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Abstract: The distributed denial of service (DDoS) vulnerabilities have rapidly extended and have
been given different possibilities for even more advanced assaults on specific targets in recent times,
thanks to the growth of innovative technology such as the Internet of Things (IoT) and Software-
Defined Networking (SDN). The attack patterns route comprises unprotected and susceptible IoT
systems that are internet-connected, as well as denial of service weaknesses in the SDN controllers,
such as southbound connection exhaustion. (1) Background: The review does not go into detail about
the symmetry blockchain approaches used to mitigate DDoS attacks, nor does it classify them in
IoT; (2) To overcome the privacy issues, a novel deep learning-based privacy preservation method
was proposed named ShChain_3D-ResNet. This novel method combines Sharding, blockchain and
Residual Network for securing the SDN. Under this network, the proposed efficient attention module
jointly learns attention to enforce the symmetry on weights for various channels in spatial dimension
as well as attention weights of multiple frames in temporal dimension assistance of pre-training,
updating, and dense convolution process; (3) Results: the proposed ShChain_3D-ResNet achieves
95.6% of accuracy, 97.3% of precision, 95.2% of recall, 94.4% of F1-score, 32.5 ms of encryption time
and 35.2 ms of decryption time for dataset-1. Further, it achieves 97.3% accuracy, 95.3% precision,
96.1% recall, 98.2% F1-score, 32.1 ms of encryption time, and 36.2 ms of decryption time for dataset-2;
(4) Conclusions: The Sharding strategy can increase ShChain performance while simultaneously
utilizing Multi User (MU) resources for SDN.

Keywords: deep learning; privacy; blockchain; Software Defined Network (SDN); neural network security

1. Introduction

SDN liberates network topology from the constraints of traditional network intricacy
and dependency, allowing it to meet adaptability, dependability, and privacy at the same
instance. It distinguishes the control layer and data layer, as well as the platform’s control
and data relaying functions [1]. The responsibility of the control layer is taking routing
decisions, with the support of just transmitting traffic and doing other tasks. The distance
between the two planes improves the network’s abstraction and development capabilities
while also making the network model less tiresome and wasteful. The interconnectedness
issue is fixed in three dimensions: network control, data plane, and application plane via
central control and realization of new programming. The innovative API links the network
control with the application plane. The Protocol stack is the fundamental component of the
downstream API, which allows the central controller to interact with the data layer. SDN
basically acts as a central nervous system (manager) for the network elements, allowing
administrators to remotely program each networking layer component [2] by applying
symmetry in each layer and have a total layer with the usage of software to govern
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network activities via a centralised command post. Virtualization technology provides
several benefits over previous network designs, however it is frequently exposed to system
dangers and assaults. Security device licensing and global view collection are the most
commonly used network risks against SDN [3,4]. Physical security features do not even
have the choice to determine since packets are delivered as per flow control, and hackers
can overcome security features until they are deployed. The operator is at the heart of
the infrastructure and has access to a variety of network information data. The intruder
may utilise the controllers to gain direct access to the network’s wide perspective and
execute significant assaults. SDN seems to have a distinct planar layout, with multiple
attack objects at various planes. Since the manager oversees the whole network at the
control and data planes, an intruder harming the controllers can prove to be detrimental.
In the latest days, managers have been the primary focus of assaults. The following are the
major security problems on the control and data planes:

Control plane service attacks: They may pose a major danger to the control plane’s integrity.
Scalability Attacks: Absence of adaptability causes the management plane to become

overcrowded and unable to manage additional streams [5,6].
DDoS attack: DDoS attacks were susceptible to operators [7]. Whenever a packet

is received, the toggle compares it to the route table record. The toggle encapsulates the
incoming packets in such a protect the contents statement and transmits the packet to the
controller, in case of packet failure. The switch passes a significant number of data to the
control layer, and at once the attacker delivers a high number of packets to the network.
The device’s resources become scarce by a significant number of DDoS spoofing packets,
rendering itself unable to function correctly, creating severe risk to the device as well as the
core system.

In a DDoS attack, the threat actor infects several computer systems or IoT devices
with malware and converts them into a bot (zombie). The threat actor controls the infected
systems remotely and sends them updated instructions to target a particular address.
Figure 1 shows DDoS attack overview scenario.

Symmetry 2022, 14, x FOR PEER REVIEW  2 of 19 
 

 

the network  elements,  allowing  administrators  to  remotely program  each networking 

layer component [2] by applying symmetry in each layer and have a total layer with the 

usage of software to govern network activities via a centralised command post. Virtual‐

ization technology provides several benefits over previous network designs, however it 

is  frequently  exposed  to  system  dangers  and  assaults.  Security  device  licensing  and 

global  view  collection  are  the most  commonly used network  risks  against  SDN  [3‐4]. 

Physical security features do not even have the choice to determine since packets are de‐

livered as per  flow  control, and hackers can overcome  security  features until  they are 

deployed. The operator is at the heart of the infrastructure and has access to a variety of 

network information data. The intruder may utilise the controllers to gain direct access 

to the network’s wide perspective and execute significant assaults. SDN seems to have a 

distinct planar layout, with multiple attack objects at various planes. Since the manager 

oversees the whole network at the control and data planes, an intruder harming the control‐

lers can prove to be detrimental. In the latest days, managers have been the primary focus of 

assaults. The following are the major security problems on the control and data planes: 

Control plane service attacks: They may pose a major danger to the control plane’s integrity. 

Scalability Attacks: Absence  of  adaptability  causes  the management  plane  to  become 

overcrowded and unable to manage additional streams [5‐6]. 

DDoS attack: DDoS attacks were susceptible  to operators [7]. Whenever a packet  is re‐

ceived, the toggle compares it to the route table record. The toggle encapsulates the in‐

coming packets in such a protect the contents statement and transmits the packet to the 

controller, in case of packet failure. The switch passes a significant number of data to the 

control layer, and at once the attacker delivers a high number of packets to the network. 

The device’s resources become scarce by a significant number of DDoS spoofing packets, 

rendering itself unable to function correctly, creating severe risk to the device as well as 

the core system. 

In a DDoS attack, the  threat actor  infects several computer systems or IoT devices 

with malware and converts  them  into a bot  (zombie). The  threat actor controls  the  in‐

fected systems remotely and sends them updated instructions to target a particular ad‐

dress. Figure 1 shows DDoS attack overview scenario. 

 

Figure 1. DDoS attack overview. 

Other  threats: Discrepancies  and  contradictory  controller  configurations might  cause 

network knowledge to be lost [8]. Malicious apps for controllers are simple to create. 

In between controllers and the program, there really is no appropriate trust evalua‐

tion  technique. DDoS  really  is one of  the greatest serious security  issues at  the control 

and data planes [9] among some of the verified security flaws. DDoS assaults on manag‐

ers are particularly harmful because of the significance of regulators in software‐defined 

systems, and safeguarding controls from assaults is indeed a prominent priority of scien‐

Figure 1. DDoS attack overview.

Other threats: Discrepancies and contradictory controller configurations might cause
network knowledge to be lost [8]. Malicious apps for controllers are simple to create.

In between controllers and the program, there really is no appropriate trust evaluation
technique. DDoS really is one of the greatest serious security issues at the control and
data planes [9] among some of the verified security flaws. DDoS assaults on managers are
particularly harmful because of the significance of regulators in software-defined systems,
and safeguarding controls from assaults is indeed a prominent priority of scientists. DDoS
assaults flood the internet with traffic, using system resources and causing congestion
issues. Numerous dispersed servers are being used to perform Assaults [10]. There
are two phases of DDoS assaults. An intruder begins by assembling a global access
infrastructure comprising millions of vulnerable machines termed as corpses, robotics, or
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strike guests. The offensive server then delivers vast traffic to the target, on either attacker’s
order or on its own [11]. The attackers search for machines that are less vulnerable, to
start the process. A DDoS assault is a physical aggression network strike that depletes
computer resources, causing the system to stop working. It has the potential to eliminate a
participant’s accessible internet services, posing a major threat to the system. Whenever
intruders send fraudulent network packets over the system, ordinary flow is slowed or even
halted as a result of network resource consumption. As a consequence, the connectivity and
data centers get to be congested, disrupting normal services. Malicious hackers generally
target SDN due to its special attributes.

A few academics previously suggested blockchain-based methods for exchanging
threat data, such as fraudulent IP addresses for blocklists, recognising security breaches
at the network gateway level, and enabling Software Defined Network (SDN) nodes.
However, there is indeed a gap in knowledge among network security professionals
who aim to minimize DDoS potential attacks and blockchain professionals who design
decentralised apps but aren’t necessarily information security expertise. According to
our previous art analysis, no considerable effort has been done to investigate blockchain’s
part in reducing DDoS attacks. As a result, we suggest this blockchain technology could
be used to combat distributed denial of service assaults. Furthermore, blockchain-based
technologies are classified according to their DDoS protection installation position on the
network. Finally, the following are the main contribution of this manuscript:

• To suggest an Ouroboros Sharding technique for boosting the blockchain’s scalability.
Shard numbers and sizes are determined based on application demands, allowing
users to assign resources dynamically.

• To study the effectiveness, designers collaborate with just an IT order to implement
an assessment in a genuine blockchain-based SDN environment. The outcomes of
the experiments show how ShChain 3D-ResNet may fare better over comparable
methodologies of categorization.

• The 3D-ResNet model enables the Efficient Attention Modules (EAM) such as EAM-
S where S indicates spatial and EAM-T module where T indicates temporal is in-
cluded. These EAMs learn attention weights for various channels in spatial aspect, as
well as attention weights for multiple frames in temporal aspect whereby imposing
symmetry constraints

Research is prearranged as given here: Related works are explained in Section 2. The
proposed methodology is explained in Section 3 by defining the threat model. Under
Section 3.2. proposed3D-ResNet model is described. Under Section 3.3, the proposed
efficient attention module is described. Under Section 3.4, Sections 3.5 and 3.6 proposed
group convolution layer, reinforcement layer and detecting type of DDoS attack is given.
Under Section 3.7 Construction of Sharding chain structure for privacy is given. In Section 4,
results and discussion are done. Finally, the research ends with Section 5 conclusion and
future scope.

2. Related Works

During the last 10 years, a DDoS assault is one of the most serious security concerns to
SDN networks. This has the ability to once again prohibit legitimate users as well as using
system resources, but also to absolutely ruin the network. As a result, defending the SDN
network against DDoS attacks is critical.

On system log data, [12] employed an unsupervised DL network to filter out average
data. Each day, an attribute mark containing an abstract of each user’s organization logs
is formed as well as fed into a Deep Neural Network made for every user, with desired
production adapted with the next day’s feature vector for all of these networks. In [13],
it has created a 1D CNN end-to-end encrypted traffic classifier. In [14], an unsupervised
stack auto encoder with two hidden layers was used to train a feature extractor, and
then fed into a k-means clustering technique adapted with dual centroids. [15] Used
a variation autoencoder, a form of autoencoder, with other ML approaches to achieve
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intrusion detection. [16] used an LSTM with one-hot encode characteristics to create a
botnet detector. [17] Achieved a classification accuracy of 99.1%. They also developed
an instant classifier in the direction of construe folder access patterns to classify zero-day
assaults appropriately. [18] Used API calls to create an autoencoder-based classifier and
test multiple categorization layers. RNNs were integrated with MLP as well as logistic
regression for classification in [19], which established a technique for detecting malware
that employs RNNs mixed with MLP and LR. To forecast the next API call, RNN is skilled
in unsupervised comportment. [20] utilized an embedding layer to analyse raw opcode
data before feeding it into a CNN with 2 convolution layers, 1 max-pooling layer, a fully
connected layer, then a classification layer. In [21] is an example. DistBlockNet allows
all authorities inside a distributed blockchain network to also be associated, but every
local area network viewpoint includes OrchApp, Manager, and Shelter components. The
primary objective of the Shelter and OrchApp modules, in specific, would be to handle
attacks on various levels. A traffic control analyst and network transfer elements make up
Shelters. In [22] analyses a network made up of blockchain nodes, managers, and relays
that must route every data towards the protected base stations. Digitally linked, sites to
somehow be evaluated, & fraudulent networks are the three kinds of blockchain network.
The genuine networks are those that are recognized to be permitted to join the blockchain,
those unknown nodes are indeed the next kind, as well as the networks that do not have
permission to link the blockchain are indeed the third category. Researchers had used the
phrase ‘shielded’ to represent endpoints that ChainGuard is aware of. Ref. [23] proposes a
deep convolutional neural network (CNN) composite structure towards DDoS detection in
Distributed systems. Ref. [24] Proposes DeepGuard, an effective outlier detection approach
that uses a perfectly alright road traffic surveillance approach to enhance the detectability
of assaults in Software environments. Within [25], a method for detecting and mitigating
Distributed Denial of Service (DDoS) as well as Portscan assaults in SDN systems can be
seen (LSTM-FUZZY). The 3 components of the LSTM-FUZZY technology introduced in this
study are characterisation, outlier detection, and abatement. In [26], the Recurrent Neural
Network (RNN) predictor paradigm was presented as a way to properly identify and
respond to assaults which are of symmetric groups such as Distributed Denial of Service
(DDoS), which can cause service outages in SDN. Within [27], the Generative Adversarial
Network (GAN) architecture is used to identify Assaults, and antagonistic training is
used to ensure that the system fewer vulnerable to malicious examples. The suggested
system comprises well-defined components that allow traffic flows surveillance via IP load
flow, allowing the abnormality warning system to respond in a close moment. A detailed
comparative study has been enlisted in Table 1.

Table 1. Comparative study of existing methods.

Author Year Proposed Method Merits Demerits

Tuor et al., (2019) [12] unsupervised DL network It can detect attacks in
early stages Overload the controller

Kobojek et al., (2020) [13] 1D CNN Low false positive and
false negative

Only handle on type of
DDoS attack

Maimó et al., (2018) [14] unsupervised stack
auto encoder

Effectively protect the
controller from attack

Delay when handling
enormous number of

incoming packets

Abdulhammed et al., (2018) [15] autoencoder Able to distinguish attack
traffic from legitimate traffic

Only handles low traffic rate
and threshold is fixed

Diro et al., (2018) [16] LSTM Low false positive Less accuracy

He et al., (2017) [17] CNN
Traces attack score reduces
workload on controller in

early stage

Works after controller
received traffic flow which
leads to flooding of packets
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Table 1. Cont.

Author Year Proposed Method Merits Demerits

Kobojek et al., (2016) [18] autoencoder-based
classifier

Reduce overload between
controller and switches

Unable to separate the
legitimate user

Lotfollahi et al., (2017) [20] RNNs mixed with MLP Able to distinguish the attack
from flash crowd Overload the controller

Cox et al., (2015) [19] RNN Reduces controller overhead Delay in DDoS
attack detection

Sharma et al., (2017) [21] DistBlockNet Quick reaction in detecting
DDoS attack

Unable to deal with complex
traffic flow in the switch

Steichen et al., (2017) [22] ChainGuard Reduces resource
consumption

Requires high computing
resources and processing
power of SDN controller

Haide et al., (2020) [23] convolutional neural
network (CNN)

High detection ratio on
DDoS attack Less accuracy

Phan et al., (2020) [24] DeepGuard
Prompt, versatile, and
accurate detection of

DDoS attack

High resource consumption
on controller

Novaes et al., (2020) [25] LSTM-FUZZY Limits false positive and false
negative rate

Does not care about the
temporal characteristic in

order to accelerate
detection process

Polat et al., (2022) [26] Recurrent Neural
Network (RNN)

Reduces congestion of
incoming packets at controller Need time to detect the attack

Novaes et al., (2021) [27] Generative Adversarial
Network (GAN) Increased detection accuracy Difficult to detect unknown or

new types of DDoS attack

Even so, the review does not wrap conventional systems that use neural network
objective and accurate on ideal process position to prevent and identify DDoS attacks in the
virtual environment, as well as a detailed account of DDoScyberattacksBlockchain systems
to safeguard decentralised connections [28]. Our goal with this project is to examine the link
between network security researchers and the blockchain development sector, allowing the
researchers to have this article as a point of comparison while they pursue their study into
leveraging blockchain solutions in SDN.

3. System Model

As DDoS attacks become more common and their methods become more varied,
the requirement for designed for efficient to effectively deflect the onslaught grows. It is
important to remember, however, that only customer-ASes collaboration is an extra way to
establish defense mechanisms. The structure shown in Figure 2 is made up of three parts:

• Customers can use decentralized applications to submit white or blacklisted IPs to the
Sharding ring ouroborusblockchain.

• ASes: can broadcast white or blacklisted IPs, get lists including the published Proxy
servers, and use DDoS countermeasures.

• Blockchain/Smart Contract: the public Sharding ring ouroborusblockchain is powered
by Structural rigidity smart contracts, including the logic for reporting IPs to the
blockchain.
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3.1. Threat Model:DDoS Attack

Explore a scenario in which N users, each with their data xi and a one-hot vector of
labels Yi, collectively train a neural network (NN) model. A querier—which might be one of
the N parties or an external entity—questions the model at the end of training phase as well
as obtains prediction results data yq based on its evaluation data xq. The parties involved
in the training process want their local data privacy, intermediate model updates, and the
final model to be preserved. The querier collects prediction results from the trained model
while maintaining the confidentiality of its evaluation data. Assume that the parties are
interconnected and structured in a tree-network structure for communication efficiency [28].
However, because our system is entirely dispersed and makes no assumptions about
hierarchy, it is agnostic to network architecture, allowing us to explore a fully connected
network. Explore a passive-adversary model with up to N − 1 SDN users colluding to
extract information about the other parties’ inputs through membership inference.

The attacker’s goal would be to cause genuine users’ transmissions to be dropped or
delayed, causing the channel’s efficiency to degrade therefore, eventually, the consumers’
enjoyment to be ruined. A “table-miss” occurrence is normally raised whenever a new
flow of packets hits a switch. As a result, a Protocol In notification is sent to the controller,
seeking action. The switch performs the determined operation to all following packets in
the same flow without even any controller interaction. While waiting for the controller to
respond, the switch buffers the incoming packets in its buffer memory. In the event that the
buffer fills up, successive packets are missed due to a lack of buffer capacity [29].

3.2. 3D ResNet Architecture for DDoS Attack Classification

The attack using single-pixel and pattern backdoors is implemented by visualising
the convolutional filters in the first layer of the 3D-ResNet, as shown in Figure 3. The
3D-ResNet appears to have learned convolutional filters for detecting backdoors. The
presence of dedicated backdoor filters shows that backdoors are sparsely written in the
3D-deeper ResNet’s layers. An input, convolution layer 1, 2, embedded layer, pooling layer
1, 2, and full connection layer 5 make up this system. Returns a high-dimensional package
vector to the reinforcement section after receiving a preprocessed and feature extracted file.
The REIN layer 6, REIN layer 7, complete connection layer 8, and OUTPUT layer make up
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the reinforcing portion. It can take a set of HD package vectors as well as turn them into a
vector that indicates the likelihood that session belongs to every class.
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The Softmax layer outputs classification’s final result based on the probability vector.
The initial step in REIN layer is to figure out what data from the cell state model will discard.
Forgetting gate is used to make this decision. Gate reads h(t− 1) and x(t) and gives every
number in C(t− 1) cell state a value between 0 and 1; 1 signifies “fully retained,” while 0
means “totally discarded.” W and b stand for weight and bias in NN.

f (t) = µ[W f .[h(t− 1), x(t)]+b( f )] (1)

Next step is to figure out how much additional data to include in the cell state. A
sigmoid layer is used first to determine which data needs to be updated. As an alternative
to updating, a layer generates a vector. The two portions are then concatenated to update
the cell’s status as needed.

I(t) = µ[Wi.[h(t− 1), x(t)] + b(i)] (2)

C(t) = tan[h(Wc.[h(t− 1), x(t) ]+b(c)] (3)

C(t) = f (t)× C(t− 1) + i(t)× C(t) (4)

Output gate finds the cell’s output. A sigmoid layer decides which sections of the cell
are in which condition first. The cell state is then multiplied by the output of the sigmoid
gate after going through a function to get a value between −1 and 1. As a result, the output
is evaluated as follows:

O(t) = µ[W(o).[h(t− 1), x(t)]+b(o)] (5)

H(t) = O(t)× tan h (Ct) (6)
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The first few data stream packets can establish connections; such packets can be found
in both standard and attack data streams. Long payloads, as well as attack data, may be
included in the subsequent few frames. Introduced class weights to solve the classification
issue: A more considerable class weight indicates that the class is more important. More
examples are classified into high-weight groups compared to the case when weight is
not taken into account. Equation (7), where Wi represents class weight of class I and ni
represent volume of traffic in class I is used to computing the class weight.

Wi =
∑k−1

i=0 ni
ni

(7)

When the model is trained, the weighted loss function directs the model’s attention to
samples from underrepresented groups. In this model, k is number of categories, y is label,
and p is neural network’s output, which is the probability that the methods predict that
type is I and is calculated via Softmax.

3.3. Proposed Efficient Attention Module (EAM)

It is made up of two modules: an EAM-S module that studies attention weights for
various channels in spatial dimension as well as an EAM-T module that learns attention
weights for various frames in temporal dimension. The 4D cost volume V ∈ RH×W×T×C

is sequentially passed into these two modules. Processing flow of EAM is given as
V′ = Mc(V) × V, V′ = Ttrans(Mc(V) and V′ ′′ = Mt(V1) × V′, V ′′ = Ttrans(t(V′)×V′)
and V ′′ ′ = V + V ′′ . The function of training ResNet vector is applied to the accurate unit’s
v as shown below.

F(v, h) = −
p

∑
p=1

q

∑
q=1

w(pq)v(p)h(q)−
q

∑
p=1

∝ (p)v(p)−
q

∑
q=1

β(q)h(q) (8)

Maximization of Equation (1) is as follows. w(pq) is programmatic interaction among
visible unit v(p) and hidden unit h(q), α, β are bias terms, and p, q are the amount of visible
and hidden units. A training vector’s following log possibility is concerned with the weight
of inconsistency. Hidden units from ResNet do not provide a direct response that aids in
the creation of an ideal unbiased sample from (v(p), h(q)) data. The updating procedure
is described as a difficult stage.

µW(pq) v(p)h(q)data− v(p)h(q)reconst (9)

The Attention Module has been well-trained at this point. The diverging Attention
Module is built on top of a multilayer model frame. Furthermore, a unique Attention
Module that has been stacked can be defined.

3.4. Dense Convolution Process

Let us use uhvj in the source attention layer with softmax, as well as the prediction
vector uhv

j|
∼
i

for viewing basic features to transfer, which is obtained by multiplying uhvj

by the transformation matrix Wj.

uhv
j|
∼
i
= uhvi ×W (10)

bij is set to zero and adjusted with the aij scale agreement in the “softmax routing”
feature. On a scale of 1 to 10, its agreement aij is determined.

aij = uhvj|i (11)

bij = bij + aij (12)
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This layer aims to create a given and aggregated abstract vector by agreeing that each
output will be utilised as an input. At the focus layer, the following procedure occurs:

aij =
exp(ei)

∑ k exp(ek)
(13)

ei = (q, hvi) (14)

(q, uhvi) = qT × uhvi (15)

The q, in this case, is a trainable pattern vector. After that, calculate and provide
the weighted total to the application classification overall target length as a set long
attention vector.

o = Σiaiuhvi (16)

Once the intrusions in the collected data were identified, the secure data transmission
to the cloud server commenced.

3.5. Reinforcement Layer

Convolution using sparse kernels was employed in group convolution, which allowed
the parameters to be reduced. For example, knowing that doing origin convolution on fig-
ure maps with form 1×C×w× h with k number of kernels with shape kw, kh, C takes Ncon:

Ncon = (w – kw + 1)× (h− kh + 1)× kw × kh × C× k (17)

It is also discovered that the calculation of group convolution is significantly reduced.
This ReLU will be followed if g is groups and k′ indicates number of kernels were employed.

C = g× k′ (18)

And computation of group Recurrent NGC is as follows:

NGC = (w− kw + 1)× (h− kh + 1)× kw × kh × k′ × g (19)

The computation of Ncon is determined to be k times larger than that of NGC. Zero
fields of kernels join calculation in group convolution; therefore, the advantage of group
convolution may be less clear. Because convolution only works in a local region, the
output feature map has difficulty obtaining enough information to determine the link
between channels. Due to the limited receptive field at the front layer of the network, this
problem becomes more serious. Squeeze operation entails converting a channel’s entire
spatial feature into a global feature, which is accomplished using global average pooling.
Squeezing calculation is shown in the equation below.

zc = Fsq(uc) =
1

j× w

j

∑
i=1

w

∑
j=1

uc(i, a) (20)

uc is input of feature maps, while j and w are height and breadth of feature maps.
After we obtained the global feature, we would need to perform another operation called
excitation to learn the relationship between channels. Excitement should fulfill two require-
ments: first, it is adaptable. It should also be able to learn nonlinear channel relationships.
Second, the learning relationship isn’t mutually exclusive because various channel features
can be used instead of one hot form. There is an equation based on the criteria.

S = Fex(z, W)σ(g(z, W)) = σ(W2∂(W1z)) (21)

where ∂ is the ReLU function, W1 ∈ RC2/r and W2 ∈ RC2/r are trainable parameters
and z is input feature maps. A bottleneck structure with two recurrent layers minimises the
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model’s complexity and increases its generalisation capabilities. To lower the dimension,
the first convoluted recurrent layer is employed. The final FC layer returns the size to its
original state.

3.6. Detection of DDoS Attack Type

Teardrop attack: this attack requires the “Teardrop.c” software to send incorrect
redundant contents of IP chunks in TCP packet headers. As a consequence, even during
re-assembly procedure, the victim’s virtual server will collapse. Algorithm 1 explains type
of DDoS attack detection process.

Algorithm 1: DDoS Attack type Detection

1: Input: Dataset (D), Attack types (A), weight matrix W,
hidden layer element bias B, and visible layer element bias A
2: Output: Categorized DoS attack
3: for all k < D
4: do
5: initialize input-hidden weight matrix W
6: Randomly initialize hidden biases B
7: For k = 1 to N do
8: for D = 1 to l do
9: Update {Wi, Bi, Ni}
10: End for
11: End for
12: Weight of class i

13: wi = ∑k−1
i=0 ni
ni

14: Update wi
15: if wi = Bi then, DoS attack detected and categorize it
16: if wi 6= Bi then, no occurrence of attack

Buffer overflow attack: the attacker creates the vulnerable target malware in order to
take advantage of a buffering overflowing flaw.

The “Land.c” programme is used to transmit forged TCP SYN packets with the victim’s
IP address in the input and output fields.

Attacker sends an IP packet that exceeds the IP protocol’s size limit, resulting in a ping
of death.

Smurf attack: an inside cloud-based DoS attack might be carried out by leveraging
a compromised cloud system device as an intermediary to send echo requests to local
broadcast IPs.

3.7. Construction of Sharding Chain Structure for Privacy

The ShChain architecture, which blends 3D-ResNet block diagram with some elements
of blockchain method has been proposed as shown in Figure 4. Each block contains the
following data, which aids in block authentication against tampering.

Table 2 indicates the block number for possible identification. In the current investiga-
tion, it has no bearing. AShChain block is depicted in Figure 3. It contains the hashes of
current as well as previous blocks, the current layer’s public and private keys, public keys
of layers appearing immediately before and after current layer and next layer’s AES key as
well as model parameters. Blocks in metaring, like blocks in a blockchain, have a shared
common ledger that records model’s state. Previous block’s hash, as well as current and
next layer’s parameters, determine the hash associated with a block. The hash of a block j
in the 3D-ResNet architecture that corresponds to layer I is:

Hashj = Ω
(

Hashj−1, paramsi, paramsi+1
)

(22)
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Any acceptable hash function Ω such as SHA256 can be used here. The ouroboros
block stores hashes of all the blocks after the model is successfully established in the
metaring framework. This information is later utilised to track compromised blocks in
a tampering attack. One thing to keep in mind is that the block’s in-ring are not in any
particular order. They’re organised in random order. Even blocks themselves are unaware
of layer’s sequential index, which they serve. Ouroboros block is beginning as well as
finish of any 3D-ResNet query. It is ring’s only known block.

Authenticity← origHASHprev = HASHprev (23)

The Ouroboros block has two modes of operation:

• Query Mode (authenticity = TRUE): This is standard mode, which accepts input as well
as returns output.

• Tracking Mode (authenticity = FALSE): When the block parameters of any block in
network change, this mode is triggered. Any change in a parameter is propagated to
hash of previous block. Block suspends general query business in this mode as well as
attempts to identify compromised blocks.

Hash of ouroboros block is a function of only layer parameters: Hashouroboros =
Ω(paramsouroboros, params1,). Because the ouroboros block has outstanding obligations, it
should be filled by someone you can trust, such as the model’s owner. Every Metaverse
user creates their unique ID based on the logic and distance between nodes.

di
(

Hi, Hj
)
=

∑p,q∈{Hi∪Hj−Hi∩Hj}

(
xHi

pq + x
Hj
pq

)
∑pq∈Hi∪Hj

(
xHi

pq + x
Hj
pq

) (24)

Equation (25) shows a randomised technique for two Metaverse user nodes to protect
meta world privacy in a decentralised manner. A(R) ∈ S attains data privacy.

Hr[A(R) ∈ S] ≤ exp(ε) ·Hr
[
A
(

R′
)
∈ O

]
(25)

→
mi = mi + Laplace(s/ε) (26)

where s denotes the degree of sensitivity, and

s = max
H,H′
‖ f (H)− f

(
H′

)
‖1 (27)

To protect privacy of Metaverse data, every information is encrypted as well as
signed with public and private keys (PKi, SKi). Then, all transactions are calculated using
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MAE(M), and Hj is broadcast. The record is stored on distributed ledger if all transactions
are approved. The formula for MAE is as follows:

MAE(mi) =
1
n

n
∑

i=1
|yi − f (xi)|

MAE
(

Hj
)
= γ ·MAE

(
mj

)
+ 1

n ∑ MAE(mi)
(28)

To protect data, current methods use encryption. However, because of specific security
attacks, data providers are in danger of sharing personal data. A straightforward approach
is to send data to requester with valid details while protecting privacy of the data owners.
Instead of giving raw data, data providers send the requester learned models.

Table 2. Notations and expansions.

Notations Expansion

Hashj Hash of jth block
Pubi public key of ith block
Privi private key of ith block
AESi AES key of ith block

wi weigh
bi bias

acti activation function

4. Result and Discussion

Experimentations were carried out on two publicly available datasets to validate the
effectiveness of the proposed scheme such as:

Dataset-1: LID-DS is a HIDS-based IDS Dataset proposed by Martin et al. from Leipzig
University [29]. This dataset comprised current attack scenarios and was created using
Ubuntu Linux 18.04. The collection contains traces of both regular and assault activity for
each design. It is the most recent IDS dataset and includes attack scenarios from the last
few months.

Dataset-2: Gideon et al. [30] suggested and announced a public release of the ADFA22
IDS dataset, which is distinct from the current legacy dataset. It can be used to put HIDS in
place. Only system call numbers are sequenced in the trace file.

4.1. Experimental Setup

The structure of our private blockchain network is linear. In this case, the laptop
serves as a mining node with sufficient processing capacity to mine continually. The RPI
3b+, on the other hand, is a data node that focuses on data sharing. Ping commands can
be used to assess RTT values between two devices 100 times because blockchain sends
messages across a network connection. The average RTT is 5.047 milliseconds, implying
that a transaction takes 4 milliseconds to process and 5 milliseconds to send to next node.

4.2. Comparative Analysis

Experimental result was carried out using the parameters encryption time, decryption
time, accuracy, precision, recall, F1-score. These parameters were compared with existing
methods such as Convolution Neural Network (CNN), DeepGuard, LSTM-Fuzzy, RNN,
Generative Adversarial Network (GAN) with proposed ShChain_3D-ResNet.

Precision: Commonly used in two-class problems which measure a particular class. It
is a negative class propagation which is predicted negatively and is called a true negative
rate. The formula is:

precision =
TN

TN + FP
(29)
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Recall: Classification model ability measures certain selective class instances from
the dataset. It is a positive propagation and the prediction is a positive one. The formula
used is:

recall =
TP

TP + FN
(30)

F1-score is utilized to determine the prediction performance. It is the weighted average
of precision and recall. The value of 1 determines the best while 0 the worst. F1-score does
not consider TNs and is calculated as:

f 1− Score =
2× P× R

P + R
(31)

The encryption time is indeed the time required for a data encryption to generate a
cypher text from plaintext. The efficiency of data encryption is calculated using encryption
time. It denotes the encryption speed. Comparison between existing and proposed for
dataset-1 and dataset-2 have been listed in Tables 3 and 4 respectively. Results obtained
from 3D-ResNet runtime analysis is shown in Table 5. Table 6 shows outcome analysis on
ouroboros Sharding blockchain model. The mean and standard deviation of Shchain_3D-
ResNet obtained from experiments are listed Table 7.

Decoding is the process of returning user information to its original form once it has
been deemed inaccessible via cryptography.

Table 3. Comparison between existing and proposed for dataset-1.

Methods Accuracy Precision Recall F1-Score Encryption
Time (ms)

Decryption
Time (ms)

CNN 67.4 73.5 43.5 48.3 56.3 82.7
DeepGuard 58.2 77.5 56.4 35.2 77.8 85.1

LSTM-Fuzzy 83.4 63.2 71.3 46.2 73.2 89
RNN 76.2 58.3 65.2 78.1 56.2 73.5
GAN 84.1 82.4 69 46.2 77.2 77.1

ShChain_3D-ResNet 95.6 97.3 95.2 94.4 32.5 35.2

Table 4. Comparison between existing and proposed for dataset-2.

Methods Accuracy Precision Recall F1-Score Encryption
Time (ms)

Decryption
Time (ms)

CNN 67.2 57.4 74.3 85.3 45.6 51.3
DeepGuard 86.3 48.2 75.4 81.4 43.6 55.2

LSTM-Fuzzy 77.4 55.6 79.5 79.5 49.6 40
RNN 74.3 71.4 73.1 74.6 46.3 42.3
GAN 81.3 78.3 75.3 83.4 47.5 44.9

ShChain_3D-ResNet 97.3 95.3 96.1 98.2 32.1 36.2

Table 5. Runtime of 3D-ResNet.

Number of Nodes 3D-ResNet Runtime

100 6.5
200 7.2
300 8.2
400 8.1
500 7.4
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Table 6. Analysis on ouroboros Sharding blockchain.

Number of Blocks Learning Iteration Learning Time (s) Learning Error Mining Iteration Mining Time Mining Error

1 245.2 134.5 34% 34.5 121.31 32%
2 192.1 120.5 32% 32.1 132.2 30%
3 170.3 121.4 31% 38.3 131.4 31%
4 165.3 131.5 30% 36.2 146.2 32%

Table 7. Mean and standard deviation of Shchain_3D-ResNet.

Number of Neurons Mining Iteration Mining Time Mean ± Standard Deviation Mining Threshold

60-4-60 34.5 121.31 34.3 ± 32.4 145
124-4-60 32.1 132.2 34.2 ± 35.6 150
188-4-60 38.3 131.4 32.5 ± 36.7 165
252-4-60 36.2 146.2 32.5 ± 35.7 170

5. Discussion

Figures 5 and 6 illustrate the comparison of encryption time, decryption time, ac-
curacy, precision, recall, F1-score between existing Convolution Neural Network (CNN),
DeepGuard, LSTM-Fuzzy, RNN, Generative Adversarial Network (GAN) and proposed
ShChain_3D-ResNet where the x-axis shows various methods and y axis indicates param-
eters in percentage and ms. When analyzing, the ShChain _3D-ResNet achieves 95.6%
accuracy, 97.3% precision, 95.2% recall, 94.4% F1-score, and 32.5 ms of encryption time
35.2 ms of decryption time for dataset-1. Furtherly, ShChain_3D-ResNet achieves 97.3%
accuracy, 95.3% precision, 96.1% recall, 98.2% F1-score, 32.1 ms of encryption time, and
36.2 ms of decryption time for dataset-2. Figure 7 illustrates the comparison of Runtime
of 3D-ResNet, where the x-axis indicates number of nodes and y axis indicates time in
ms. It is notable that for 100 nodes, it achieves 6.5 ms, 200 number of nodes it achieves
7.2 ms, 300 number of nodes 8.2 ms, 400 number of nodes it is 8.1 and 500 number of nodes
7.4 ms of run time is achieved. Figures 8 and 9 show the Analysis of ouroboros Sharding
blockchain by fixing the number of blocks as 4, which has the better iteration rate of 245.2
for block-1 with 134.5 s. The error is considerably less in block number 3, attaining 31%.
For the mining process in the blockchain network, the iteration is best for block number
3 by achieving 38.3 with time 131.4 s. The error for the mining process is less for block
number 2 by achieving 30%. From Table 7 it is analyzed that ShChain_3D-ResNet achieves
approximately 34.2 ± 35.6 of mean and standard deviation.

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 19 
 

 

5. Discussion 
Figures 5 and 6 illustrate the comparison of encryption time, decryption time, accu-

racy., precision, recall,F1-score between existing Convolution Neural Network (CNN), 
DeepGuard, LSTM-Fuzzy, RNN, Generative Adversarial Network (GAN) and proposed 
ShChain_3D-ResNet where the x-axis shows various methods and y axis indicates pa-
rameters in percentage and ms. When analyzing, the ShChain _3D-ResNet achieves 
95.6% accuracy, 97.3% precision, 95.2% recall, 94.4% F1-score, and 32.5 ms of encryption 
time 35.2 ms of decryption time for dataset-1. Furtherly, ShChain_3D-ResNet achieves 
97.3% accuracy, 95.3% precision, 96.1% recall, 98.2% F1-score, 32.1 ms of encryption 
time, and 36.2 ms of decryption time for dataset-2. Figure 7 illustrates the comparison of 
Runtime of 3D-ResNet, where the x-axis indicates number of nodes and y axis indicates 
time in ms. It is notable that for 100 nodes, it achieves 6.5 ms, 200 number of nodes it 
achieves 7.2 ms,300 number of nodes 8.2 ms, 400 number of nodes it is 8.1 and 500 num-
ber of nodes 7.4 ms of run time is achieved. Figures 8 and 9 show the Analysis of ouro-
borosShardingblockchain by fixing the number of blocks as 4, which has the better itera-
tion rate of 245.2 for block-1 with 134.5 s. The error is considerably less in block number 
3, attaining 31%. For the mining process in the blockchain network, the iteration is best 
for block number 3 by achieving 38.3 with time 131.4 s. The error for the mining process is 
less for block number 2 by achieving 30%. From Table 7 it is analyzed that ShChain_3D-
ResNet achieves approximately 34.2 ± 35.6 of mean and standard deviation. 

 
(a) 

 
(b) 

Figure 5. Analysis of existing and proposed method for dataset-1. (a); Accuracy, Precision and Re-
call comparison; (b) F1-score, encryption and decryption time analysis. 

Figure 5. Cont.



Symmetry 2022, 14, 1254 15 of 18

Symmetry 2022, 14, x FOR PEER REVIEW 15 of 19 
 

 

5. Discussion 
Figures 5 and 6 illustrate the comparison of encryption time, decryption time, accu-

racy., precision, recall,F1-score between existing Convolution Neural Network (CNN), 
DeepGuard, LSTM-Fuzzy, RNN, Generative Adversarial Network (GAN) and proposed 
ShChain_3D-ResNet where the x-axis shows various methods and y axis indicates pa-
rameters in percentage and ms. When analyzing, the ShChain _3D-ResNet achieves 
95.6% accuracy, 97.3% precision, 95.2% recall, 94.4% F1-score, and 32.5 ms of encryption 
time 35.2 ms of decryption time for dataset-1. Furtherly, ShChain_3D-ResNet achieves 
97.3% accuracy, 95.3% precision, 96.1% recall, 98.2% F1-score, 32.1 ms of encryption 
time, and 36.2 ms of decryption time for dataset-2. Figure 7 illustrates the comparison of 
Runtime of 3D-ResNet, where the x-axis indicates number of nodes and y axis indicates 
time in ms. It is notable that for 100 nodes, it achieves 6.5 ms, 200 number of nodes it 
achieves 7.2 ms,300 number of nodes 8.2 ms, 400 number of nodes it is 8.1 and 500 num-
ber of nodes 7.4 ms of run time is achieved. Figures 8 and 9 show the Analysis of ouro-
borosShardingblockchain by fixing the number of blocks as 4, which has the better itera-
tion rate of 245.2 for block-1 with 134.5 s. The error is considerably less in block number 
3, attaining 31%. For the mining process in the blockchain network, the iteration is best 
for block number 3 by achieving 38.3 with time 131.4 s. The error for the mining process is 
less for block number 2 by achieving 30%. From Table 7 it is analyzed that ShChain_3D-
ResNet achieves approximately 34.2 ± 35.6 of mean and standard deviation. 

 
(a) 

 
(b) 

Figure 5. Analysis of existing and proposed method for dataset-1. (a); Accuracy, Precision and Re-
call comparison; (b) F1-score, encryption and decryption time analysis. 

Figure 5. Analysis of existing and proposed method for dataset-1. (a); Accuracy, Precision and Recall
comparison; (b) F1-score, encryption and decryption time analysis.

Symmetry 2022, 14, x FOR PEER REVIEW  16 of 19 
 

 

 
(a) 

 
(b) 

Figure 6. Analysis of existing and proposed method for dataset‐2. (a) Performance analysis of NN 

models; (b) Encryption and decryption time analysis 

 

Figure 7. Comparison of runtime. 

Figure 6. Analysis of existing and proposed method for dataset-2. (a) Performance analysis of NN
models; (b) Encryption and decryption time analysis.



Symmetry 2022, 14, 1254 16 of 18

Symmetry 2022, 14, x FOR PEER REVIEW  16 of 19 
 

 

 
(a) 

 
(b) 

Figure 6. Analysis of existing and proposed method for dataset‐2. (a) Performance analysis of NN 

models; (b) Encryption and decryption time analysis 

 

Figure 7. Comparison of runtime. Figure 7. Comparison of runtime.

Symmetry 2022, 14, x FOR PEER REVIEW  17 of 19 
 

 

 

Figure 8. Analysis of errors. 

 

Figure 9. Analysis of time. 

6. Conclusions 

In this research, ShChain 3D‐ResNet, a revolutionary blockchain‐based architecture 

for  effectively managing SDN  applications, was presented.  ShChain makes use of  the 

benefits of blockchain as well as Sharding  technology  to enable smart as well as  trust‐

worthy  interactions between customers and ASes. Furthermore, we suggested ourobo‐

ros, a new Sharding  strategy  that can  increase ShChain performance while  simultane‐

ously utilising Multi User (MU) resources for SDN. Finally, we conducted experiments 

to calculate the significance of our proposed method by comparing with state‐of‐the‐art 

techniques and found that the proposed ShChain_3D‐ResNet achieved a 95.6% accuracy, 

97.3% precision, 95.2% recall, 94.4% F1‐score, 32.5 ms encryption time and a 35.2 ms de‐

cryption time for dataset‐1. Furthermore, it achieved a 97.3% accuracy, 95.3% precision, 

96.1% recall, 98.2% F1‐score, 32.1 ms encryption time, and 36.2 ms decryption  time  for 

dataset‐2. For future research, game method is extended to a multi‐leader‐multi‐follower 

ouroboros Sharding method. 

   

Figure 8. Analysis of errors.

Symmetry 2022, 14, x FOR PEER REVIEW  17 of 19 
 

 

 

Figure 8. Analysis of errors. 

 

Figure 9. Analysis of time. 

6. Conclusions 

In this research, ShChain 3D‐ResNet, a revolutionary blockchain‐based architecture 

for  effectively managing SDN  applications, was presented.  ShChain makes use of  the 

benefits of blockchain as well as Sharding  technology  to enable smart as well as  trust‐

worthy  interactions between customers and ASes. Furthermore, we suggested ourobo‐

ros, a new Sharding  strategy  that can  increase ShChain performance while  simultane‐

ously utilising Multi User (MU) resources for SDN. Finally, we conducted experiments 

to calculate the significance of our proposed method by comparing with state‐of‐the‐art 

techniques and found that the proposed ShChain_3D‐ResNet achieved a 95.6% accuracy, 

97.3% precision, 95.2% recall, 94.4% F1‐score, 32.5 ms encryption time and a 35.2 ms de‐

cryption time for dataset‐1. Furthermore, it achieved a 97.3% accuracy, 95.3% precision, 

96.1% recall, 98.2% F1‐score, 32.1 ms encryption time, and 36.2 ms decryption  time  for 

dataset‐2. For future research, game method is extended to a multi‐leader‐multi‐follower 

ouroboros Sharding method. 

   

Figure 9. Analysis of time.



Symmetry 2022, 14, 1254 17 of 18

6. Conclusions

In this research, ShChain 3D-ResNet, a revolutionary blockchain-based architecture
for effectively managing SDN applications, was presented. ShChain makes use of the
benefits of blockchain as well as Sharding technology to enable smart as well as trustworthy
interactions between customers and ASes. Furthermore, we suggested ouroboros, a new
Sharding strategy that can increase ShChain performance while simultaneously utilising
Multi User (MU) resources for SDN. Finally, we conducted experiments to calculate the
significance of our proposed method by comparing with state-of-the-art techniques and
found that the proposed ShChain_3D-ResNet achieved a 95.6% accuracy, 97.3% precision,
95.2% recall, 94.4% F1-score, 32.5 ms encryption time and a 35.2 ms decryption time
for dataset-1. Furthermore, it achieved a 97.3% accuracy, 95.3% precision, 96.1% recall,
98.2% F1-score, 32.1 ms encryption time, and 36.2 ms decryption time for dataset-2. For
future research, game method is extended to a multi-leader-multi-follower ouroboros
Sharding method.
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