, therefore δ = v[w− 1] and
v[w− 1] ≡ γR mod 2. Thus only v[w− 1] is fixed and we have 2w−1 solutions. Finally,
when c0[0] = 1 and c0[w− 1] = 0 we also need c0[i] = 0 for all i = 1, . . . ,w− 2 and
γL = 1. Therefore δ = v[w− 1]⊕ 1 and v[w− 1] ≡ γR mod 2, thus also in this case
we have only v[w− 1] fixed and, consequently, there are 2w−1 solutions.

Thanks to Lemma 1 and to (44), we have nonzero probabilities only if c0 satisfies one
of the following conditions

• c0[0] = 1,
• c0[0] = 0 and c0[1] = 1,
• c0[i] = 0, i = 0, . . . ,w− 1, i.e., c0 is the zero vector in Fw

2 ,

or, in other words, there are 3 · 2w−2 + 1 possible choices of c0 which are about 3
4 of all the

possible constants.
In the following theorem we give the exact values of P(c0) excluding the only three

trivial values of c0 for which |I0| 6= 0.

Theorem 2. Let us consider c0 such that c0[i] = j ∈ F2 for all i = t + 1, . . . ,w − 2 with
1 ≤ t ≤ w− 3 and c0 different from (0, 0, 0, . . . , 0︸ ︷︷ ︸

w−1–zeros

, 1), (1, 1, 1, 1, . . . , 1︸ ︷︷ ︸)
w–ones

, (0, 0, 0, 0, . . . , 0︸ ︷︷ ︸)
w–zeros

. Then

we have

P(c0) =


9 + 8 · δc0[w−1],c0[w−2] ·

(
22(w−2−t) − 1

)
3 · 22w+1 if c0[0] = 1

9 + 8 · δc0[w−1],c0[w−2] ·
(

22(w−2−t) − 1
)

3 · 22w if c0[0] = 0, c0[1] = 1,

(58)
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where

δc0[w−1],c0[w−2] =

{
1 if c0[w− 1] = c0[w− 2]
0 if c0[w− 1] 6= c0[w− 2].

Proof. With our choices of c0 and from the results of Lemma 1, we have |Ih| = 0 for
h = 0, 1, . . . , t − 1, |Ih| 6= 0 for h = t, . . . ,w − 3 if c0[w − 1] = c0[w − 2], and |Ih| 6= 0 if
h = w− 1,w− 2. Thus, from (44) we obtain

P(c0) =
1

2w+3

(
|Iw−1|2−(w−1) + |Iw−2|2−(w−2) + δc0[w−1],c0[w−2]

w−3

∑
h=t
|Ih| · 2−h

)
.

If c0[0] = 1 from the results of Lemma 1 we find

P(c0) =
1

2w+3

(
2−(w−2) + 2−(w−3) + δc0[w−1],c0[w−2]2

w−1
w−3

∑
h=t

2−2h

)

and, since

2w−1
w−3

∑
h=t

2−2h =
4 ·
(

22(w−2−t) − 1
)

3 · 2w−3 ,

an easy calculation gives

P(c0) =
9 + 8 · δc0[w−1],c0[w−2] ·

(
22(w−2−t) − 1

)
3 · 22w+1 .

The case c0[0] = 0 and c0[1] = 1 is straightforward, since all the non-zero cardinalities
of the sets |Ih| are doubled.

4. Discussion

We first resume our results: with the choices (18), (23), (24) and (35)

• conditions (21) and (22) hold automatically from (23);
• condition (25) holds automatically from (35);
• condition (26), for w sufficiently large, holds with probability P(c0) given by (44) and

explicitly by (58), under the assumption of independence and uniform distribution for
x1, x2 and b3.

Therefore when r = 1 and w is sufficiently large, if c0 satisfies the hypotheses of
Theorem 2 and following our choices for f1, f2, f3, a, b, c and d, with the aforementioned
assumptions of independence and uniform distribution for x1, x2 and b3, the equality

((y0 ≪ 1)⊕ a, (y1 ≪ 1)⊕ b, (y2 ≪ 1)⊕ c, (y3 ≪ 1)⊕ d) = Q(c0, f1, f2, f3)

holds with probability P(c0) given by (58).

4.1. Propagation Probability of Rotational-XOR Pairs through ChaCha20 Quarter Round

If we consider the four constants used in the ChaCha20 definition, they all satisfy
c0[0] = 1, thus we have

• [expa] = 01100101011110000111000001100001 and δc0[w−1],c0[w−2] = 0, so P(c0) =
3

22w+1 , which gives P(c0) = 3 · 2−65 when w = 32;
• [nd 3] = 01101110011001000010000000110011 and δc0[w−1],c0[w−2] = 0 with P(c0) as

before;
• [2-by] = 00110010001011010110001001111001 and δc0[w−1],c0[w−2] = 1, t = w− 3, so

P(c0) =
11

22w+1 , which gives P(c0) = 11 · 2−65 when w = 32;



Symmetry 2022, 14, 1087 17 of 18

• [te k] = 01110100011001010010000001101011 and δc0[w−1],c0[w−2] = 0 with P(c0) as for
the first two constants.

A simple calculation shows that the probability of rotational propagation related to
the 4 columns of the initial state of ChaCha20 is 297 · 2−260 ' 2−251.7857 which is greater
than 2−32·8 = 2−256.

4.2. ChaCha20 Alternative Constants Giving Non-Negligible Probability

In our scenario, this probability increases for some selections of alternative constants
and may represent a weakness for variants of ChaCha20 against rotational attacks. From
Theorem 2 we observe that P(c0) has always a higher value when c0[w− 1] = c0[w− 2]. In
this case we find

P(c0) =


22w−2t−1 + 1

3 · 22w+1 if c0[0] = 1

22w−2t−1 + 1
3 · 22w if c0[0] = 0, c0[1] = 1,

(59)

both of them are greater than 2−2w for all the possible values of t ∈ {1, 2, . . . ,w− 3} and
increase their value when t decreases. Thus, constants c0 satisfying the hypotheses of
Theorem 2 and giving a rotational propagation probability for the quarter round greater
than 2−64 when w = 32 have one of the two following forms

c0 =



( j, j, . . . , j,︸ ︷︷ ︸
≥2 equal bits

c0[t], c0[t− 1], . . . , c0[2], c0[1], 1)

( j, j, . . . , j,︸ ︷︷ ︸
≥2 equal bits

c0[t], c0[t− 1], . . . , c0[2], 1, 0).

Finally, we consider the following special values of c0:

• c0 = (0, 0, 0, . . . , 0︸ ︷︷ ︸
w−1–zeros

, 1) and c0 = (1, 1, 1, 1, . . . , 1︸ ︷︷ ︸)
w–ones

using the results from (44) and Lemma 1

we have P(c0) =
3

16 for w sufficiently large;
• c0 = (0, 0, 0, 0, . . . , 0︸ ︷︷ ︸)

w–zeros

again, from (44) and Lemma 1, we obtain P(c0) = 3
8 for w

sufficiently large.

5. Conclusions

We considered the ChaCha20 stream cipher and we studied the propagation of
rotational-XOR pairs in the quarter round function. Under suitable choices of the inputs
and assumptions of independence and uniform distribution, setting the rotational amount
r to 1, we established a formula for the probability of the propagation of rotational-XOR
pairs depending on the selected constants. For the standard constants in ChaCha20 we find
a probability around 2−251.7857 against the probability of 2−256 of a random permutation.
Moreover, we were able to find a family of constants which in our scenario potentially
facilitate rotational propagation with non-negligible probability.
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