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Abstract: To present a set of trajectories derived from the retrograde periodic orbits around the
Lagrangian equilibrium point L1, this paper considers the Circular Restricted Three-body Problem
with Earth-Moon masses (CR3BP), the Restricted Bicircular, and Full Four-Body Sun-Earth-Moon-
spacecraft Problems (BCR4BP and FR4BP, respectively). These periodic orbits are predicted by the
dynamics of the CR3BP. To generate the trajectories of this set, first, slightly different increments of
velocity (∆Vs) from those needed to generate periodic orbits around L1 are applied to a spacecraft in
circular low Earth orbits in the same direction of their motion when the Earth, the spacecraft, and
the Moon are aligned in this order. Thus, translunar trajectories derived from the periodic orbits
are obtained and they will lead the spacecraft to the vicinity of the Moon. Depending on the values
of the |∆Vs|, which are also functions of the relative positioning between the Sun, the Earth, and
the Moon, three types of trajectories of interest are found: Collision with the Moon, escape, and
geocentric orbits with large semi-major axes. For a well-defined interval of the |∆Vs|, the trajectories
accomplish swing-bys with the Moon and obtain energy to escape from the Earth–Moon system and
reach Near-Earth Asteroids (NEAs) between the orbits of Venus and Mars. This procedure reduces
the costs of inserting spacecraft into transfer trajectories to a set of NEAs in terms of the required
|∆V| by up to 5% when compared to Lambert’s problem, for example. This work also presents
analyses of examples of transfers to the NEAs 3361 Orpheus, 99942 Apophis, and 65803 Didymos,
from 2025 on.

Keywords: periodic orbits; escape trajectories; lunar swing-by; near-earth asteroids; mission analysis

1. Introduction

According to the Minor Planet Center (MPC), a division of the International Astronom-
ical Union (IAU), more than 28,600 celestial bodies characterized as Near-Earth Asteroids
(NEAs) have been discovered by March 2022 [1]. These bodies are part of a larger class
of celestial objects called Near-Earth Objects (NEOs), in which comets with orbits close to
the Earth’s orbit are also included. NEAs are divided into four groups depending on their
semimajor axes (a), aphelion distance (Q), and perihelion distance (q). These groups are
Atira (a < 1 au and Q < 0.983 au), Aten (a < 1 au and Q > 0.983 au), Apollo (a > 1 au and
q < 1.017 au), and Amor (a > 1 au and 1.017 < q < 1.3 au) [2]. Therefore, the asteroids of the
Amor group are called “Earth-approaching NEAs” because their orbits are external to the
Earth’s orbit; the Atira group covers objects with internal orbits; and the asteroids of the
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Aten and Apollo groups are referred to as “Earth-crossing NEAs” since their orbits cross
the Earth’s.

This closeness to the Earth brings risks of collisions of a considerable number of NEAs
with our planet, but also offers opportunities for space exploration. Motivated by these
issues, we investigated the dynamics of a set of trajectories derived from the retrograde
periodic orbits around the Lagrangian point L1 predicted by the dynamics of the Circular
Restricted Three-body Problem with the Earth-Moon mass (CR3BP); the latter was called
the “family G of periodic orbits around L1” by Broucke [3]. An important feature of these
periodic orbits is that they can be tangential to both low Earth orbits (LEO) and low lunar
orbits (LLO), forming a natural round-trip link between them. This feature continues to
exist for more complex dynamical systems, such as the Restricted Bicircular and Full Four-
body Sun-Earth-Moon-spacecraft Problems (BCR4BP and FR4BP, respectively). Regarding
the trajectories derived from these periodic orbits, there is a special type that escapes from
the Earth–Moon system, with the energy for the escape coming from a single swing-by
with the Moon, which allows them to achieve perihelia down to 0.83 au and aphelia up
to 1.22 au with a reduction in the speed increment (|∆V|) of the launch of up to 5% if
compared to Lambert’s problem, for example. In this way, a set of NEAs can be reached by
these escape trajectories. The method to obtain these trajectories is based on the application
of small variations in the velocities of the periodic orbits, considering the BCR4BP and
FR4BP, to generate translunar trajectories and swing-bys. More details on this method will
be presented from Section 3 onwards.

This natural round-trip link, LEOs-LLOs-LEOs, was explored for different purposes
in previous works. For example, de Melo et al. [4] used the application of small ∆Vs at
strategic points at translunar trajectories to perform transfers between LEOs and high-
inclined LLOs. In [5], an approach to reduce the fuel consumption to change the orbital
plane of Earth orbits was presented considering this link and lunar swing-bys maneuvers
to provide enough energy for the orbital plane changes. Trajectories derived from the orbits
of family G, in combination with swing-by maneuvers with the Moon, were considered as
a starting point for a simple analysis of the possibility of planning transfer missions to the
NEAs 99942 Apophis, 1994WR12, and 2007 UW1 in [6]. Salazar et al. [7] also considered
trajectories derived from the orbits of family G and lunar swing-bys to design missions
to the Lagrangian equilibrium points L4 and L5. Compared with these previous works,
this paper expands the studies on the initial launch conditions, the features of the escape
trajectories before, during, and after the passage through the Moon’s sphere of influence,
and, in addition, also presents a method for mission planning based on the trajectories
derived from the orbits of family G. This new set of trajectories, including interplanetary
trajectories, and the method developed to apply them to missions to NEAs, corresponds to
the original contribution of this work with respect to the current literature.

Considering the risks of collision with our planet, they have been a source of concern
driven by earlier evidence of destructive crashes. For example, an object with a diameter of
50 m exploded over Tunguska region (Russia) in 1908 releasing energy of approximately
10 to 15 Mt [8,9], and a bolide measuring more than 10 km made impact approximately
65 million years ago in the Yucatan Peninsula, Mexico [10]. In more recent history, an object
with a diameter of approximately 20 m exploded over the city of Chelyabinsk in Russia
in 2013, leaving hundreds wounded [11,12]. Furthermore, NEAs are the remnants of the
planetary mass accretion process that gave rise to the planets in the Solar System [13]. Thus,
there is interest in studying them since they are valuable sources of information about the
conditions of the primordial environment in the Solar System.

In this context, since 1996, when the NEAR-Shoemaker mission was sent to the NEA
433 Eros of the Amor group [14], NEAs have become targets for space exploration missions
in the Solar System. For example, the Japanese Hayabusa probe, launched in May 2003
toward the NEA 25143 Itokawa of the Apollo group, was the first mission to bring sam-
ples from an asteroid to the Earth for analysis in June 2010 [15]. Hayabusa 2 was sent
in December 2014 to the NEA 162173 Ryugu, also of the Apollo group, with a similar
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mission [16], and the probe returned to the Earth bringing samples on 6 December 2020.
The OSIRIS-Rex mission was launched in September 2016 as part of NASA’s New Frontiers
Program with the goal of collecting samples from the NEA 101,55 Bennu; it arrived at the
asteroid in December 2018 and its return to the Earth is expected in 2023 [17]. Recently,
on 24 November 2021, NASA’s Double Asteroid Redirection Test (DART) mission was
launched toward the double NEA 65803 Didymos as the first demonstration of the kinetic
impactor technique to change the motion of an NEA [18]; the goal is to impact the Didymos’
moonlet in September 2022, when it will be approximately 11 million kilometers from the
Earth. The ESA’s Hera mission, scheduled for launch in 2024, will follow the same asteroid
starting in 2026 to investigate the effects of the impact of the first probe [19,20].

Regarding swing-by maneuvers, they are performed to change the orbits of spacecraft
during close encounters with planets or moons. Research on general approaches to this
type of maneuver can be found in [21–23]. Research on lunar swing-by maneuvers is also
present in many works. For example, Dunham and Davis [24] investigated missions with
multiple encounters with the Moon, and Prado [25] considered lunar swing-bys to change
the inclination of Earth orbits that leave and return to the same altitudes. As examples of
missions that performed lunar swing-bys, the ISEE-3, the Nozomi, STEREO probes, and
the HGS1 satellite can be highlighted.

NASA’s ISEE3 (3rd International Sun-Earth Explorer) was the first artificial satellite
placed into a halo orbit around the Sun-Earth L1 point, in 1978. After completing its
original mission in 1981, it was renamed ICE (International Cometary Explorer), and
on 10 June 1982, a maneuver removed it from the halo orbit and placed it in a complex
trajectory that involved a series of Earth close encounters, two passages through the deep
geomagnetic tail (to study it) and the Sun-Earth L2 point, and five lunar fly-bys between
March and December 1983. After the last one, on 22 December, the spacecraft obtained
enough energy to escape from the Earth–Moon system and reach the comets Giacobini-
Zinner on 11 September 1985, and Halley on 28 March 1986 [26,27].

The Japanese Nozomi spacecraft (or Planet B before launch) was launched on 3 July 1998,
and after 2 months and 21 days in a phasing orbit (highly elliptical geocentric orbits with
perigees of 340 km and apogees of 400,000 km, therefore, with C3 < 0), on 24 September, it
performed the first lunar swing-by. After passage through the boundary of the Earth’s grav-
ity field, it returned to the Moon and performed a second lunar swing-by on 18 December
and, on 20 December, it conducted a final Earth-propelled swing-by to put it on a flight to
Mars (in a Trans-Mars Insertion—TMI). A |∆V| of 420 m/s was planned for this passage,
but due to the malfunction of a valve, it was 100 m/s lower than expected, requiring an
unscheduled correction speed increment, as well as other increments scheduled for TMI
correction [28–30]. The probe had many problems during its journey, including in the Earth
fly-by, and although various efforts were made to recover it, the spacecraft was not able to
fulfil its initial mission.

The twin STEREO (Solar Terrestrial Relations Observatory) probes A and B for so-
lar observation were launched on 10 October 2006 by NASA and placed into highly
geocentric orbits with perigees of approximately 500 km and apogees just beyond the
Moon’s orbit (C3 < 0). During the passage through the fifth apogee (first periselene), on
15 December 2006, they carried out a lunar swing-by when STEREO A was ejected into a
heliocentric orbit with a semimajor axis of approximately 0.962 au and eccentricity of ap-
proximately 0.00059. STEREO B carried out a second lunar swing-by on 25 February 2007
and was ejected into a heliocentric orbit with semimajor axis and eccentricity around
1.042 au and 0.042, respectively [31]. After that, they successfully performed their missions.

The HGS-1 communication satellite from Hughes Global Services (firstly called AsiaSat 3)
was launched on 15 December 1997. After a failure in the Proton rocket during the insertion
into its original orbit, it was put into an operational geosynchronous orbit after a sequence of
maneuvers that involved two encounters with the Moon on 13 May and 6 June 1998 [32].

It should be highlighted that this work presents a different approach to those used in
the missions aforementioned. While all of them made use of multiple passages through
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the vicinities of the Moon and/or Earth, in this paper, a single lunar swing-by is explored,
and they also had different objectives than those proposed here for the escape trajectories
derived from the periodic orbits of family G, that is, their application to decrease the total
|∆V| required on missions to NEAs.

The presentation of this work is in the following order: In Section, 2 the periodic orbits
of family G are presented as proposed by Broucke [3]; in Section 3, the trajectories derived
from the orbits of family G are defined and their main features are shown and discussed; in
Section 4, a methodology for planning transfer missions among the Earth and the NEAs
from the escape trajectories is developed, and the discussion and results of missions to
the NEAs 3361 Orpheus, the 99942 Apophis, and 65803 Didymos are presented. Finally,
Section 5 is dedicated to the conclusions of the work.

2. Circular Restricted Three-Body Problem (CR3BP) and Family G of the Periodic
Orbits around the Lagrangian Point L1

The Circular Restricted Three-body Problem (CR3BP) is well known in the litera-
ture [3,33]. It describes the motion of a particle with mass m under the action of the
gravitational fields of two other so-called primary masses, mP1 and mP2 . The particle’s mass
is negligible, and it does not affect the motion of the primary masses whose orbits are circu-
lar and coplanar around their common center of mass, both with the same angular velocity;
therefore, they also maintain a constant distance between them. These properties allow the
introduction of an orthogonal reference frame (x, y, z) called a synodic frame whose origin
is at the common center of mass of the primary masses and in which these bodies are fixed
over the x-axis with coordinates (x1, y1, z1) =

(
−µP2 , 0, 0

)
and (x2, y2, z2) =

(
µP1 , 0, 0

)
,

i.e., x- and y- axes rotate with the same angular velocity as the primary masses relative
to an inertial frame (also fixed at the common center of mass). It is useful to consider
the normalization of this frame, such as the sum of the primary gravitational mass pa-
rameters being equal to 1, that is, µ = µP1 + µP2 = 1, with µP1 = mP1 /

(
mP1 + mP2

)
and

µP2 = mP2 /
(
mP1 + mP2

)
and the distance between the primary masses is also equal to 1

(unit of measurement). In this way, the mean motion and the orbital period of the primaries
are equal to 1 and 2π, respectively.

For the CR3BP with an Earth–Moon mass ratio, mP1 = mEarth = 5.9724× 1024 kg and
mP2 = mMoon = 7.3460× 1022 kg. Thus, µP1 = 0.987849536 and µP2 = 0.012150463. The
distance between mP1 and mP2 corresponds to the average distance between the Earth and
the Moon, 384,400 km, and their orbital period is 27.32166 days.

The equations of motion of the CR3BP have five special solutions that define the
so-called Lagrangian equilibrium points. Three of them, L1, L2, and L3, are aligned with
the primary masses, while the other two, L4 and L5, form two equilateral triangles with the
primaries. These points can be seen in Figure 1a.

Broucke [3] numerically examined several families of periodic orbits considering the
CR3BP with the Earth–Moon mass ratio. Family G (“G” in capital letter) of retrograde
periodic orbits around L1 is one of them. Family G corresponds to Class “c” of orbits
around L1 in Stromgren’s problem with an equal mass ratio [34]; however, the orbits of
Class “c” have different evolution, and their symmetry is with respect to both x- and y-axes,
while the orbits of family G have symmetry only with respect to the x-axis.

The periodic orbits of family G can be found by numerical integration considering the
following initial condition for a particle, at t0 = 0, in the synodic frame,(

x0, y0, z0,
.
x0,

.
y0,

.
z0, t0

)
=
(

x0, 0, 0, 0,
.
y0, 0, 0

)
. (1)

For instance, by taking x0 = 0.049999990 and
.
y0 = 5.458017660, the periodic orbit

shown in Figure 1 is found. In general, periodic orbits of family G can be obtained for
0.012149617 ≤ x0 ≤ 0.813471672 and −1.950882153 ≤ .

y0 ≤ 601.045380978 [3]. Periodic
orbits such as that shown in Figure 1 for (a) synodic (x, y, z) and (b) geocentric (ξ, η, ζ)
frames pass remarkably close to the Earth’s surface and, after 14 to 15 days, they pass a few
dozens of kilometers away from the Moon’s surface, so they form a round-trip link between
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them. In addition, the periodic orbits of family G are sensitive to minor perturbations in
their velocities. These features can be explored to generate interplanetary trajectories, as
described in the next section.

According to Equation (1), for any periodic orbit of family G, at t0 = 0, the Earth,
spacecraft, and Moon must be aligned in this order, i.e., in inferior conjunction. Therefore,
considering the spacecraft in a circular LEO, the spacecraft and the Moon have parallel
velocities. In practical terms, this alignment is a weak constraint, because any spacecraft
orbiting the Earth in the same plane as the Moon’s orbit will achieve this alignment every
orbital period, plus a small period of time to compensate for the Moon’s displacement. For
example, for circular LEOs with altitudes of 200, 400, 700, and 1000 km, the alignments are
obtained at approximately 88.38 min + 11.88 s, 96.57 min + 14.22 s, 98.66 min + 14.84 s, and
105 min + 16.81 s, respectively.
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.
y0 = 5.458017660 at t0 = 0 in Equation (1): (a) In the synodic frame (x,y,z), and the Lagrangian

equilibrium points associated with the Earth–Moon system; (b) same periodic orbit and the Moon’s
orbit in a geocentric frame (ξ, η, ζ).

3. Definition of the Trajectories G

This section describes the trajectories derived from the periodic orbits of family G
in more detail, hereinafter referred to as trajectories G, or simply TGs. It covers two
approaches to define them, as well as other properties.

3.1. The CR3BP and a First Approach for the TGs

Considering a spacecraft in circular parking orbits (LEOs) with altitudes between
200 km and 1000 km, the two-dimensional CR3BP, Earth, spacecraft, and Moon alignment
at t0 = 0, and the performance of small variations in the speeds (same direction of motion)
of the periodic orbits of the family G [3], a first approach for the insertion speeds (VSC) of
spacecraft into trajectories G is obtained. These TGs are tangential to the LEOs and capable
of passing between L1 and the Moon’s surface, colliding with the Moon, or escaping from
the Earth–Moon system. The values of VSC are given in m/s by

VSC = −8.571050× 10−4h0 + 11, 105.303 + ϑ3B, (2)

where h0 is the altitude of the circular LEOs
(
0 ≤ h0 ≤ 106 m

)
, and ϑ3B values define the

point between L1 and the Moon’s surface on the x-axis of the synodic frame the trajectories
pass through, and whether they are collision or escape trajectories. For ϑ3B = −0.976 m/s,
the trajectory crosses the x-axis at point L1; for 0 ≤ ϑ3B ≤ 0.322 m/s, collisions trajectories
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are found; and for ϑ3B > 0.322 m/s, escape trajectories from the Earth–Moon system arise.
The ∆V to generate trajectories G (|∆VTG|) as a function of h0, i.e., from circular LEOs, can
be seen in Section 3.2.2. However, Equation (2) can be used to obtain the ∆VTG for any
geocentric orbit, for example, from the apogee of an ellipse.

To obtain Equation (2), numerical simulations were conducted. In these, small incre-
ments in the spacecraft velocities were added to insert them into different kinds of TGs.
The characteristic VSC for each kind of TG was then registered, and linear regression with
the points found gave form to Equation (2).

3.2. The Three-Dimensional Restricted Full Four-Body Problem Sun-Earth-Moon-Particle (FR4BP)

To better understand the properties of the trajectories G and possible applications, the
three-dimensional Restricted Full Four-body Sun-Earth-Moon-spacecraft Problem (FR4BP)
is considered. In this dynamical system, indexes 1 through 4 are associated with the Sun,
Earth, Moon and a spacecraft with negligible mass (m4), respectively. The same normal-
ization adopted for the CR3BP is also adopted for the FR4BP. Thus, µ1 = m1/(m2 + m3),
µ2 = m2/(m2 + m3), µ3 = m3/(m2 + m3), and µ4 = m4/(m2 + m3) are the gravitational
mass parameters of the Sun, the Earth, the Moon and the spacecraft, respectively; and now
µ2 + µ3 = 1. The normalization is completed by adopting the average distance between
the Earth and the Moon (384,400 km) as a unit of measurement. These four bodies move in
three-dimensional space under mutual attraction, and the equation of motion of the i-th
body in a coordinate frame (X, Y, Z) with the origin at any point in space is

..
Ri = ∑4

j = 1
j 6= i

µj

R3
ji

(
Rj −Ri

)
, (3)

where Ri = (Xi, Yi, Zi) is the position of the i-th body, Rij =
∣∣Rj − Ri

∣∣ = [
(
Xj − Xi

)2
+(

Yj − Yi
)2

+
(
Zj − Zi

)2
]1/2, with j 6= i, is the distance between the i- and the j-th bodies

and
..
Ri is the acceleration of the i-th body. Equation (3) is a set of 12 s-order differential

equations and expresses the fact that the acceleration of a given body is the result of the
sum of the forces exercised by the other three bodies.

3.2.1. The Three-Dimensional Restricted Bicircular Four-body Problem (BCR4BP) and a
Second Approach for the TGs

The introduction of the Sun into the dynamical system makes the definition of VSC
more complex due to the relative positioning between the four bodies. To describe this, a
particular arrangement of the Four-body Problem, in which the Earth’s orbit around the
Sun and the Moon’s orbit around the Earth is circular (BCR4BP), is adopted as a second
approach. The semimajor axes (a), eccentricities (e), inclinations (i), and true anomalies
(f ) considered are: aEarth = 149,597,870.8 km (1 au), aMoon = 384,400 km, eEarth = eMoon = 0,
iEarth = 0◦, iMoon = 28.56◦, and, naturally, 0 ≤ fEarth < 360◦ and 0 ≤ fMoon < 360◦.
The longitude of the ascending node (Ω) is undefined for circular orbits with i = 0◦,
and the argument of periapsis (ω) is undefined for circular orbits of any inclination, so
ΩEarth = ωEarth = ωMoon = 0◦ and 0 ≤ ΩMoon < 360◦. However, these values are taken
only to provide a step-by-step method to determine VSC for the trajectories G in this second
approach. The numerical method that will be presented in the next section allows for
adjusting VSC to the current and future values of the orbital elements of the Earth’s and the
Moon’s orbits as well as their instantaneous variations.

Figure 2 presents a general illustration of the relative positioning between the Sun,
Earth, a spacecraft (SC), and the Moon at launch time (t0) for the BCR4BP, precisely when
the spacecraft is in a circular LEO and acquires the insertion speed (VSC) into a trajectory
derived from a periodic orbit of family G relative to the geocentric frame (ξ, η, ζ). VSC is
parallel to the Moon’s velocity. Note also that the Earth, spacecraft, and Moon are aligned
in this order, as described in Section 2, but the Sun alignment is not necessary.
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Figure 2. Relative positioning between the Sun, the Earth, a spacecraft (SC), and the Moon at the
instant the spacecraft is inserted into a trajectory derived from a periodic orbit of family G (t0 = 0), in
BC4BP (non-scale).

Considering the same procedure described in Section 3.1 (for the CR3BP), but now
for the BCR4BP, and varying fMoon and ΩMoon, a second approach for the insertion speeds
(VSC) into TGs can also be found. For the BCR4BP, VSC depends on the h0, fMoon, and ΩMoon.
The dependence of VSC with h0 remains linear as in the CR3BP, while ΩMoon and fMoon are
approximately sinusoidal with a period of 14.746107 days (3.392 rad), in agreement with the
circular dynamics of the system. As a result of this procedure for the BCR4BP, VSC (m/s)
can be obtained by

VSC = −8.481880× 10−4s−1h0 + 11, 103.421 + ϑ4B + Asin[B(ΩMoon + fMoon) + C], (4)

where ϑ4B varies continuously, such that:

• For 0 ≤ ϑ4B ≤ 0.312± 0.008 m/s, TGs that collide with the Moon are found (they are
called “trajectories G of collision”, TGCs).

• For 0.312± 0.008 < ϑ4B ≤ 0.667± 0.021 m/s, TGs that have encounters with the
Moon, gain energy, and escape from the Earth–Moon system are found (they are called
“trajectories G of direct escape”, TGEs).

• For 0.667± 0.021 < ϑ4B ≤ 1.023± 0.030 m/s, TGs that approach and have an en-
counter with the Moon, but do not gain enough energy to escape from the Earth–Moon
system, are found (they are called “trajectories G of inversion”, TGIs).

The values of A, B, and C have small variations according to the type of trajectory G obtained,
i.e., according to ϑ4B, and they are determined numerically, being A = 2.227 ± 0.074 m/s,
B = 2π/3.392 = 1.852442± 0.001036, and C = 121.75514± 1.412805. For example, in
Figure 3a, for which h0 = 200 km, ΩMoon = fEarth = 0◦ at t0 = 0, and for 0 ≤ fMoon ≤ 360◦,
the curve for the first TGC as a function of fMoon is

VSC = 10, 933.784 + 2.158sin(1.852755 fMoon − 2.149686), (5)

for the first TGE,

VSC = 10, 934.088 + 2.169sin(1.853478 fMoon − 2.144921), (6)

for the last TGE,

VSC = 10, 934.600 + 2.301sin(1.851406 fMoon − 2.100370) (7)
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and for the last TGI,

VSC = 10, 934.902 + 2.262sin(1.853101 fMoon − 2.118499). (8)

Symmetry 2022, 14, x FOR PEER REVIEW 8 of 21 
 

 

for the last TGE, 

𝑉𝑆𝐶  =  10,934.600 + 2.301𝑠𝑖𝑛(1.851406𝑓𝑀𝑜𝑜𝑛 − 2.100370) (7) 

and for the last TGI, 

𝑉𝑆𝐶  =  10,934.902 + 2.262𝑠𝑖𝑛(1.853101𝑓𝑀𝑜𝑜𝑛 − 2.118499). (8) 

Equations (5)–(8) were obtained by the least-squares method, using the same proce-

dure described in Section 3.1 to obtain the simulation data. The standard deviation for 

Equations (5)–(8) are 0.028 m/s, 0.028 m/s, 0.033 m/s, and 0.033 m/s, respectively. 

The dependence on h0 and fMoon are highlighted in Figure 3a,b, in which h0 is equal 200 

km and 700 km, respectively, with the curves obtained for 𝛺𝑀𝑜𝑜𝑛= 0° at t0 = 0. The depend-

ence of VSC on fMoon and 𝛺𝑀𝑜𝑜𝑛 for h0 = 200 km is shown in Figure 3c. 

  
(a) (b) 

 
(c) 

Figure 3. Curves VSC x fMoon for 𝛺𝑀𝑜𝑜𝑛= 0 at t0 = 0 and fEarth ranging from 0 to 26.92846°: (a) h0 = 200 

km; (b) h0 = 700 km; (c) VSC x fMoon x 𝛺𝑀𝑜𝑜𝑛 (𝛺𝑀𝑜𝑜𝑛 = 0°, 30°, 60°, 90°, 120° and 150°) at t0 = 0, upper 

right corner surface: VSC = f (𝛺𝑀𝑜𝑜𝑛, fMoon) for first TGC generated by Equation (4). From the bottom 
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A TGC, TGE, and TGI obtained for a particular positioning defined by 𝛺𝑀𝑜𝑜𝑛 = fMoon = 

0, at t0 = 0, can be seen in Figure 4 (remember that 𝛺𝐸𝑎𝑟𝑡ℎ = ωEarth = 0). For these values, the 

Sun, Earth, spacecraft, and Moon are aligned in this order over the X-axis of the coordinate 

frame with an origin at the Sun’s center of mass. Considering the scale used in Figure 4, 

the three TGs are overlapping in the initial phase, i.e., during the flight between the Earth 

and the Moon, with subtle differences, as will be described in the next subsection. 

Figure 3. Curves VSC × fMoon for ΩMoon= 0 at t0 = 0 and fEarth ranging from 0 to 26.92846◦:
(a) h0 = 200 km; (b) h0 = 700 km; (c) VSC × fMoon × ΩMoon (ΩMoon = 0◦, 30◦, 60◦, 90◦, 120◦ and 150◦)
at t0 = 0, upper right corner surface: VSC = f (ΩMoon, fMoon) for first TGC generated by Equation (4).
From the bottom upwards, the first curve is the first TGC, the second curve is the first TGE, the third
is the last TGE, and the fourth is the last TGI.

Equations (5)–(8) were obtained by the least-squares method, using the same proce-
dure described in Section 3.1 to obtain the simulation data. The standard deviation for
Equations (5)–(8) are 0.028 m/s, 0.028 m/s, 0.033 m/s, and 0.033 m/s, respectively.

The dependence on h0 and fMoon are highlighted in Figure 3a,b, in which h0 is equal
200 km and 700 km, respectively, with the curves obtained for ΩMoon= 0◦ at t0 = 0. The
dependence of VSC on fMoon and ΩMoon for h0 = 200 km is shown in Figure 3c.

A TGC, TGE, and TGI obtained for a particular positioning defined by ΩMoon = fMoon = 0,
at t0 = 0, can be seen in Figure 4 (remember that ΩEarth = ωEarth = 0). For these values, the
Sun, Earth, spacecraft, and Moon are aligned in this order over the X-axis of the coordinate
frame with an origin at the Sun’s center of mass. Considering the scale used in Figure 4,
the three TGs are overlapping in the initial phase, i.e., during the flight between the Earth
and the Moon, with subtle differences, as will be described in the next subsection.

In Section 4, the actual ephemerides of the Earth’s and the Moon’s orbits will be
considered for application in missions to NEAs. In this case, the curves for TGCs, TGEs,
and TGIs lose their sinusoidal profile and numerical analysis is required.
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Figure 4. Trajectories G: (a) Collision—TGC, (b) direct escape—TGE, (c) inversion—TGI and the
Moon’s orbit obtained for fMoon = ΩMoon = 0 and fEarth = 0, at t0 = 0, as seen in a geocentric reference
frame (ξ, η, ζ;).

3.2.2. Some Features of the TGs in the BCR4BP

As stated previously, TGs are generated by applying ∆VTG to spacecraft in circular
LEOs whose altitudes vary between 200 km and 1000 km. Therefore, |∆VTG| = VSC−√

GMEarth/(REarth + h0), where VSC is given by Equation (4), REarth = 6371 km is Earth’s
average radius, and the square root provides the LEOs speeds as a function of the altitude
h0 (Figure 5b). Figure 3, in turn, shows the dependence of VSC with fMoon and ΩMoon, and it
is possible to note that for fixed values of h0 and fMoon, the difference between the speeds of
the first TGC and last TGI is in the order of 1.050 m/s. On the other hand, the sinusoidal
dependence of VSC with fMoon for any h0 and ΩMoon shows that the difference between the
minimum VSC to generate the TGC and the maximum VSC to generate the last TGI is in
the order of 4.6 m/s (Figure 5a). Consequently, the minimum and maximum |∆VTG| to
generate TG will also vary by 4.6 m/s as shown in Figure 5c.
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Figure 5. (a) VSC (yellow) and escape speed; (b) speed of circular orbits Vcir; (c) |∆VTG| (green) to
generate trajectories G and | ∆Vesc|.

The TGs reach apogees of approximately 540,000 km (first TGC) and 550,000 km (last
TGI) prior to their passage through the lunar sphere of influence between 8 and 9 days after
the launch. The apogees are positioned approximately on the ξ-axis of the geocentric frame
as shown in Figure 1b. At the apogees, the speeds of TGs vary between 155 m/s (first TGC)
and 149 m/s (last TGI). Therefore, the regions near these apogees could be employed for
correction maneuver areas.

The TGs reach their periselenes between 14 and 15 days after the launch, and all of
them have their specific orbital energy relative to the Earth (ε24—following the indices
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adopted in Section 3.1) increased during the passage through the lunar sphere of influence.
However, the same does not occur for their specific orbital energy relative to the Sun (ε14).

To understand the increase in ε24, first we consider the angle between the directions
defined by a given position vector relative to the Moon at periselene and the straight
line joining the centers of the Earth and the Moon (Ψ). According to Broucke [23], the
change in the specific orbital energy of a spacecraft’s trajectory relative to the Earth (first
body) after a swing-by with the Moon (second body), in three-body dynamics, (∆ε24) is
∆ε24 = ε24(t2)− ε24(t1) ∝ −sin(Ψ), where ε24(t1) and ε24(t2) are the specific orbital energies
of the trajectory relative to the Earth when it penetrates and leaves the lunar sphere of
influence, respectively. Therefore, the largest ∆ε24 is obtained for Ψ = 270◦. As an example,
Figure 6 presents the relations between ∆ε24 × Ψ, ∆ε24 × VSC and periselene radius × Ψ
for TGEs and TGIs generated for for h0 = 200 km, ΩMoon = fMoon = fEarth = 0 at t0 = 0 and the
BCR4BP dynamics. It is possible to verify in Figure 6a that all TGEs and TGIs have ∆ε24 > 0,
as expected, and that the largest value of ∆ε24 corresponds to Ψ = 266◦ (≈ 270◦)—the TGCs
have been excluded from this analysis. It is also possible to verify, in Figure 6b, that the
largest value of ∆ε24 occurs for the smallest value of VSC capable of generating a TGE; and
in Figure 6c, the smallest periselene corresponds to Ψ = 266◦ (≈270◦) and, in comparison
with Figure 6a, consequently, it corresponds to the largest value of ∆ε24. These results
show that the increase in the specific orbital energy relative to the Earth, ε24, in the CR4BP
dynamics follows, with a slight difference, that predicted by three-body dynamics.
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Figure 6. Specific orbital energy of the TGEs and TGIs relative to the Earth (∆ε24) as a function of
(a) Ψ, (b) VSC, and (c) periselene radius as a function of Ψ. All graphics obtained for h0 = 200 km,
ΩMoon = fMoon = fEarth = 0 at t0 = 0.

Now, in the BCR4BP, the largest changes in the specific orbital energy of the TGs rela-
tive to the Sun (∆ε14) can occur for more than one value of VSC and Ψ as shown in Figure 7.
∆ε14 = ε12 − ε14(300), where ε12 is the Earth’s specific orbital energy (= −443.298 MJ/kg)
taken as a reference, and ε14(300) is the TG’s specific orbital energy at t = 300 days, both
relative to the Sun. The interval of 300 days was chosen because, from then on, the osculat-
ing orbital elements of trajectories G undergo only small variations in general. Still, in the
context of the BCR4BP, ∆ε14 < 0 corresponds to TGEs with perihelia between Earth’s and
Venus’ orbits and aphelia of approximately 1 au; ∆ε14 ≈ 0 corresponds to TGIs (therefore,
co-orbitals to Earth’s orbit relative to the Sun), and ∆ε14 > 0 are TGEs with aphelia between
the Earth’s and Mars’ orbits and perihelia of approximately 1 au. In the example of Figure 7,
the smallest ∆ε14 (∆ε14 = −20.46 MJ/kg) occurs for Ψ ≈ 266◦ and the smallest VSC value
(VSC = 10,932.280 m/s—the smallest VSC that generates a TGE for h0 = 200 km, ΩMoon = fMoon = 0
at t0 = 0); and the largest ∆ε14 (∆ε14 = 23.49 MJ/kg) is obtained for Ψ ≈ 247◦ and
VSC = 10,932.467 m/s. The first one has the smallest perihelion (0.84 au), near the or-
bit of Venus, and the largest internal reach, while the second one has the largest aphelion,
near the orbit of Mars (1.156 au), and the largest external reach.
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Figure 7. TGs’ specific orbital energy relative to the Sun (∆ε14) as a function of (a) Ψ and (b) VSC. All
graphics obtained for h0 = 200 km, ΩMoon= fMoon = 0 at t0 = 0.

Thus, ∆ε14 can generate internal TGEs (with perihelia between Venus’ and Earth’s
orbits and aphelia at 1 au) and external TGEs (with aphelia between Earth’s and Mars’
orbits and perihelia at 1 au), and the type of TGE depends on Ψ and VSC. The dependence
on VSC consequently leads to dependence on fMoon and ΩMoon as seen in Equation (4).
Figure 8a shows the distribution of perihelia and aphelia for internal TGEs and Figure 8b
shows the distribution for external TGEs, for both ΩMoon = 0◦ at t0 = 0. For this initial
condition, the internal TGEs closest to Venus have perihelia and aphelia in the order of
125 × 106 km and 150 × 106 km, respectively; while the TGEs farthest from Earth toward
Mars have perihelia and aphelia radii in the order of 150 × 106 km and 182 × 106 km,
respectively. These distributions are always similar for any value of ΩMoon and h0. That
is, the smallest perihelion and the largest aphelion found for the TGEs are in the order of
125 × 106 km and 182 × 106 km, respectively.

Figure 9 presents the TGEs with the smallest perihelion and the largest aphelion. For
the first, h0 = 200 km, VSC = 10,936.100 m/s, fEarth = 92.2440048◦, ΩMoon = 0◦, and fMoon = 30◦

at t0 = 0, the perihelion is 125,305,866.0 km (0.8376 au), achieved at 493.63 days after the
launch, and its aphelion is 149,986,525 km (1.0026 au), achieved at 20.48 days after the
launch. For the second, h0 = 200 km, VSC = 10,936.093 m/s, fEarth = 106.83059◦, ΩMoon = 0◦,
fMoon = 225◦ at t0 = 0. The perihelion is 150,998,982.0 km (1.00937 au) achieved at 20.05 days
after the launch, and its aphelion is 180,340,233.0 km (1.2055 au) achieved at 224.43 days
after the launch.

The longitude of the ascending node and the argument of periapsis of the TGs depend
on the launch date (because of the relative positioning between the Sun, Earth, and Moon),
but their inclinations are always less than 2◦ with respect to the ecliptic in general.

Returning to Figure 5 and comparing the |∆VTG| and |∆Vesc|, i.e., the speed changes
required to generate TGs and conventional escape trajectories, |∆VTG| is always smaller
than |∆Vesc|. |∆VTG| is 2.5% smaller than |∆Vesc| for h0 = 200 km, and 4.6% smaller for
h0 = 1000 km. On the other hand, the heliocentric trajectory generated with a conventional
|∆Vesc| will have perihelia in the order of 145 × 106 km and aphelia in the order of
151.5 × 106 km, much smaller than those achieved by TGEs. In the next section, some
examples for transferring spacecraft to NEAs will be exposed and the |∆VTG| required
for these missions is approximately 5% smaller than the |∆V| required for interplanetary
trajectories obtained by Lambert’s Method.
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4. Applications

Studies and results on transfers to the NEAs 3361 Orpheus (Apollo class), 99,942 Apophis
(Aten class), and 65803 Didymos (Apollo class) through TGEs are presented in this section.
However, a general introduction to the planning of these transfers is required first. In this
section, all numerical simulations consider the Restricted Full Four-body Problem (FR4BP)
describes in Section 3.2 as a dynamical system.

4.1. Limits of the TGs

In Figure 8, it is possible to identify 124,814,014.0 km and 181,272,593.0 km as the lower
and upper limits achieved by TGEs in the first analysis, respectively. From a geometrical
standpoint, these values can be interpreted as the radii of two reference circumferences
in the plane of the ecliptic (since the inclination of the TGEs is small), one internal with
radius Ri = 124,814,014.0 km and one external with radius Re = 181,272,593.0 km. The space
between them defines the primary interception region of NEAs by TGEs. Figure 10 presents
an illustration of this region, and, in broad terms, the analysis of a transfer starts when an
asteroid penetrates it. On the other hand, considering the features of the NEAs orbits, those
belonging to the Apollo class can cross the two reference circumferences or only the external
one, some NEAs belonging to the Aten class can be located completely inside the primary
region, while some orbits of Amor class can only cross the external reference circumference
and some orbits of Atira class can only cross the internal reference circumference.
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nal circumferences), reference ellipse, and launch window for an NEA whose orbit crosses the
external circumference.

Due to the small inclinations relative to the ecliptic of the TGEs, the interceptions of
the NEAs can only occur in a range near their nodes and if they are within the primary
interception region. The lower the inclination of the NEA, the greater the possibility
of interception.

4.2. Parameters for Planning Transfers to NEAs by TGEs

The step-by-step sequence for planning a transfer is as follows:

• Step 1: Choose an NEA and an interval of interest for planning a mission. Once this
choice is made, data on the orbits of the NEA, Earth, and Moon (orbital elements or
vectors state) must be obtained through an orbit propagator or, for example, from
JPL’s Horizons platform for this interval [35].

• Step 2: Considering the data obtained for the NEA’s orbit in step 1, it is necessary to
determine if it passes through the primary intercept region, the dates of entry and exit
from this region, and the respective position (relative to the Sun), and if its nodes are
also in this region. If the nodes are in this region, there is a great probability of finding
a TGE able to intercept the chosen NEA. Otherwise, this probability becomes smaller,
so even an interception continues to be possible.
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• Step 3. Firstly, considering the case in which the nodes are in the primary intercept re-
gion, from the straight lines segments that join these points to the Earth’s orbits through
the Sun, it is possible to define the semimajor axes of two references ellipses and their
orbital periods. Subtracting half of these orbital periods and adding 20 days (time
needed for a TGE to reach the Earth’s sphere of influence) from the dates corresponding
to the passages of the NEA through its ascending or descending nodes, two new dates
are found, and they will be the starting point for definition (or study) of the launch
windows. Figure 10 shows a reference ellipse considering that the points in which the
NEA’s orbit entries and exits the intercept region coincide with its nodes. In this exam-
ple, the semimajor axis is (149,597,870.7 km + 181,272,593.0 km)/2 = 165,435,231.9 km,
and half of the orbital period is 212.4 days, plus 20 days, totaling 232.4 days. Then,
the date found can be adopted as the beginning of the launch window, since the
Earth is within the launch window interval. An interval of three lunar cycles, ap-
proximately 82 days, is generally enough to obtain some TGEs able to carry out an
Earth–NEA transfer.

• Step 4. From the new dates found in step 3, intervals containing these dates are defined,
and they will be considered the first choice for the launch window. Following this, a
set of simulations are conducted to find TGEs able to intercept the NEA chosen. First,
the curves VSC × fMoon for these intervals are found; then, from the VSC that defines
the TGEs for these intervals, trajectories are propagated to obtain encounters with
the NEA.

• Step 5. Analyses of the results.

4.3. Analysis for the Transfers to the 3361 Orpheus (Apollo Class), 99942 Apophis (Aten Class),
and 65803 Didymos (Amor Class)

Table 1 presents some features of the NEAs 3361 Orpheus, 99942 Apophis, and
65803 Didymos and their orbits. They are considered in transfer simulations from TGEs.

Table 1. Properties of the NEAs 3361 Orpheus, 99942 Apophis, and 65803 Didymos (JD 2459126.5
4 October 2020).

Property Orpheus Apophis Didymos

Class Apollo Aten Apollo

Mass * 4.66 × 1010 kg 2.70 × 1010 kg 5.27 × 1010 kg

Dimension AR = 150 m, L = 300 m 370 m × 450 m × 170 m AR = 390 m

Absolute Magnitude (H) 19.03 19.70 18.07

Semimajor axis 180,962,886.3 km 137,994,462.3 km 246,025,217.4 km

Eccentricity 0.322752 0.191195 0.383638

Inclination 2.68◦ 3.33◦ 3.41◦

Longitude of ascending node 189.53◦ 204.45◦ 73.21◦

Argument of perihelion 301.66◦ 126.40◦ 319.30◦

Orbital period 1.33 Years 0.89 Years 2.11 Years
* Estimated for calculation, AR = average radius, L = length. Source: [36]

4.3.1. Transfer to the 3361 Orpheus

Considering the 2025–2026 biennium, for example, and applying the steps of the
previous subsection, the dates in which the Orpheus’s orbit enters and exits the primary
intercept region are 4 October 2025 and 16 April 2026, respectively. Three transfers to this
NEA via TGEs for two different launch windows can be planned. Subtracting half of the
orbital period of the reference ellipse (233.1 days) from these dates, the launch window will
be between 15 February and 1 July 2025.

Table 2 presents the main information about each transfer between 2025 and 2026.
In all three transfers, correction maneuvers are required approximately 25 days after the
launch, at the aphelion of the TGEs, to cause impact. For the first launch (on 5 March 2025),
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a distance of 1.5× 106 km between the spacecraft and the NEA at the closest point approach
(CPA) must be overcome. A |∆V| of approximately 48 m/s applied at the aphelion is
enough to reduce this distance to zero. For the second launch (on 8 May 2025), the distance
to be overcome is approximately 1.3 × 106 km, and a |∆V| of approximately 18 m/s
applied at the aphelion is also enough. For the third launch (on 1 July 2025), the distance
between them is 404,000 km at the CPA, and it is overcome with a |∆V| of approximately
12 m/s applied at the aphelion. The ∆Vs for correction maneuvers are calculated to increase
or decrease the energy of the TGE (at this point, a heliocentric ellipse) from the vis-viva
equation to ensure the NEA-spacecraft distance is null at the encounter. They are applied
to the direction of the spacecraft’s motion when it is at the aphelion. Other parameters of
these missions, such as |∆V| launch, the day of arrival/impact, the relative speed, C3 at
launch, and the angle of impact, among others, are shown in Table 2. It is interesting to
note that C3 relative to the Earth, at departure time (t0 = 0), is negative for all TGEs.

Table 2. Properties of the Earth-NEA 3361 Orpheus transfers.

Property First Transfer Second Transfer Third Transfer

Launch window M/D/Y 02/15/25–05/08/25 02/15/25–05/08/25 07/01/25–07/30/25

Launch date M/D/Y 12 h-03/05/25 0 h-05/08/25 0 h-07/01/2025

Circular parking LEO altitude (km) 200

VSC (m/s) 10,935.561 10,935.550 10,934.480

|∆VTGE | (m/s) 3153.635 3153.362 3152.553

|∆V| at aphelion (m/s) 48 18 12

|∆VLaunch| (reference) Lambert’s Method *
(m/s) 3330

Launch C3 relative to the Earth (106 m2/s2) −1.530 −1.531 −1.55

Impact date, M/D/Y 03/07/2026 03/05/2026 02/26/2026

Time of transfer (days) 367.89 301.18 230

Distance from Earth at impact (km) 376,576,144.4 km 325,347,488.6 km 89,997,492.0 km

Arrival Impact Angles (degrees) 16.80 10.73 8.89

Relative velocity at impact (m/s) 9886.548 6383.805 6082.983

* Without middle-way correction maneuvers.

To find the transfer candidates, a search code propagates all TGEs defined by the
VSC × fMoon curve (step 4) in the launch window. Figure 11 shows these curves for two
launch windows found. A solution is selected from the analysis of three points: (1) The
CPA with the NEA, (2) the lowest relative velocity NEA spacecraft, and (3) the shortest
transfer time. For the 3361 Orpheus, the three solutions (transfers) found correspond to the
closest point approaches, the lowest relative velocities, and the shortest transfer times. For
the simulation of transfers to Apophis, for example, a more detailed analysis is required.
Figure 12 shows the three transfers (TGEs) in the heliocentric frame (X, Y, Z) with highlights
of their launches from the Earth and encounters with the Orpheus.

4.3.2. Transfer to the 99942 Apophis

Orbits of the Aten class spend most of their orbital period, or all of it, inside the
primary interception region due to the values of their semimajor axes and eccentricities.
As a result, the launch windows for TGEs are almost continuous, and a larger number of
solutions can be found for transfers to NEAs belonging to the Aten class via TGEs with CPA
below 105 km without applying ∆Vs for correction maneuvers. For example, considering
a launch window from 03.03.2028 to 06.27.2028 and the steps described in Section 4.2, an
analysis of the NEA-spacecraft distance diagrams only makes sense when this quantity is
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less than 105 km, as shown in Figure 13a. Note that there are solutions with NEA–spacecraft
distance of less than 105 km for the entire launch window interval.
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Figure 11. VSC × fMoon and the launch window. (a) First launch window from 02/15/2025 to
05/08/2025, (b) second launch window from 07/01/2025 to 07/30/2025.
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Figure 12. TGEs and the orbits of Earth, Venus, Mars, and 3361 Orpheus for (a) first launch window
from 02/15/2025 to 05/08/2025—first solution, (b) first launch window—second solution, and
(c) second launch window from 07/01/2025 to 07/30/2025.

To find the best transfer, the time of flight and the NEA–spacecraft relative speed need
to be analyzed. To drive the search, the NEA–spacecraft distance as a function of time of
flight, shown in Figure 13b, and as a function of the NEA–spacecraft relative speed, as
shown in Figure 13c, are considered. Comparing these figures, the two TGEs with the
shortest NEA–spacecraft distance at CPA have the longest transfer times (over 800 days)
and relative speeds of the order of 6000 m/s. Excluding these two solutions, the choice falls
to the TGE with the fourth-lowest NEA–spacecraft relative speed (5220 m/s), third-lowest
NEA–spacecraft distance (35,228.87 km), and the TGE with the lowest NEA–spacecraft rela-
tive speed (4373 m/s); however, the latter has an NEA–spacecraft distance of 94,512.43 km.
Both are indicated with arrows in Figure 13. Table 3 presents the parameters of these
transfers and Figure 14 shows these two TGEs with highlights of their launches from the
Earth and encounters with the Apophis.
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Figure 13. Apophis-spacecraft distance diagrams limited to 104 km: (a) as a function of fMoon and the
launch window 03/03/2028 to 06/15/2028, (b) as a function of time of transfer, (c) as a function of
relative Apophis-spacecraft speed.

Table 3. Properties of the Earth-NEA 99942 Apophis transfer (first solution).

Property First Transfer Second Transfer

Launch window M/D/Y 03/03/28 to 06/27/28 03/03/28 to 06/27/28

Launch date M/D/Y 6 h 04/06/28 12 h 04/18/28

Circular parking LEO altitude (km) 200 km

VSC (m/s) 10,932.494 10,935.384

|∆VTGE | (m/s) 3150.567 3153.458

|∆V| at aphelion (m/s) 20 18

|∆VLaunch| (reference) Lambert’s Meth. *
(m/s) 3331

Launch C3 relative to the Earth (106 m2/s2) −1.597 −1.534

Impact date, M/D/Y 04/13/2029 04/24/2029

Time of transfer (days) 356.69 371.39

Distance from Earth at impact (km) 24,184,985 28,267,878

Arrival Impact Angles (degrees) 22.27 7.57

Relative velocity at impact (m/s) 5220.245 4373.068
* Without middle-way correction maneuvers.
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Figure 14. TGEs and the orbits of the Earth, Venus, Mars, and 99942 Apophis for (a) first solution
with launch on 04/22/2028 and encounter on 04/13/2029 and (b) second solution with launch on
04/18/2028 and encounter on 04/24/2029.

4.3.3. Transfer to the 65803 Didymos

Didymos will penetrate the primary interception region on 2 November 2026. Sub-
tracting the half orbital period of the reference ellipse, the beginning of the launch window
is found on 6 March 2026, and as the passage for this region is fast, the launch window
closes on 29 April 2026. Table 4 presents the parameters of the transfer with CPA of
83,904 km, which is overcome with a |∆V| of 22 m/s at the perihelion of the selected TGE.
Figure 15 shows the TGE with highlights of their launches from the Earth and encounters
with Didymos.

Table 4. Properties of the Earth-NEA Didymos transfer.

Launch Window M/D/Y 03/06/26 to 04/29/26

Launch date M/D/Y 6 h 04/06/26

Circular parking LEO altitude (km) 200

VSC (m/s) 10,932.389

|∆VTGE | (m/s) 3144

|∆V| at perihelion (m/s) 22

|∆VLaunch| (reference) Lambert’s Meth. * (m/s) 3318

Launch C3 relative to the Earth (106 m2/s2) −1.796

Impact date, M/D/Y 03/07/2029

Time of transfer (days) 1086

Distance from Earth at impact (km) 19,126,666

Arrival Impact Angles (degrees) 15.04

Relative velocity at impact (m/s) 9240.300
* Without middle-way correction maneuvers.
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5. Conclusions

From a set of periodic orbits around the Lagrangian equilibrium point L1, called family
G, predicted by the circular Restricted Three-Body Problem, studies on collisions with
the Moon, escape from the Earth–Moon system, and far-reaching geocentric trajectories
derived from these periodic orbits were presented. Among these, we highlighted the
escape trajectories (named TGEs) whose ranges allow for the planning of missions to
Near-Earth Asteroids.

One of the main features of the escape trajectories (TGEs) is the departure from the
Earth with C3 (characteristic energy) < 0 and, therefore, a |∆VTG| at launch for altitudes
between 200 km and 1000 km is 2.5% to 5% lower than required to generate direct escape
geocentric parabolas (C3 = 0) and up to 5% lower than the value required for transfers
to NEAs obtained by conventional methods such as Lambert’s method. Since they are
derived from the periodic orbits of family G, the escape trajectories make a passage through
the Moon, collide, or perform swing-bys. In the latter case, the swing-bys guarantee the
necessary energy gain to make C3 relative to the Earth positive and send the spacecraft
into interplanetary space, called TGEs, or to generate geocentric trajectories with an apogee
between 9 × 105 km and 2 × 106 km. The latter are called TGIs.

Studies on launch speeds (VSC) required to generate collision (TGCs), escape (TGEs),
and inversion (TGIs) trajectories and their dependence on the circular LEO altitudes (h0),
ΩMoon, and fMoon, as well as the ranges of their final heliocentric orbits, were also presented.
These studies led to a methodology for planning transfers to NEAs.

Finally, missions to the NEAs 3361 Orpheus (Apollo class), 99942 Apophis (Aten class),
and Didymos (Apollo class) were studied. They show how launch windows are determined
and how missions are investigated. The costs of these missions were analyzed in terms
of |∆Vs| needed to launch and correct the TGEs until impact with NEAs, which fall
below those required to generate parabolic geocentric escape trajectories and interplanetary
trajectories by Lambert’s method. Thus, transfers planned via TGEs can be classified as
low-cost missions.

In forthcoming works, powered lunar and Earth swing-bys from the TGIs could be
planned to generate more far-reaching escape trajectories capable of achieving or crossing
the orbits of Venus and Mars, for example.
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