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Abstract: Vibrating technological equipment for the introduction of piles and columns into the
ground of construction foundations (named vibratory piling machines) is crucial in the process of
building stable and resilient foundations for civil engineering, hydrotechnical construction, special
construction (e.g., military constructions), bridges, roads and industrial platforms. During the works
carried out by the construction companies in various geographical areas of Romania, particularities
of the dynamic technological regimes influenced by the nature of the land were identified at the
deep introduction of the construction elements in the form of piles or circular (tubular) columns.
The results of applied research, rheological modeling and optimization of vibrating equipment,
highlight the need for an analytical approach that takes into account the parametric variations of the
elastic and damping characteristics of some categories of soils on the depth of piles or foundation
columns. In this context, the paper presents the calculation model with the dynamic response for
the vibrating equipment of insertion with disturbing forces of 200–1250 kN for piles or columns
with lengths of 10–30 m. The novelty of the research study consists in the linear rheological model,
which was adopted in the form of a Maxwell–Voigt–Kelvin schematic of the type (E-V)–(E|V), with
a discrete variation in four values for stiffness and damping of the soil, as the piles or columns
vibrate and advance in the ground foundation. Practical experience of the authors in the field of
using vibrogenerators for the introduction of piles in various types of ground foundations led to the
adoption of the rheological model with variable damping coefficients depending on the depth of
penetration into the soil. The curves of the dissipated power confirm the experimental data obtained
in situ, in accordance with the rheological indoor tests of the different types of soil foundations.

Keywords: vibratory piling machines; dynamic regime; harmonic forces; ground foundation;
technological regime; rheological models; Maxwell–Voigt–Kelvin model; dynamic transmitted force;
transmissibility factor; dissipated energy

1. Introduction

The capability level of the vibrating machines in this specialized class is evaluated
according to the size of the functional parameters in the working mode, namely: vibration
amplitudes, transmitted force to the soil (ground foundation), dynamic insulation in the
machine and dissipated energy [1,2].

In Romania, vibrating machines with dynamic action are used, whose operating
regime is correlated with the nature of the soil [3,4]. Thus, several distinct classes of
foundation soils have been identified, consisting mainly of the following categories: loess-
sensitive soils, contractile soils (with volume variations), fine and uniform sands with the
possibility of liquefaction, clayey and dusty soils and sandy clay soils [5,6].

An equivalent linear calculation model, which takes into account a complex rheological
behavior, is adopted in this paper. Also, for theoretical reasons, numerical analysis is
performed using a linear visco-elastic approach [7,8].
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According to the Federal Highway Administration (FHWA), the relationships between
maximum soil particle velocity and pile peak distance are based on the nominal energy of
the vibrogenerator for two types of foundation soil: Class II (soils with standard penetration
test values 5–15 strokes per 0.3 m) and Class III (hard soils with standard penetration
test values of 15–50 strokes per 0.3 m). In general, there is an increase in the kinematic
parameters of the cell (displacements, speeds, accelerations) as the rigidity of the ground
and the energy of the vibrogenerator increase [9]. The classification of piles can be made
according to the method of installation, through which piles are usually classified into two
categories: non-displaced piles and displaced piles. The first category of piles requires the
prior removal of the ground, while the trained prefabricated piles (the second category)
are characterized by the appearance of ground movements to allow the piles to enter the
ground, without the need to remove the ground beforehand [10].

The interaction between piles and foundation soils was studied for the past five
decades [11]. The scientific and technical literature presents various models of the interac-
tion between the foundation soil and the prefabricated piles introduced by shocks and/or
vibrations; analysis and calculation models are of three types: empirical/experimental
models, theoretical models and engineering models [12–15].

The dynamic interaction between the pile and the foundation soil was not sufficiently
studied due to the complexity of the vibrogenerator–pile–foundation soil model [16]. The
studied dynamic models of the interactions of vibrogenerator–pile–foundation soil are
theoretical models [17–19], numerical simulations models [20] and experimental models
(in situ or indoor tests) [21–23]. Numerical simulation and, especially, analytical modeling
of the movement of vibrating piles in saturated soil is quite difficult [24]. Although open-
ended piles (circular or rectangular tube type) are common in engineering practice, studies
focused mainly on closed-ended piles [25].

Experimental tests are often used to establish numerical simulation models and to
validate theoretical models. Some experimental data on the vibration introduction of
prefabricated piles into the foundation field are available in the literature. The experimental
tests, in the laboratory and in situ, took into account the two types of piles: experiments
with closed-ended piles and experiments with open-ended piles [26,27].

For vibratory machines in this technological class, the Maxwell–Voigt–Kelvin rheo-
logical model, denoted (E-V)–(E|V), with dynamic force generators (vibrating motors),
was realized, so that between the physical–mechanical and terrain-modeling parameters,
the rigidity k and the damping coefficient c, the amplitude of the steady-state forced vibra-
tions A and the transmitted force to the ground Q could be determined by an analytical
calculation relation [28–30].

In this way, the calculation relations and the families of curves were determined, which
eloquently reflect the variations of the dynamic parameters for the technological regimes
defined by the pulsation ω and the amplitude A of the technological vibrations [31,32].

This paper is organized as follows: Section 2 presents a linear dynamic model of the
vibratory piling machine in interaction with the soil foundation; the dynamic analysis, in
steady-state forced vibration condition of this model, consists in determination of the am-
plitude displacements, dynamic forces transmitted to the ground, dynamic transmissibility
coefficient and dissipated energy per harmonic cycle function of damping characteristic of
the soil and the functional parameters of the vibratory piling machine. Section 3 presents a
case study of a vibratory piling machine. It shows graphs of the variation in the dynamic
and energetic parameters of the vibrogenerator–pile–foundation soil system considered as
an (E-V)–(E|V) rheological model, function of damping ratio ζ and the relative pulsation
Ω. The plotted parameters of the systems are the amplitudes of the displacements of the
mobile mass of the vibrating machine, the amplitudes of the displacements and of the
deflections of the components of the rheological model, the amplitudes of the dynamic
transmitted force to the ground, the dynamic transmissibility coefficient and the dissipated
energy per cycle. Section 4 emphasizes the importance of technological parameter Ω on the
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analysis of the dynamic characteristics of the vibrogenerator–pile–foundation soil system.
The final concluding remarks are presented in Section 5.

2. Linear Dynamic Model of the Vibratory Piling Machine

The linear dynamical system with unidirectional vertical motion is shown in
Figure 1 [32,33]. The serial structure of the system consists of mass m, the rheological
Maxwell model type (E-V) and the rheological model Voigt–Kelvin type (E|V). The dy-
namic model is disturbed by the vertical harmonic force F(t) = F0 sin ωt, the coordinates
being the vertical displacements: x = x(t) of the mass m, y = y(t) in the Voigt–Kelvin
model and z = z(t) of the point of connection of the elements of the Maxwell model.
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Figure 1. Scheme of the linear dynamic system Maxwell–Voigt–Kelvin (E-V)–(E|V) perturbed by a
harmonic force F(t) = F0 sin(ωt).

The rheological characteristics (stiffness, damping) of the linear models are (k, c) for
the Voigt–Kelvin (E|V) model and (Nk, Sc) for the Maxwell (E-V) model, where S and N
are positive multiplier numbers and the relation between the two is S = λN, where λ is
also a positive multiplier number.

2.1. Dynamic Response of the Linear Rheological System

For the dynamic system shown in Figure 1, the governing equations (differential
equations of motion), expressed in complex numbers, can be written as follows [34,35],

m
..
x̃ + cS

( .
x̃−

.
z̃
)
+ kx̃ = F0 sin ωt

kỹ + c
.
ỹ− kN(z̃− ỹ) = 0

kN(z̃− ỹ) = cS
( .

x̃−
.
z̃
) (1)

The steady-state forced vibration responses, in terms of displacements, velocities and
accelerations, are

x̃ = X̃ejωt
d
dt→

.
x̃ = jωX̃ejωt

d
dt→

..
x̃ = −ω2X̃ejωt
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ỹ = Ỹejωt
d
dt→

.
ỹ = jωỸejωt

d
dt→

..
ỹ = −ω2Ỹejωt

z̃ = Z̃ejωt
d
dt→

.
z̃ = jωZ̃ejωt

d
dt→

..
z̃ = −ω2Z̃ejωt ,

which, replaced in (1), lead to the linear algebraic system in complex quantities X̃, Ỹ, Z̃ in
the form 

(
−mω2 + jcωS

)
X̃− jcωSZ̃ = F0

[k(1 + N) + jcω]Ỹ− kNZ̃ = 0
−jcωSX̃− kNỸ + [kN + jcωS]Z̃ = 0

(2)

The complex determinant D̃ of the linear algebraic system matrix is obtained as follows,

D̃ = det

−mω2 + jcωS 0 −jcωS
0 k(1 + N) + jcω −kN

−jcωS −kN kN + jcωS

 , (3)

from where

D̃ =
(
−mω2 + jcωS

){
[k(1 + N) + jcω][kN + jcωS]− k2N2}

−jcωS{jcωS[k(1 + N) + jcω]} (3a)

Using the notations α = −mω2, β = cω, δ = kN, γ = k(1 + N) and S = λN, the
expression of the determinant D̃ becomes

D̃ =
[
αδ(γ− δ)− β2S(α + δ)

]
+ jβ[α(γS + δ) + δS(γ− δ)] (4)

Returning to the structural parameters (m, c, k, ω) of the system, the determinant D̃
can be written function of the variables (c, ω) as follows,

D̃(c, ω) =
[
−mω2k2N + c2ω2λNmω2 − c2ω2kλN2]

+jcω
[
−mω2k

(
N + λN + λN2)+ k2λN2] (5)

As a function of the dimensionless parameters of the system, ζ = c
2
√

mk
—damping

ratio and Ω = ω
ωn

—relative pulsation, the determinant D̃ can be written

D̃(ζ, Ω) = Nk3
[
−Ω2 − (2ζΩ)2λN + Ω2(2ζΩ)2λ

]
+ j(2ζΩ)Nk3

[
λN −Ω2(1 + λ+ λN)

]
(6)

or
D̃(ζ, Ω) = Nk3[C + jD] (6a)

The complex determinant D̃X of unknown variable X̃ can be calculated as follows,

D̃X = det

F0 0 −jcωS
0 k(1 + N) + jcω −kN
0 −kN kN + jcωS

, (7)

or
D̃X(c, ω) = F0

[
k2N − c2ω2λN

]
+ jcωkNF0[1 + λ + λN] (7a)

As a function of the dimensionless parameters (ζ, Ω), the determinant D̃X can be
written as follows,

D̃X(ζ, Ω) = F0k2N{[1− (2ζΩ)2λ] + j[(2ζΩ)(1 + λ + λN)]}, (8)

or
D̃X(ζ, Ω) = F0k2N[A + jB] (8a)
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The complex determinant D̃Y of unknown variable Ỹ can be calculated as

D̃Y(c, ω) = det

−mω2 + jcωS F0 −jcωS
0 0 −kN

−jcωS 0 kN + jcωS

 = −jF0cωkλN2 (9)

Or the function of variables (ζ, Ω):

D̃Y(ζ, Ω) = −jF0k2λN2(2ζΩ) (10)

With the notation E = (2ζΩ), the determinant D̃Y becomes

D̃Y(ζ, Ω) = F0k2λN2[−jE] (10a)

The complex determinant D̃Z of unknown variable Z̃ can be calculated as follows,

D̃Z = det

−mω2 + jcωS 0 F0
0 k(1 + N) + jcω 0

−jcωS −kN 0

, (11)

from where
D̃Z(c, ω) = F0cωλN[−cω + jk(1 + N)] (11a)

Function of the dimensionless parameters (ζ, Ω), the determinant D̃Z can be written

D̃Z(ζ, Ω) = F0k2λN(2ζΩ)[−(2ζΩ) + j(1 + N)] (12)

or, using the notations a = −2ζΩ and b = 1 + N:

D̃Z(ζ, Ω) = F0k2λN(2ζΩ)[a + jb] (12a)

2.1.1. Forced Vibration: Amplitude Displacement x(t) in Steady-State Condition

The harmonic dynamic response in complex displacement X̃ is

X̃ =
D̃X(ζ, Ω)

D̃(ζ, Ω)
=

F0k2N[A + jB]
Nk3[C + jD]

=
F0

k
A + jB
C + jD

(13)

where it uses the notations
A = 1− (2ζΩ)2λ; B = (2ζΩ)(1 + λ + λN)

C = −Ω2 − (2ζΩ)2λN + Ω2(2ζΩ)2λ

D = (2ζΩ)
[
λN −Ω2(1 + λ + λN)

] (13a)

From Equation (13) the complex displacement X̃ is obtained as follows,

X̃ =
F0

k
1

C2 + D2 [(AC + BD) + j(BC− AD)] (14)

with the amplitude of steady-state forced vibration
∣∣∣X̃∣∣∣ = X0 obtained by

X0 =
F0

k

√
A2 + B2

C2 + D2 (15)

As a function of the dimensionless parameters (ζ, Ω), the amplitude X0 can be written
as follows,
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X0(ζ, Ω) =
F0

k

√√√√ [1− (2ζΩ)2λ]
2
+ (2ζΩ)2(1 + λ + λN)2

[Ω2 + (2ζΩ)2λN −Ω2(2ζΩ)2λ]
2
+ (2ζΩ)2[λN −Ω2(1 + λ + λN)]

2
(15a)

2.1.2. Forced Vibration: Amplitude Displacement y(t) in Steady-State Condition

The harmonic dynamic response in complex displacement Ỹ is

Ỹ =
D̃Y(ζ, Ω)

D̃(ζ, Ω)
=

F0

k
λN

−jE
C + jD

=
F0

k
λN

1
C2 + D2 (DE− jCE) (16)

where E, C and D are obtained by Equations (10a) and (13a).
The amplitude of steady-state forced vibration

∣∣∣Ỹ∣∣∣ = Y0 can be calculated as follows,

Y0 =
F0

k
λN

E√
C2 + D2

(17)

Using the expressions from (10a) and (13a) for the terms E, C and D, the amplitude Y0
can be written

Y0(ζ, Ω) =
F0

k
λN

2ζΩ√
C2 + D2

, (18)

or

Y0(ζ, Ω) =
F0

k
λN

2ζΩ√
[Ω2 + (2ζΩ)2λN −Ω2(2ζΩ)2λ]

2
+ (2ζΩ)2[λN −Ω2(1 + λ + λN)]

2
(18a)

2.1.3. Forced Vibration: Amplitude Displacement z(t) in Steady-State Condition

Using the notations from Equations (12a) and (13a), the harmonic dynamic response
in complex displacement Z̃ is

Z̃ =
D̃Z(ζ, Ω)

D̃(ζ, Ω)
=

F0

k
λ(2ζΩ)

a + jb
C + jD

, (19)

or
Z̃ =

F0

k
λ(2ζΩ)

1
C2 + D2 [(aC + bD) + j(bC− aD)] (20)

The amplitude of steady-state forced vibration
∣∣∣Z̃∣∣∣ = Z0 can be calculated as follows,

Z0 =
F0

k
λ(2ζΩ)

√
a2 + b2

C2 + D2 , (21)

from where

Z0 =
F0

k
λ(2ζΩ)

√
(2ζΩ)2 + (1 + N)2

C2 + D2 , (22)

or

Z0 =
F0

k
λ(2ζΩ)

√√√√ (2ζΩ)2 + (1 + N)2

[Ω2 + (2ζΩ)2λN −Ω2(2ζΩ)2λ]
2
+ (2ζΩ)2[λN −Ω2(1 + λ + λN)]

2
(22a)
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2.2. Dynamic Force Transmitted to the Ground Foundation

The dynamic force Q̃ is transmitted to the ground foundation through the spring k
and the damper c in the Voigt–Kelvin rheological model, thus, the force Q̃ can be written as
a sum of elastic force of the spring and viscous force of the damper

Q̃ = kỹ + c
.
ỹ = (k + jcω)Ỹejωt , (23)

or, using displacement Ỹ, obtained by (16), and its derivate

Q̃ =
F0λNE

C2 + D2 [(D− EC) + j(DE + C)] , (24)

where terms E, C and D use the expressions from (10a) and (13a).
The amplitude

∣∣∣Q̃∣∣∣ = Q0 of the dynamic force transmitted to the ground foundation is

∣∣∣Q̃∣∣∣ = Q0 = F0λNE

√
1 + E2

C2 + D2 = F0λN(2ζΩ)

√
1 + (2ζΩ)2

C2 + D2 , (25)

or

Q0(ζ, Ω) = F0λN(2ζΩ)

√√√√ 1 + (2ζΩ)2

[Ω2 + (2ζΩ)2λN −Ω2(2ζΩ)2λ]
2
+ (2ζΩ)2[λN −Ω2(1 + λ + λN)]

2
(26)

2.3. Dynamic Transmissibility Coefficient

The dynamic coefficient of transmissibility of the force Q̃ = Q0ej(ωt+ϕ) in relation to
the harmonic perturbing force F̃ = F0ejωt is defined as the ratio between the two amplitudes
of the forces, as [36,37]

T(ζ, Ω) =
Q0(ζ, Ω)

F0
= λN(2ζΩ)

√
1 + (2ζΩ)2

C2 + D2 , (27)

where : {
C = −Ω2 − (2ζΩ)2λN + Ω2(2ζΩ)2λ

D = (2ζΩ)
[
λN −Ω2(1 + λ + λN)

] (28)

2.4. Deflections of the Viscous Dampers in Maxwell–Voigt–Kelvin Model
2.4.1. Deflection of Simple Viscous Damper in Voigt–Kelvin Model

The deflection of the simple viscous damper in the Voigt–Kelvin model (with damping
coefficient c) is

ỹ = Ỹejωt = Y0ejϕejωt = Y0ej(ωt+ϕ) , (29)

where:
ϕ is the phase between the displacements ỹ and z̃
Y0 is the amplitude obtained by (18).

2.4.2. Deflection of Viscous Damper in Maxwell Model

The deflection of the viscous damper in the Maxwell model (with damping coefficient
cS) is

ũ = x̃− z̃ =
(

X̃− Z̃
)

ejωt, (30)

where X̃ and Z̃ are obtained by (14) and (20), respectively.
The deflection of the viscous damper in the Maxwell model can be written as

ũ = Ũejωt , (31)
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where:

Ũ = X̃− Z̃ =
F0

k

[
AC + BD
C2 + D2 + j

BC− AD
C2 + D2

]
− (2ζΩ)λ

F0

k

[
aC + bD
C2 + D2 + j

bC− aD
C2 + D2

]
, (32)

The deflection Ũ can be written as complex number

Ũ =
F0

k
1

C2 + D2 [G + jH] , (33)

where the expression of the amplitude
∣∣∣Ũ∣∣∣ = U0 is calculated as follows

U2
0 =

F2
0

k2
1

[C2 + D2]
2

[
G2 + H2

]
, (34)

or

U0 =
F0

k

√
G2 + H2

C2 + D2 , (35)

with the real constants: {
G = (AC + BD) + (2ζΩ)λ(aC + bD)
H = (BC− AD) + (2ζΩ)λ(bC− aD)

(36)

By substituting the expressions for the constants G and H in Equation (34), the square
of the amplitude U0 of the deflection of the viscous damper in the Maxwell model is
obtained as

U2
0 =

F2
0

k2

(
C2 + D2)[(A2 + B2)+ (2ζΩ)2λ2(a2 + b2)+ 2(2ζΩ)λ(aA + bB)]

(C2 + D2)
2 , (37)

or

U2
0 =

F2
0

k2 L , (38)

where

L =
1

C2 + D2 [
(

A2 + B2
)
+ (2ζΩ)2λ2

(
a2 + b2

)
+ 2(2ζΩ)λ(aA + bB)] (38a)

The amplitude U0 result is

U0 =
F0

k

√
L =

F0

k

√
(A2 + B2) + (2ζΩ)2λ2(a2 + b2) + 2(2ζΩ)λ(aA + bB)

C2 + D2 , (39)

where a = −2ζΩ and b = 1 + N and the real constants A, B, C, D are obtained by (13a).

2.5. Dissipated Energy in the Viscous Dampers in Maxwell–Voigt–Kelvin Model

The dissipated energy per cycle in the viscous damper in the Voigt–Kelvin model
(with damping coefficient c) is

WV−K
d = πcωY2

0 ,

or, taking into consideration that cω = (2ζΩ)k and the expression of the amplitude Y0
obtained by (18)

WV−K
d = π

F2
0
k

λ2N2 (2ζΩ)3

C2 + D2
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The dissipated energy per cycle in the viscous damper in the Maxwell model (with
damping coefficient cS = cλN) is

WM
d = π(cλN)ωU2

0 ,

or, taking into consideration the square expression of the amplitude U0 obtained by (18)

WM
d = π

F2
0
k
(2ζΩ)λNL

The total dissipated energy per cycle is the sum of dissipated energies in each type of
viscous damper

Wd = WV−K
d + WM

d ,

or

Wd(ζ, Ω) = π
F2

0
k

[
λ2N2 (2ζΩ)3

C2 + D2 + λN(2ζΩ)L

]
, (40)

where the real constants C, D and L are obtained by (13a) and (38a).

3. Dynamic Parameters Analysis of a Vibratory Piling Machine: Case Study

The analysis of the dynamic parameters was performed for a calculus model of a
vibratory piling machine with the following inertial and rheological characteristics [33]:

• the mobile mass of the equipment (incl. pile mass) m = 104 kg

• two cases of perturbing force: (1) harmonic force F(t) = F0 sin ωt (2) harmonic inertial
force F(t) =

(
m0rω2) sin ωt;

• the amplitude of harmonic perturbing force (piling force) F0 = 1250 kN;

• the static moment of the dynamic unbalanced masses (for harmonic inertial force)
m0r = 5 kg m;

• discrete variable stiffness k = (1÷ 5)× 105 kN/m;

• discrete variable viscous damping c = (2÷ 15)× 102 kNs/m;

• discrete multiplier numbers N = 1÷ 10 and S = 1÷ 10;

• perturbing force pulsation (steady-state regime) ω = (200÷ 500) rad/s;

• damping ratio of the ground foundation ζ = 0.15÷ 0.32.

3.1. Amplitude of Steady-State Forced Vibration of Mobile Mass of the Equipment

Figure 2 shows the variation in steady-state vibration amplitudes of the mass m
function of relative pulsation Ω, at four discrete/different values of damping ratio ζ, in the
case of harmonic perturbing force F(t) = F0 sin(ωt) with constant amplitude F0 = 1250 kN
and multiplier numbers N = 10, S = 10 for the Maxwell model. The curves of the
amplitude X0(ζ, Ω) were plotted using Equation (15a).
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Figure 2. The amplitude of steady-state vibration of mass m in dynamic regime—variation in
amplitude function of ζ and Ω; harmonic force F(t) = F0 sin(ωt), F0 = 1250 kN.

Figure 3 shows the variation in steady-state vibration amplitudes of the mass m
function of relative pulsation Ω, at four discrete/different values of damping ratio ζ, in the
case of inertial harmonic perturbing force F(t) =

(
m0rω2) sin(ωt) = m0r

m kΩ2 sin(ωt) and
multiplier numbers N = 10, S = 10 for the Maxwell model. The curves of the amplitude
X0(ζ, Ω) were plotted using Equation (15a), with F0

k = m0r
m Ω2.
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(
m0rω2) sin(ωt) = m0r

m kΩ2 sin(ωt).

3.2. Amplitude of the Harmonic Deflection in Voigt–Kelvin Model

Figure 4 shows the variation in harmonic deflection in the Voigt–Kelvin model function
of relative pulsation Ω, at four discrete/different values of damping ratio ζ, in the case of
harmonic perturbing force F(t) = F0 sin(ωt) with constant amplitude F0 = 1250 kN and
multiplier numbers N = 10, S = 10 for the Maxwell model. The curves of the deflection
amplitude Y0(ζ, Ω) were plotted using Equation (18a).
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Figure 5 shows the variation in harmonic deflection of the Voigt–Kelvin model func-
tion of relative pulsation Ω, at four discrete/different values of damping ratio ζ, in the
case of inertial harmonic perturbing force F(t) =

(
m0rω2) sin(ωt) = m0r

m kΩ2 sin(ωt) and
multiplier numbers N = 10, S = 10 for the Maxwell model. The curves of the deflection
amplitude Y0(ζ, Ω) were plotted using Equation (18a), with F0

k = m0r
m Ω2.
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3.3. Amplitude of the Harmonic Variation in the Displacement in Maxwell Model

Figure 6 shows the variation in harmonic displacement of the connection point CP in
the Maxwell model, function of relative pulsation Ω, at four discrete/different values of
damping ratio ζ, in the case of harmonic perturbing force F(t) = F0 sin(ωt) with constant
amplitude F0 = 1250kN and multiplier numbers N = 10, S = 10. The curves of the
displacement amplitude Z0(ζ, Ω) were plotted using Equation (22a).
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Figure 7 shows the variation in harmonic displacement of the connection point CP in
the Maxwell model, function of relative pulsation Ω, at four discrete/different values of
damping ratio ζ, in the case of inertial harmonic perturbing force F(t) =

(
m0rω2) sin(ωt) =

m0r
m kΩ2 sin(ωt) and multiplier numbers N = 10, S = 10. The curves of the displacement

amplitude Z0(ζ, Ω) were plotted using Equation (22a), with F0
k = m0r

m Ω2.
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(
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3.4. Dynamic Coefficient of Transmissibility

Figure 8 shows the variation in the coefficient of transmissibility T function of relative
pulsation Ω, at four discrete/different values of damping ratio ζ, in the case of harmonic
perturbing force F(t) = F0 sin(ωt) with constant amplitude F0 = 1250 kN and multi-
plier numbers N = 10, S = 10 for the Maxwell model. The curves of the coefficient of
transmissibility T(ζ, Ω) were plotted using Equation (27).
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3.5. Amplitude of the Harmonic Deflection in Maxwell Model

Figure 9a,b show the variation in harmonic deflection in the Maxwell model function
of relative pulsation Ω, at four discrete/different values of damping ratio ζ, in the case of
harmonic perturbing force F(t) = F0 sin(ωt) with constant amplitude F0 = 1250 kN and
multiplier numbers N = 10, S = 10. The curves of the deflection amplitude U0(ζ, Ω) were
plotted using Equation (39).
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Figure 9. The amplitude of the harmonic variation in the deflection of the damper in Maxwell model
in dynamic regime—variation in amplitude function of ζ and Ω; harmonic force F(t) = F0 sin(ωt),
F0 = 1250 kN; (a) Ω ∈ [0, 10]; (b) detail for Ω ∈ [0, 0.1].

Figure 10 shows the variation in harmonic deflection in the Maxwell model function
of relative pulsation Ω, at four discrete/different values of damping ratio ζ, in the case of
harmonic inertial force F(t) =

(
m0rω2) sin(ωt) = m0r

m kΩ2 sin(ωt) and multiplier numbers
N = 10, S = 10. The curves of the deflection amplitude U0(ζ, Ω) were plotted using
Equation (39), with F0

k = m0r
m Ω2.
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Figure 10. The amplitude of the harmonic variation in the deflection of the damper in Maxwell
model in dynamic regime—variation in amplitude function of ζ and Ω; harmonic inertial force
F(t) =

(
m0rω2) sin(ωt) = m0r

m kΩ2 sin(ωt).

3.6. Dissipated Energy in the Viscous Dampers of Maxwell–Voigt–Kelvin Model

Figure 11 shows the variation in the total dissipated energy per cycle in the dampers
of the Maxwell–Voigt–Kelvin model coefficient function of relative pulsation Ω, at four
discrete/different values of damping ratio ζ, in the case of harmonic perturbing force
F(t) = F0 sin(ωt) with constant amplitude F0 = 1250kN and multiplier numbers
N = 10, S = 10. The curves of the dissipated energy per cycle Wd(ζ, Ω) were plotted
using Equation (40).
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Figure 12 shows the variation in the total dissipated energy per cycle in the dampers of
the Maxwell–Voigt–Kelvin model coefficient of relative pulsation Ω, at four discrete/different
values of damping ratio ζ, in the case of inertial harmonic perturbing force F(t) =

(
m0rω2)

sin(ωt) = m0r
m kΩ2 sin(ωt) and multiplier numbers N = 10, S = 10. The curves of the

dissipated energy per cycle Wd(ζ, Ω) were plotted using Equation (40), with F0
k = m0r

m Ω2.
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4. Discussion

(1) Hypothetically, in the case of a very high damping coefficient in the Maxwell
rheological model, i.e., cS→ ∞ or λ→ ∞ , the dynamic rigidity of the damper increases
(theoretical cωS→ ∞ ) and the Maxwell model becomes a Hooke rheological model [32,38].
In this case, the Maxwell–Voigt–Kelvin rheological model (see Figure 1) becomes a Hooke–
Voigt–Kelvin rheological model as seen in Figure 13. Thus, the amplitude of the dynamic
harmonic force transmitted to the ground foundation is
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After the limit calculation, the amplitude of dynamic harmonic transmitted force becomes
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(2) Under the same hypothesis as in (1), the dynamic coefficient of the transmissibility
of Hooke–Voigt–Kelvin rheological model is:
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(3) Considering the Hooke–Voigt–Kelvin rheological model according to (1), the ampli-
tude of steady-state forced vibration of mobile mass m of the piling machine can be written
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5. Conclusions

Using a dynamic model and the hypothesis of linear behavior in stabilized dynamic
regime (steady-state forced vibration), and based on the calculation relations, the parametric
quantities defining the operation of the vibratory piling machines (equipment for the intro-
duction of piles/columns in the ground foundation) were evaluated. Thus, the conclusions
in the case of perturbing harmonic forces F(t) = F0 sin(ωt) and F(t) =

(
m0rω2) sin(ωt)

can be summarized as follows:
(a) The amplitude of the technological vibrations in a post-resonance regime remains

relatively constant at the variation of the relative pulsation Ω ≥ 2;
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(b) The variation in the maximum displacements and deflections, as internal parame-
ters of the system, expressed by X0(ζ, Ω), Y0(ζ, Ω), Z0(ζ, Ω) and U0(ζ, Ω) in
Figures 2–7 and Figures 9 and 10, highlights the internal behavior of the ground founda-
tion in the regime of steady-state harmonic forced vibrations with the maximum force
P = F0 = 2000 kN and F0(ω) =

(
m0rω2), respectively;

(c) The amplitude of the dynamic force Q0(ζ, Ω) transmitted to the ground foundation,
function of the parameters of the piling machine and the rheological parameters of the soil,
can be calculated with Equation (26);

(d) The ability to transmit the technological vibrations at the top of the pilot/column
to the ground foundation is given by Equation (27), with the parametric variation in the
coefficient of transmissibility T from Figure 8;

(e) The dissipated energy during the process of vibration introduction of the pi-
lot/column into the soil can be calculated with Equation (40), with the parametric variations
from Figures 11 and 12;

(f) From the curves of the amplitude of steady-state forced vibration of mobile mass
m (Figures 2 and 3), it can be concluded that the stabilized technological regime for the
vibratory piling machine is in post-resonance, for Ω ≥ 2 (where the amplitude of forced
vibration is the same, regardless of the value of damping ratio ζ). The post-resonance
operating condition Ω ≥ 2 can be ensured by increasing the total moving mass m (depend-
ing on the mass of the pilot/column, as well as the elasticity of the foundation soil) or by
increasing the pulsation ω of the harmonic force, or both;

(g) The use of the vibratory piling machine in the resonance stabilized regime (Ω ≈ 1
regardless of the size of the structural damping ratio ζ of the ground) could lead to larger am-
plitudes of the steady-state forced vibration: 40–70 mm in case of harmonic force F0 sin(ωt)
see Figure 2, 9–16 mm in case of inertial harmonic force

(
m0rω2) sin(ωt) see Figure 3.

However, although the resonant operating mode could lead to higher forward speeds
of the pilot/column into the foundation ground (hence higher productivity of the tech-
nological process), with the change of the damping ratio ζ of the foundation soil, the
amplitude of the forced vibrations varies significantly, the process of piling through vi-
brations becoming technologically unstable and, therefore, uncontrollable. According
to the case studies presented in Figures 2 and 3, the amplitude of the forced vibrations
in the resonance mode varies significantly depending on the damping ratio ζ, with the
linear functions Ares(ζ) = 78.9–121.3ζ [mm] in the case of harmonic force F0 sin(ωt) and
Aωres(ζ) = 21.8–39.4ζ [mm] in the case of inertial harmonic force

(
m0rω2) sin(ωt);

(h) Considering a technological regime Ω ≥ 2 for the vibratory piling equipment,
the transmissibility coefficient of the force is T ≤ 0.5 regardless of the value of damping
ratio ζ (Figure 8), meaning that the transmitted force to the pile/column is, at maximum,
half of the dynamic force of the vibrating motor. In the case of a post-resonance regime
with Ω ≥ 2, the higher the damping ratio ζ, the higher the transmissibility coefficient T,
due to the forces transmitted by the dampers of the Maxwell and Voigt–Kelvin rheological
elements, especially for high deformation speeds. Despite the fact that the operation of
the technological equipment is technologically unstable in the resonance work mode, high
transmissibility coefficients can be obtained, all the more so as the damping coefficient of the
foundation ground decreases. As Figure 8 demonstrates, the transmissibility coefficient at
the resonance varies inversely with the damping ratio ζ of the foundation ground according
to the law Tres(ζ) = 4–6.07ζ for 0.15 ≤ ζ ≤ 0.32;

(i) The curves in Figures 11 and 12 show that the dissipated energies per cycle are
maximum at resonance and the higher the value, the lower the damping ratio ζ (due
to the higher values of the damping deflections at the lower values of the damping co-
efficients). For the technological regime with Ω ≥ 2, the values of dissipated energy
are 50–100 kJ/cycle for harmonic force F(t) = F0 sin(ωt) and 10–20kJ/cycle for inertial
harmonic force F(t) =

(
m0rω2) sin(ωt).

(j) According to Figure 11, for a hypothetical stabilized resonance work regime,
the theoretical value of dissipated energy in the case of harmonic perturbing force is
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1300–2600 kJ/cycle, meaning a dissipated power P ≈ 40, 000–80, 000 kW for a nominal
pulsation of ω = 200 rad/s ( f = 31.8 Hz or n = 1909 min−1). According to Figure 12, in the
same hypotheses as above, the value of dissipated energy in the case of inertial harmonic
perturbing force is 77–116 kJ/cycle, meaning a dissipated power P ≈ 2500–3700 kW. These
huge values of dissipated powers lead to the conclusion that resonant operating modes,
even when stable, require very high installed powers of the drive vibro-motors;

(k) For a nominal pulsation of ω = 200 rad/s, a vibromotor with rotating unbalanced
masses and a technological regime with Ω ≥ 5, the dissipated power in damping elements
is about P ≈ 60–150 kW or P ≈ 80–200 HP. Taking into consideration the mechanical
efficiency of the vibratory piling machines used and the in situ experimental test values (for
the engines nominal power of PN ≈ 200–400 HP), the complex linear Hooke–Voigt–Kelvin
rheological model with variable damping coefficient can be used for the dynamic analysis
of the vibrogenerator–pile–foundation soil system;

(l) Regardless of the type of disturbing force generated by the vibratory piling machine,
the harmonic force F0 sin(ωt) and inertial harmonic force

(
m0rω2) sin(ωt), engineering

practice on site has shown that the pre-resonant and resonant operating modes are unstable
and uncontrollable, therefore, not recommended from a technological perspective.

The dynamic calculation model presented in the paper can be used to evaluate the tech-
nological working capacity of a vibratory piling machine or equipment used for inserting
piles/columns in various types of soils for the construction of foundations.

The limitations of the presented models are as follows:

• the rheological model has linear elements (elasticity, damping) and cannot describe
the possible nonlinear behavior of the foundation soil;

• the dynamic model of the system considers the pilot/column as a rigid solid body
with infinite stiffness;

• the pilot’s advancement in the foundation ground does not take into account any
possible obstacles in the foundation ground (e.g., very hard rocks) or irregularities
(e.g., cavities, liquefied soil, groundwater).
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