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Abstract: Epistemic uncertainties, caused by data asymmetry and deficiencies, exist in resilience
evaluation. Especially in the system design process, it is difficult to obtain enough data for system
resilience evaluation and improvement. Mathematics methods, such as evidence theory and Bayesian
theory, have been used in the resilience evaluation for systems with epistemic uncertainty. However,
these methods are based on subjective information and may lead to an interval expansion problem
in the calculation. Therefore, the problem of how to quantify epistemic uncertainty in the resilience
evaluation is not well solved. In this paper, we propose a new resilience measure based on uncertainty
theory, a new branch of mathematics that is viewed as appropriate for modeling epistemic uncertainty.
In our method, resilience is defined as an uncertainty measure that is the belief degree of a system’s
behavior after disruptions that can achieve the predetermined goal. Then, a resilience evaluation
method is provided based on the operation law in uncertainty theory. To design a resilient system, an
uncertain programming model is given, and a genetic algorithm is applied to find an optimal design
to develop a resilient system with the minimal cost. Finally, road networks are used as a case study.
The results show that our method can effectively reduce cost and ensure network resilience.

Keywords: resilience measure; epistemic uncertainty; uncertain theory; resilience evaluation and
optimization

1. Introduction

In the engineering field, resilience reflects the ability of a system to withstand, adapt,
and recover from disruptions (including both external disturbances and internal failures) [1].
If the impact of a disturbance cannot be effectively controlled, the disturbance may cause
severe economic or other losses. For example, Hines et al. [2] pointed out that in the
past 100 years, North America suffered power losses of as much as 186,000 MW due to
natural disasters. Hurricane Isabel devastated the transportation system of the Hampton
Roads, VA, region in 2003 and overwhelmed the emergency response system [3]. Besides
these direct damages, MacKenzie et al. [4] analyzed the indirect production losses caused
by disabled production facilities in the earthquake and tsunami that struck Japan on 11
March 2011. Hence, to reduce the direct and derived damages caused by disruption, more
and more researchers begin to focus on system resilience evaluation and improvement.
Resilience has become a hot research topic.

Many researchers have proposed a resilience definition from different views. Bruneau
et al. [5] defined seismic resilience as the ability of systems to mitigate hazard, contain
effects, and carry out recovery activities. Arcuri et al. [6] analyzed resilience on healthcare
systems. They pointed out that healthcare system resilience has been linked to sustain-
ability, safety, quality, and adaptive capacity. Cook and Long [7] studied the adaptive
capacity in organization resilience. They proposed that the ability to borrow and adjust an
adaptive capacity are features of resilience system and resilience engineering. Woods [8]
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proposed four senses of resilience including rebound, robustness, extensibility, and adapt-
ability. Jain et al. [9] defined resilience as three abilities: avoidance, survival, and recovery.
Pawar et al. [10] summarized resilience definitions and proposed that the resilience of
industrial systems have three common themes, i.e., absorption, adaptation, and restoration.
The same view can also be seen in Abbasnejadfard et al. [11].

To evaluate system resilience, researchers have proposed many measures, which can
be categorized as deterministic and probabilistic measures. Deterministic resilience mea-
sures and compares a system’s behavior before and after a certain disruption, and typical
deterministic resilience measure methods include the resilience loss [5], performance in-
tegral ratio-based measures [1,12–14], recovered performance ratio-based measures [15],
and performance loss rate-based measures [16–18], etc. Probabilistic resilience measures
consider the randomness of both a disturbance and the system response to it, and typ-
ical probabilistic resilience measures include deterministic resilience distribution-based
measures [19], and performance degradation and recovery time-based measures [5,20,21],
etc. Using the resilience measures described above, system resilience was evaluated using
real data and simulations. Roach et al. (2018) [22] developed ten other metrics to evaluate
the resilience of a water resources system with real data. Roberto and Patelli (2018) [23]
simulated the perfor mance of a power grid system after disruptions and evaluated its
resilience. Other researchers designed system resilience strategies such as protection strate-
gies [24], reconfiguration strategies [25], and recovery strategies [26]. To design a resilient
system, resilience optimization models and algorithms were also developed. For example,
Li et al. [27] proposed a resilience optimization model to find the best recovery strategy
for road networks after disruptions. Miller et al. [28] proposed a network resilience opti-
mization model to find the optimal recovery strategy for a rail-based intermodal container
network considering the uncertainty of traffic flow. Zhang et al. [29] proposed a resilience
optimization model for road networks to find the best structure for a resilient road net-
work. Salas and Yepes [30] proposed an improved planning support system to afford a
planning alternative over the Spanish road network. Their method proved that decen-
tralization optimization can improve the adaptive capacity of road networks and then
improve resilience.

However, these resilience measures and their evaluation and optimization methods
have problems when epistemic uncertainty existed. Epistemic uncertainty describes the
subjective uncertainty caused by insufficient knowledge and information. In the system
design process, no operation data can be obtained, and designers can only conduct tests
or simulations to observe how disruptions affect a system. As is generally known, it is
both time consuming and costly to conduct tests or simulations, especially for large-scale
systems, so only limited data can be obtained. Due to this data insufficiency, the law of
resilience cannot be obtained, which may lead to a poor knowledge of system resilience.
In this situation, it is necessary to rely on empirical data to make decisions. When experts
are investigated for empirical data, empirical data are asymmetrical due to the difference
of knowledge between experts. To conclude, researchers face the problems of data insuffi-
ciency [31], poor knowledge of a system [32,33], and data asymmetry [34]. In this stage,
the resilience evaluation for a new system is a typical problem with epistemic uncertainty
that differs from traditional aleatory uncertainty [33,35]. Most existing resilience measures
only consider aleatory uncertainty, i.e., the dispersion of both a disturbance and a system
response to it. A few researchers have already studied epistemic uncertainty, and applied
Bayesian theory [36] and evidence theory [37] to quantify the epistemic uncertainty of
performance degradation and the disruption intensity in the resilience process, however,
evidence theory will lead to the interval expansion problem for large systems [38], and
Bayesian theory will bring subjective information into probability theory. There is no
evidence to prove that subjective probability follows the operation law of probability the-
ory [38–40]. Due to the reasons listed above, the problem of determining how to quantify
epistemic uncertainty in resilience evaluation has not been well solved. The uncertainty
theory proposed by Liu [41], a new branch of axiomatic mathematics, provides another
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solution for the epistemic uncertainty quantification problem, and this theory has been
successfully applied in engineering. Hu et al. [42] applied uncertainty theory into risk
assessment. Kang et al. [43] combined the reliability with uncertainty theory. Yang et al. [34]
used uncertainty theory to measure epistemic uncertainty in spare parts transportation
optimization. Li et al. [44] proposed a reliability analysis method for a muti-state dete-
riorating system based on belief reliability theory. These studies showed that compared
with other methods for epistemic uncertainty, such as fuzzy theory, interval theory, and
evidence theory, uncertainty theory is more applicable in epistemic quantification.

This paper proposes an uncertainty theory-based resilience measure and provides both
resilience evaluation and optimization methods. Our main contributions are as follows:

1. A new uncertainty theory-based resilience measure is proposed to quantify the epis-
temic uncertainty in resilience evaluation. Compared with other methods, our new
resilience measure has a solid mathematical foundation in epistemic quantification;

2. A resilience evaluation framework is provided for the new resilience measure. By
building the performance model and the disruption response model, and obtaining the
distribution function of uncertain variables, the distribution function of the disruption
response can be calculated, and the system resilience can be evaluated;

3. To build a resilient system with a minimum budget, an uncertain programming model
is given and a genetic algorithm is applied to solve the optimization problem. A road
network case verifies the effectiveness of our new model and algorithm.

The remainder of this paper is organized as follows. Section 2 gives a brief introduction
of both resilience and uncertainty theory. Section 3 proposes our uncertainty theory-based
resilience measure. Section 4 provides both resilience evaluation and optimization methods.
Section 5 describes the application of two road networks as case studies to verify the
effectiveness of our methods. Finally, concluding remarks are provided in Section 6.

2. Basic Concepts and Theories
2.1. System Response after Disruptions

After a disruption occurs, the system performance may degrade and then recover
due to the implementation of recovery activities. This performance change process (i.e.,
the system response) after a disruption is shown in Figure 1. Some performance change
processes are gradual and continuous, as Figure 1 shows, and some are discrete with
sudden changes. In this figure, the system performed steadily at the beginning and suffered
a disruption at time t0. Then, the system performance started to decrease. After taking
some recovery actions, the system performance gradually returns back. In some cases,
the system may finally reach a better performance with resource reconfiguration, and also
may get a worse performance as the system cannot recover completely. Considering that
the ability of system to withstand, adapt, and recover from disruptions can be reflected in
the performance changing process, many resilience measures are proposed based on the
system’s response to the disruption.
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2.2. Uncertainty Theory

Uncertainty theory is a new branch of axiomatic mathematics. In uncertainty theory,
the belief degrees of events are quantified by defining the uncertain measure. Some basic
concepts and results for uncertainty theory are presented as follows.

Definition 1 (Uncertain Measure [41]). Letting Γ be a nonempty set and L be a σ-algebra over Γ,
each element Λ in L is an event. A set functionM is called an uncertain measure if it satisfies the
following axioms.

Axiom 1 (Normality Axiom).M(Γ) = 1 for the universal set Γ.

Axiom 2 (Duality Axiom).M(Λ) +M(Λ c) = 1 for any event Λ, where Λ c is the complemen-
tary set of Λ.

Axiom 3 (Subadditivity Axiom). For every countable sequence of events Λ1, Λ2, · · · , there is

M
{

i=1
∪
∞

Λ i

}
≤

∞

∑
i=1
M{Λ i}. (1)

Axiom 4 (Product Axiom [45]). Letting (Γk,Lk,Mk) be the uncertainty spaces for k = 1, 2, · · · ,
there is

M
{

∞

∏
k=1

Λk

}
=

∞
∧

k=1
M{Λk}. (2)

Definition 2 (Uncertain Variable [41]). An uncertain variable is a function ξ from an uncertainty
space (Γ,L,M) for the set of real numbers such that {ξ ∈ B} is an event for any Borel set B of real
numbers.

Definition 3 (Uncertainty Distribution [41]). The uncertainty distribution Φ of an uncertain
variable ξ is defined by

Φ(x) =M{ξ ≤ x}, (3)

for any real number x.

Definition 4 (Regular Uncertainty Distribution [46]). An uncertainty distribution Φ(x) is
said to be regular if it is a continuous and strictly increasing function with respect to x for which
0 < Φ(x) < 1, and

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1. (4)

Definition 5 (Inverse Uncertainty Distribution [46]). Letting ξ be an uncertain variable with
a regular uncertainty distribution Φ(x), then the inverse function Φ−1(x) is called the inverse
uncertainty distribution of ξ.

Definition 6 (Independence [45]). The uncertain variables ξ1, ξ2, · · · , ξn are said to be indepen-
dent if

M
{

n
∩

i=1
(ξi ∈ Bi)

}
=

n
∧

i=1
M{ξi ∈ Bi}, (5)

for any Borel sets B1, B2, · · · , Bn of real numbers.

Definition 7 (Strictly Monotone Function of Uncertain Variables [46]). A real-valued func-
tion f (x1, x2, · · · , xn) is said to be strictly monotone if it is strictly increasing with respect to
x1, x2, · · · , xm and strictly decreasing with respect to xm+1, xm+2, · · · , xn; that is

f (x1, · · · , xm, xm+1, · · · xn) ≤ f (y1, · · · , ym, ym+1, · · · yn), (6)
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whenever xi ≤ yi for i = 1, 2, · · · , m and xi ≥ yi for i = m + 1, m + 2, · · · , n , and

f (x1, · · · , xm, xm+1, · · · xn) < f (y1, · · · , ym, ym+1, · · · yn), (7)

whenever xi < yi for i = 1, 2, · · · , m and xi > yi for i = m + 1, m + 2, · · · , n.

Theorem 1 (Operational Law: Inverse Distribution [46]). Letting ξ1, ξ2, · · · , ξn be indepen-
dent uncertain variables with regular uncertainty distributions Φ1, Φ2, · · · , Φn respectively, if
f (ξ1, ξ2, · · · , ξn) is a continuous and strictly increasing with respect to ξ1, ξ2, · · · , ξm and strictly
decreasing with respect to ξm+1, ξm+2, · · · , ξn, then

ξ = f (ξ1, ξ2, · · · , ξn), (8)

has an inverse uncertainty distribution

Ψ−1(α) = f
(

Φ−1
1 (α), · · · , Φ−1

m (α), Φ−1
m+1(1− α), · · · , Φ−1

n (1− α)
)

. (9)

3. Uncertainty Theory-Based Resilience Measure

We first define the uncertainty theory-based resilience as follows.

Definition 8 (Resilience). Letting a system state variable ξ be an uncertain variable that refers to
the system’s state after disruption and letting Ξ be the resilience domain of the system state, then the
resilience is defined as the belief degree that the system’s state after disruption is within the resilience
domain, i.e.,

RE =M{ξ ∈ Ξ} (10)

where ξ refers to the system’s state after disruption, and it can be described by the system’s behavior
after the disruption.

This resilience measure is a general one, and it describes the chance that the system’s
resilience is satisfactory for user requirements. Because most existing research uses a
system’s performance change process to reflect the system’s behavior after disruption, we
also define the state variable ξ based on this. Let the system’s response to the disruption re
be a state variable and denote its threshold as reth. Then, the event ξ ∈ Ξ can be recorded
as re > reth, and the resilience can be measured as:

RE =M{re > reth} (11)

In our paper, the average performance after disruption is selected to reflect the system’s
response to the disruption event. It is called the disruption response and can be calculated
as [1]

re =

∫ t0+Ta
t0

Q(t)dt

Ta
(12)

where t0 is the time at which the disruption occurs, Ta is the maximum allowable recovery
time determined by users, and Q(t)(0 ≤ Q(t) ≤ 1) is the normalized performance of the
system after the disruption. Using the min-max method [47], Q(t) can be calculated as

Q(t) =


Pmax−P(t)
Pmax−P0

, if P is STB
P(t)−Pmin
P0−Pmin

, if P is LTB

min
{

P(t)−Pmin
P0−Pmin

, Pmax−P(t)
Pmax−P0

}
, if P is NTB

(13)

where P0 is the performance of the system without disruption, and Pmin and Pmax are the
minimum acceptable value and the maximum acceptable value of the system performance
P, respectively. Once the performance exceeds Pmin and Pmax, the system cannot be used
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completely. Here, LTB means the larger-the-better, and this is true for the system functions
when P > Pmin. STB means the smaller-the-better, and this is true for the system functions
when P < Pmax. NTB means the more nominal-the-better, and this is true for the system
functions when Pmin < P < Pmax. The physical meaning of our normalized method is
shown in Figure 2a. Using the performance normalization method in Equation (13), the
performance in the perfect zone of Figure 2a are normalized as Q(t) = 100%, those in the
fault zone are normalized as Q(t) = 0%, and those in the degraded zone are normalized as
the percentage of the performance that the system can provide.
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Figure 2b shows a normalized performance change process, and re can be calculated
using the ratio of the area of the dark blue zone to the areas of both the dark blue and the
light blue zones. re is a comprehensive index including robustness, adaption, and recovery
capability. Its physical meaning is the average normalized performance in the maximum
allowable recovery time after a disruption. The event {re > reth}means that the system’s
average performance after the disruption is within the resilience domain. In this way, our
new resilience measure quantifies the belief degree of the system’s behavior meeting the
requirements after disruptions.

According to uncertainty theory, re is an uncertain variable. Letting Φ be the distribu-
tion of re, our new resilience measure can be calculated as

RE =M{re > reth} = 1−M{re ≤ reth} = 1−Φ(reth). (14)

After the actual or experimental data are obtained, researchers can use uncertainty
statistics to obtain the distribution function Φ and calculate the resilience within the
threshold reth.

4. Resilience Evaluation and Optimization

In this section, we provide a resilience evaluation framework first, and then we propose
a resilience optimization method to assist with the system’s resilience design.

4.1. Resilience Evaluation

Based on the resilience definition given above, a resilience evaluation framework is
proposed as shown in Figure 3. The resilience evaluation steps are as follows.
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Step 1: The performance model is built to describe the system’s performance change
over time. The general performance model is as follows:

P(t) = f (t, ξ1, ξ2, · · · , ξn), (15)

where P(t) is the system performance at time t, and the function f (·) is the performance
model. It is worth noting that in this paper we focus on the performance changing process
of a system after disruption, and disruption modeling and generation will be our future
work. Therefore, ξ1, ξ2, · · · , ξn are parameters that describe the performance characteristics
such as the performance degradation and recovery time. These parameters differ in
different resilience processes. In this paper, parameters ξ1, ξ2, · · · , ξn are uncertain variables.
With performance changing process data after several disruption events, the distribution
functions of ξ1, ξ2, · · · , ξn can be obtained by an uncertain statistic method. Here, we
assume that ξ1, ξ2, · · · , ξn are independent uncertain variables. This limitation will be
overcome in future work.

Step 2: The disruption response model is built to calculate re that is defined in Equa-
tion (12). The general form of the disruption response model can be denoted as:

re = g(ξ1, ξ2, · · · , ξn), (16)

where g(·) is the disruption response model. It can be calculated by substituting Equation (15)
into Equations (12) and (13). According to the definition of re in Equation (12), this model
can be used to calculate the average value of a system’s normalized performance during a
performance changing process. Here the disruption response model is a deterministic model.
As described in Step 1, parameters ξ1, ξ2, · · · , ξn are uncertain variables. Therefore, the
disruption response re is also an uncertain variable. Its distribution function can be obtained
based on the distribution functions of ξ1, ξ2, · · · , ξn and the operation law of uncertain theory.

Step 3: The uncertainty quantification is determined. As described in Section 3,
resilience is defined as an uncertain measure, and it can be explained as the quantification
of the uncertainty of a system’s disruption response. After building the disruption response
model, the system resilience can be obtained based on the distribution function of the
parameters in the model. Therefore, the uncertainty quantification can be divided into two
sub-steps:

1. The distribution functions of uncertain variables ξ1, ξ2, · · · , ξn are obtained. The dis-
tribution function of the parameters can be obtained by using the uncertain statistics
method [46,48] or data form experts [49];
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2. The distribution function of re is calculated. Using the distribution function of the
uncertain variables ξ1, ξ2, · · · , ξn, the resilience can be evaluated using Equation (14).
According to Theorem 1, the distribution function of re can be calculated as follows.

It is assumed that (1) the disruption response function g(ξ1, ξ2, · · · , ξn) is continuous
and strictly increasing with respect to ξ1, ξ2, · · · , ξm and strictly decreasing with respect
to ξm+1, ξm+2, · · · , ξn, and (2) the independent uncertain variables ξ1, ξ2, · · · , ξn have the
regular uncertainty distributions Φ1, Φ2, · · · , Φn. Then the disruption response re has the
inverse uncertainty distribution

Ψ−1
re (α) = g

(
Φ−1

1 (α), · · · , Φ−1
m (α), Φ−1

m+1(1− α), · · · , Φ−1
n (1− α)

)
, (17)

where α is the belief degree, and Ψ−1
re is the inverse distribution of the disruption response.

The monotonicity of g can be analyzed according to the physical meaning of parameters
ξ1, ξ2, · · · , ξn and re.

Based on the inverse distribution of the disruption response in Equation (17), the
99-method [46] can be used to obtain the distribution function of the disruption response,
and then the system resilience can be calculated.

4.2. Resilience Optimization

A resilience optimization method is proposed to find the optimal system design.
In this research, resilience is defined as an uncertain measure, and the resilience-based
optimization model is an uncertain programming model. In 2009, Liu [50] proposed
the theory of uncertain programming, and provided the basic models for the uncertain
programming and optimization methods. Based on conclusions from that research, the
steps of our optimization method are as follows.

4.2.1. Optimization Model

Many resilience-based models have been provided in previous studies. For example,
Zhang et al. [29] proposed a resilience-based network optimization model with the aims of
finding the minimum cost design with the resilience constraint. Based on the same idea,
our optimization model is as follows:

min
x

cost(x)

s.t.M{re(x, ξ1, ξ2, · · · , ξn) > reth} ≥ α
(18)

where the function cost(x) is the system design cost,M{·} is the system resilience, α is the
resilience requirement, and x is the vector of the optimization variable, which is determined
by the system design. Equation (18) only accounts for the cost and resilience of the system,
and researchers can add other constraints as needed for practical problems.

4.2.2. Optimization Model Transformation

Liu [50] proved that the uncertain programming model could be transformed into a
crisp mathematical programming model according to the operation laws in uncertainty
theory. According to Theorem 1, the constraint functionM{re(x, ξ1, ξ2, · · · , ξn) > reth} in
Equation (18) is equivalent to crisp mathematical programming

min
x

cost(x)

s.t. re

(
Φ−1

1 (1− α), · · · , Φ−1
m (1− α), Φ−1

m+1(α), · · · , Φ−1
n (α)

)
≥ reth

(19)

where Φ−1
1 , Φ−1

2 , · · · , Φ−1
n are inverse uncertain distributions of ξ1, ξ2, · · · , ξn.
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4.2.3. Optimization Method

To solve the crisp mathematical programming shown in Equation (19), common
optimization algorithms such as the gradient descent method and the Hessian matrix
method can be used. For some complex optimization problems, intelligent algorithms such
as genetic algorithms and particle swarm optimization algorithms are better choices.

5. Case Study

We use two road network cases to demonstrate the application of our resilience
evaluation and optimization method.

5.1. Case Introduction

Case 1: A road network with a simple structure is shown in Figure 4. This case is taken
from Hiller et al. [51]. Nodes S and T are the source and destination nodes, respectively. In
the figure, the numbers in the brackets represent the link number and the capacity. The
maximum flow between Nodes S and T is chosen as the key performance parameter of
the system. This model represents a determinate situation, in which the network topology
is deterministic.
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Figure 4. A 7-node network.

Case 2: Figure 5 illustrates another road network with a slightly more complex struc-
ture. This case is taken from Dai and Poh [52]. In this problem, all of the links represent
potential roads. Designers need to find an optimal road network design that minimizes the
costs within the constraint of the system resilience. Similar to Case 1, the maximum flow
between Nodes S and T is selected as the key performance parameter. The numbers in the
brackets represent the number, capacity, and cost of the links.

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 23 
 

 

 
Figure 5. A 20-node network. 

To simplify the problem, we make the following assumptions: 
1. Only one link is affected during each disruption; 
2. The capacity of the road links degrades suddenly after disruptions, and the capacity 

recovery processes are linear processes. This is a widely used assumption in resili-
ence research [53]. In most disruptions, especially natural disasters and traffic acci-
dents, the road link capacity degradation time is very short, and the capacity degra-
dation time can be regarded as zero; 

3. The uncertain variable dC  follows a linear uncertain distribution as follows 

( )

0, 0

0

1

dC i
i

i

x
xx x C

C
x C

F

ìï £ïïïïï= < £íïïïï >ïïî

 (20) 

where 
dCF  is the distribution function of the maximum performance degradation 

dC ; 
4. The uncertain variable rT  follows a lognormal uncertain distribution as follows 

( )
( )

1
ln

1 exp , 0
3rT

e x
x x

p
F

s

-æ öæ ö- ÷ç ÷ç ÷÷ç ç ÷= + ³÷ç ç ÷÷ç ç ÷÷ç ÷ç è øè ø
 (21) 

where 
rTF  is the distribution function of the recovery time rT , and e  and s  are 

the expected value and the standard deviation of the normal uncertainty distribution, 
respectively. 

5.2. Case 1: Road Network Resilience Evaluation 
5.2.1. Resilience Evaluation 

Using the resilience evaluation method proposed in Section 4.1, the resilience of the 
road network in Case 1 is evaluated as follows. 

(1) The system performance model is built. In this case, the maximum flow between 
Nodes S and T is determined by the capacity of the road link. Therefore, the system per-
formance model should be built based on the road link capacity disruption model and the 
correlation between the road link capacity and the maximum flow. 

After a certain disruption, the capacity of road link i at time t can be expressed as 

Figure 5. A 20-node network.



Symmetry 2022, 14, 1182 10 of 22

To simplify the problem, we make the following assumptions:

1. Only one link is affected during each disruption;
2. The capacity of the road links degrades suddenly after disruptions, and the capacity

recovery processes are linear processes. This is a widely used assumption in resilience
research [53]. In most disruptions, especially natural disasters and traffic accidents,
the road link capacity degradation time is very short, and the capacity degradation
time can be regarded as zero;

3. The uncertain variable Cd follows a linear uncertain distribution as follows

ΦCd(x) =


0, x ≤ 0
x
Ci

0 < x ≤ Ci

1 x > Ci

(20)

where ΦCd is the distribution function of the maximum performance degradation Cd;
4. The uncertain variable Tr follows a lognormal uncertain distribution as follows

ΦTr (x) =
(

1 + exp
(

π(e− ln x)√
3σ

))−1
, x ≥ 0 (21)

where ΦTr is the distribution function of the recovery time Tr, and e and σ are the
expected value and the standard deviation of the normal uncertainty distribution,
respectively.

5.2. Case 1: Road Network Resilience Evaluation
5.2.1. Resilience Evaluation

Using the resilience evaluation method proposed in Section 4.1, the resilience of the
road network in Case 1 is evaluated as follows.

(1) The system performance model is built. In this case, the maximum flow between
Nodes S and T is determined by the capacity of the road link. Therefore, the system
performance model should be built based on the road link capacity disruption model and
the correlation between the road link capacity and the maximum flow.

After a certain disruption, the capacity of road link i at time t can be expressed as

ci(t) = h(Ci, Cd, Tr, t), (22)

where Ci is the capacity of road link i in the normal state, Cd is the maximum capacity
degradation of link i, and Tr is the recovery time of link i.

For linear capacity recovery processes, g(·) can be written as follows:

ci(t) =

{
t−Tr

Tr
Cd + Ci, 0 ≤ t ≤ Tr

Ci, t > Tr
(23)

After the disruption, the maximum flow can be calculated according to the capacity of
the road links as

Fmax(t) = f (C1, · · · , Ci−1, ci(t), Ci+1, · · · , Cn), (24)

where ci(t) ≤ Ci.
Obviously, the function in Equation (22) is a piecewise linear function with two

sections, as shown in Figure 6. In this case, the disruption of link i affects the maximum
flow as follows:

Fmax(t) =

{
ci(t) + 14− CP

i , 0 ≤ ci(t) < CP
i

14, CP
i ≤ ci(t) ≤ Ci

(25)
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where CP
i is the inflection point of the piecewise linear function for link i, which is deter-

mined by the network structure. Figure 6 shows how the capacity of each link affects the
maximum flow, and the values for the parameters CP

i and Ci are shown in Table 1.
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Figure 6. Performance function model.

Table 1. Parameter values in Figure 6.

Link i CP
i Ci

1 3 5
2 6 7
3 3 4
4 0 1
5 3 3
6 0 2
7 4 4
8 3 5
9 3 4
10 8 9
11 1 1
12 6 6

(2) The disruption response model is built. In this case, the maximum flow is an LTB
parameter. According to the performance normalization method given in Equation (13),
the normalized maximum flow can be calculated as:

Q(t) =

{
ci(t)−CP

i
14 + 1, 0 ≤ ci(t) < CP

i
1, CP

i ≤ ci(t) ≤ Ci
(26)

where P0 = 14, Pmin = 0.
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Combining Equations (23) and (26), the normalized maximum flow of the network is
as follows:

Q(t) =


1, Cd ≤ Ci − CP

i
Cdt−(Cd−Ci−14+CP

i )Tr
14Tr

, 0 ≤ t < CP
i −Ci+Cd

Cd
Tr and Cd > Ci − CP

i

1, CP
i −Ci+Cd

Cd
T ≤ tr and Cd > Ci − CP

i

(27)

Taking Link 1 as an example, the normalized maximum flow of the network when
Link 1 is disrupted is as follows:

Q1(t) =


1, Cd ≤ 2

Cd
14Tr

t− Cd
14 + 8

7 , 0 ≤ t < Cd−2
Cd

Tr and Cd > 2

1, Cd−2
Cd

T ≤ tr and Cd > 2

(28)

According to Equation (12), the disruption response of the network can be calculated
as follows:

r1
e =


1, Cd ≤ 2
CdTa
28Tr
− Cd

14 + 8
7 , 0 ≤ Ta <

Cd−2
Cd

Tr and Cd > 2
(Cd−2)Tr

7CdTa

(
1
2 −

Cd
4

)
+ 1, Ta ≥ Cd−2

Cd
Tr and Cd > 2

(29)

(3) The uncertainty is quantified. In this case, Cd and Tr are uncertain variables. Taking
Link 1 as an example, let Ci = 5, e = 2, and σ = 1, so the inverse distributions of the
variables are as follows:

Φ−1
Cd

(α) = 5α, (30)

Φ−1
Tr

(α) = exp

(
2−
√

3
π

ln
(

1
α
− 1
))

, (31)

where α is a belief degree between 0 and 1.
After the distribution functions of the uncertain variables are obtained, the inverse distri-

bution function of the network disruption response re can be computed using Equation (17).
According to the physical meanings of Cd, Tr, and re, it is obvious that re is continuous and
strictly decreasing with respect to Cd and Tr. Letting Ta = 10, the inverse distribution of re
when Link 1 is disrupted can be expressed as follows:

Ψ−1
r1

e
(α) = r1

e

(
Φ−1

Cd
(1− α), Φ−1

Tr
(1− α)

)

=


1, α ≥ 0.6

5Ta(1−α)

28 exp
(

2−
√

3
π ln

(
1

(1−α)
−1
)) − 5(1−α)

14 + 8
7 , α < 0.27

(3−5α) exp
(

2−
√

3
π ln

(
1

(1−α)
−1
))

35(1−α)Ta

(
1
2 −

5(1−α)
4

)
+ 1, 0.27 ≤ α < 0.6

(32)

As Equation (32) shows, the inverse distribution function of r1
e is complex. Using the

linear interpolation method, the distribution function of re when Link 1 is disrupted can be
obtained, as shown in Figure 7. According to Equation (14), letting reth = 0.9, the resilience
when Link 1 is disrupted can be calculated as

R1
E =M

{
r1

e > reth

}
= 1−M

{
r1

e ≤ 0.9
}
= 1−Φ(0.9) = 0.88. (33)



Symmetry 2022, 14, 1182 13 of 22

Symmetry 2022, 14, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 7. Distribution function of er  when Link 1 is disrupted. 

From Figure 7, one can see that: 

1. The belief degree of the event { }1 0.7857er £  is 0. It is obvious that the value of the 

network resilience is at a minimum when Link 1 is totally interrupted and cannot 
recover. In this situation, the maximum flow after the disruption has a constant value 
of 11. 1

er  can also be calculated using the ratio of 11 to 14, and is equal to 0.7857; 

2. The belief degree of the event { }1 1er <  is 0.6. According to the network structure, 

the maximum flow of the road network starts to decrease only when the capacity 
degradation of Link 1 exceeds two. According to Equation (20), the belief degree of 
the event { }2dC >  is 0.6. 
The two results are intuitive when Link 1 is disrupted, and the effectiveness of our 

method is verified. 

5.2.2. Results and Discussion 
Using the same method, the network resilience when each link is disturbed is evalu-

ated. Letting 0.9ethr = , the system resiliencies when different links are disturbed are 
shown in Table 2. 

Table 2. Resilience of system. 

Link Resilience Link Resilience 
1 0.879 7 0.66 
2 0.644 8 0.879 
3 0.833 9 0.833 
4 1 10 0.565 
5 0.746 11 1 
6 1 12 0.557 

As shown in Table 2, the network resilience is equal to one when Links 4, 6, and 11 
are disturbed. Links 4 and 6 are redundant road links, and the system operates normally 

Figure 7. Distribution function of re when Link 1 is disrupted.

From Figure 7, one can see that:

1. The belief degree of the event
{

r1
e ≤ 0.7857

}
is 0. It is obvious that the value of the

network resilience is at a minimum when Link 1 is totally interrupted and cannot
recover. In this situation, the maximum flow after the disruption has a constant value
of 11. r1

e can also be calculated using the ratio of 11 to 14, and is equal to 0.7857;
2. The belief degree of the event

{
r1

e < 1
}

is 0.6. According to the network structure,
the maximum flow of the road network starts to decrease only when the capacity
degradation of Link 1 exceeds two. According to Equation (20), the belief degree of
the event {Cd > 2} is 0.6.

The two results are intuitive when Link 1 is disrupted, and the effectiveness of our
method is verified.

5.2.2. Results and Discussion

Using the same method, the network resilience when each link is disturbed is eval-
uated. Letting reth = 0.9, the system resiliencies when different links are disturbed are
shown in Table 2.

Table 2. Resilience of system.

Link Resilience Link Resilience

1 0.879 7 0.66
2 0.644 8 0.879
3 0.833 9 0.833
4 1 10 0.565
5 0.746 11 1
6 1 12 0.557

As shown in Table 2, the network resilience is equal to one when Links 4, 6, and 11 are
disturbed. Links 4 and 6 are redundant road links, and the system operates normally even
if Links 4 and 6 fail completely. If Link 11 completely fails and cannot recover, r1

e is 0.9286
(ratio of maximum flow when Link 11 completely fails to the initial max-flow), i.e., r1

e is
always larger than 0.9, and it is always in the resilience domain.

Figure 8 further illustrates how the system resilience RE varies with reth when different
links are disturbed.
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To highlight the novelty of our method, we compared our resilience evaluation result
with a probability-based measure. The probability-based measure is defined as

R1
EP = P

{
r1

e > reth

}
,

where P is the probability measure, R1
EP is the probability-based resilience measure when

Link 1 is disrupted. R1
EP can be calculated using the Monte Carlo method.

The resilience evaluation result is shown in Figure 9.
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As is shown in Figure 9, the uncertainty theory-based resilience evaluation result is
always less then probability-based resilience. This result shows the advantage of our new
resilience measure. When epistemic uncertainty exists, our measure can provide a more
conservative result, which is beneficial to decision makers. Similar results can also be found
in [44].

5.3. Case 2: Road Network Resilience Optimization
5.3.1. Network Optimization

According to the resilience optimization method in Section 4.2, the road network in
Case 2 is optimized as follows.
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(1) The optimization model is built. In this case, the network cost is regarded as the
optimization goal, and the cost function can be expressed as

cost =
30

∑
i=1

xili, (34)

where cost is the cost of the network, li is the cost of link i, xi is a binary decision vari-
able, and

xi =

{
1, if link i is included in network
0, otherwise

(35)

Our network should provide enough transportation and network resilience. The
requirement of the transportation amount can be expressed by an inequality constraint
as follows:

F(x) ≥ p, (36)

where F is the maximum flow of the network with a link composition vector x, which
is a vector of binary decision variables, and p is the minimum requirement of the maxi-
mum flow.

In this case, the system resilience is regarded as the minimum value of the system
resilience when a single link is disrupted. This means that designers care about the worst
situation. Ahmadian [54] applied the same resilience measure. The system resilience
requirement can be expressed as follows:

min
{

R1
E, R2

E, · · · , R30
E

}
≥ α, (37)

where R1
E, R2

E, · · · , R30
E are the system resilience when Links 1, 2, · · · , 30 are disrupted.

Letting reth = 0.9, Ri
E can be evaluated by using the resilience evaluation methods described

in Section 4.1.
It is worth noting that it is probable that not all of the links are included in the optimal

solution. However, Equation (37) is still applicable. The reason for this is that if link i is
not included in the optimal network, the network performance is not be influenced by the
disruption to link i. Ri

E is equal to one and does not affect the result of Equation (37).
The optimization model of this case is as follows:

min
x

30
∑

i=1
xili

s.t. min
{

R1
E, R2

E, · · · , R30
E
}
≥ α

F(x) ≥ p

(38)

(2) The optimization model is transformed. The resilience constraint in the optimiza-
tion model of Equation (38) represents the fact that the minimum resilience of the system
with different disruptions should be greater than the requirement value. This is equivalent
to the event of the resilience of the system with each disruption being greater than the
requirement value. Additionally, the resilience constraint is an uncertainty constraint. Ac-
cording to the optimization model transformation method discussed in Section 4.2, the
resilience constraint can be transformed as follows

r1
e

(
x, Φ−1

C1
d
(α), Φ−1

Tr
(α)

)
≥ reth

r2
e

(
x, Φ−1

C2
d
(α), Φ−1

Tr
(α)

)
≥ reth

...

r30
e

(
x, Φ−1

C30
d
(α), Φ−1

Tr
(α)

)
≥ reth

(39)
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where r1
e , r2

e , · · · , r30
e are the disruption responses of the network when Links 1, 2, · · · , 30 are

disrupted, C1
d , C2

d , · · · , C30
d are the maximum performance degradations of Links 1, 2, · · · , 30,

and Φ−1
C1

d
, Φ−1

C2
d

, · · · , Φ−1
C30

d
, Φ−1

Tr
are their inverse uncertainty distributions.

In this way, the resilience optimization model given in Equation (38) is equivalent to
the crisp mathematical programming, as follows:

min
x

30
∑

i=1
xili

s.t. r1
e

(
x, Φ−1

C1
d
(α), Φ−1

Tr
(α)

)
≥ reth

r2
e

(
x, Φ−1

C2
d
(α), Φ−1

Tr
(α)

)
≥ reth

...

r30
e

(
x, Φ−1

C30
d
(α), Φ−1

Tr
(α)

)
≥ reth

F(x) ≥ p

(40)

(3) The optimization problem is solved. The network structure optimization problem
is a 0–1 integer optimization problem, and the genetic algorithm, which is widely used in
network resilience research [28,55,56], is used to solve the optimization problem given in
Equation(40). In the genetic algorithm, every individual in the population is judged to be a
feasible solution or not. However, in practice, re varies with the network structure vector
x and the disruptions to different links. It is inefficient to derive the expressions for re
with different disruptions for every individual during optimization. To solve the problem,
we propose a numerical algorithm to calculate re in Equation (40). The Algorithm 1 is as
follows.

Algorithm 1: ri
e calculation

Input: The sample number N
The link capacity Ci
The resilience constraint α

The maximum allowable recovery time Ta
Output: The disruption response ri

e
Step 1
let
Ti

r = exp
(

2−
√

3
π ln

(
1
α − 1

))
Ci

d = αCi

∆t = Ta
N

Calculate the maximum flow F0 when all links are in normal state.
Step 2
For j = 0 to N

tj = j∆t

ci

(
tj

)
=

{ tj−Tr
Tr

Cd + Ci, 0 ≤ tj ≤ Tr

Ci, tj > Tr

Ci = ci

(
tj

)
, and calculate the maximum flow F

(
tj

)
at time tj.

Q
(

tj

)
=

F(tj)
F0

Endfor
Step 3

ri
e =

1
Ta

N
∑

j=1

[
Q(tj−1)+Q(tj)

2 ∆t
]

Using the genetic algorithm, the optimization problem can be solved. The optimization
results are discussed in Section 5.3.2.
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5.3.2. Results and Discussion

To solve the optimization problem, the related parameters of the optimization model
and the genetic algorithm are set as shown in Table 3.

Table 3. Parameters of optimization model and algorithm.

Parameter Value

Optimization model
Disruption response threshold reth 0.9

Resilience constraint α 0.5
Max-flow constraint p 20

Genetic algorithm

Population NIIND 100
Generation MAXGEN 100
Generation gap GGAP 0.4

Cross rate XOVR 1
Mutation rate MUTR 0.1

Figure 10 presents the optimization process using the genetic algorithm. With the
increase in the generations, both the average and the best fitness of the population increase
and are close to a stable value. The evolution process of the optimal network structure in
each generation is shown in Figure 11. The resiliencies, maximum flows, and costs of the
networks in Figure 11 are shown in Figure 12. The results in Figures 11 and 12 verify that
our method can effectively minimize the network cost for both the maximum flow and the
resilience constraints.
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The individual with the best fitness in the last generation is the optimization result.
The network structure of this individual is shown in Figure 11e. All of the information
about the optimal network is shown in Figure 13.
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Figure 13. The optimal network.

The resilience evaluation results for the optimal network are provided in Table 4.
Figure 14 shows the resilience for different reth. The results prove that the resilience of the
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optimal network meets the requirements. The lowest resilience can be obtained when Link
1, Link 3, or Link 29 is disturbed.

Table 4. Resilience of optimal network for different disruptions.

Link Resilience Link Resilience

1 0.5184 18 0.9486
3 0.5184 20 0.9744
6 0.9281 23 0.6188
8 0.9827 28 0.6864
13 0.5741 29 0.5184
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6. Conclusions

In this study, the uncertainty theory is introduced to quantify the epistemic uncertain-
ties in resilience research. A new uncertainty theory-based resilience measure is proposed
based on a system’s response to disruption. Our new resilience measure has a solid mathe-
matical foundation and a clear physical significance. It can be used to evaluate resilience
and design a resilient system with insufficient data, such as the system design stage. To
evaluate the system resilience, a resilience evaluation framework is proposed, and the
framework contains three steps: (1) The system performance model is built; (2) the system’s
disruption response model is built; and (3) the uncertainty of the variables in the system
performance model and the uncertainty of the disruption response are quantified, and
finally the system resilience is calculated. Furthermore, a resilience optimization method
is proposed to design a resilient system with minimal costs. Based on the uncertain pro-
gramming theory, a resilience-based optimization model and a model transmit method
are proposed, and intelligent algorithms (e.g., genetic algorithms) can be used to solve this
type of optimization problem. Two road networks are used in the case study to verify the
effectiveness of our resilience evaluation and optimization method.

In the future, we will apply the uncertain statistics methods to the resilience evaluation
and optimization problem. Without assumptions about the distributions of uncertain
variables, these methods can be used in real data cases. This method will also be used in
multi-scale systems to build a bottom-up resilience evaluation framework.
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