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Abstract: One of the most important properties of stochastic nonlinear processes, including the
turbulence of the hydrodynamic motion of continuous media, is distant spatial correlations. To
describe them, an approach was proposed by Shlesinger and colleagues based on a linear integro-
differential equation with a slowly decaying kernel, which corresponds to superdiffusion (nonlocal)
transfer in the regime of Lévy walks (Lévy flights when the finite velocity of the carriers is taken
into account). In this paper, we formulate a similar approach that makes it possible to formulate
the problem of determining these properties from the scattering spectra of electromagnetic (EM)
waves and cross-correlation reflectometry. A universal description of the relationship between the
observed symmetric quasi-coherent component in the spectrum of scattered EM waves in plasmas
and a process of the Mandelstam–Brillouin scattering type is obtained. It is shown that the nonlo-
cality of spatial correlations of density fluctuations in a turbulent medium is due to long-free-path
carriers of the medium’s perturbations, for which the free path distribution function is described
by the Lévy distribution. The effectiveness of the proposed method is shown by the example of the
interpretation of the data of cross-correlation reflectometry of EM waves in the radio-frequency range
for the diagnosis of turbulent plasma in magnetic confinement devices for axisymmetric toroidal
thermonuclear plasma.

Keywords: cross-correlation reflectometry; superdiffusion; Biberman–Holstein equation; Lévy walk;
Mandelstam–Brillouin scattering

1. Introduction

One of the most important problems of diagnostics and control of magnetically con-
fined plasma in devices for controlled thermonuclear fusion is the measurement of the
spatial distribution of the plasma density and the main characteristics of its density fluc-
tuations. The latter play an important role in confining the thermal energy of the plasma
and the possibility of maintaining thermonuclear fusion in high-temperature plasma. The
most effective diagnostics of the main characteristics of plasma density fluctuations are
active diagnostics based on the injection of electromagnetic (EM) waves into the plasma in
the electron cyclotron frequency range and the injection of beams of heavy ions (heavy ion
beam probing) and hydrogen atoms (beam emission spectroscopy). This work is devoted
to the development and application of the theory of diagnostics of nonlocal properties
of plasma density fluctuations using diagnostics of the first type—plasma reflectometry
by EM waves. The nonlocal properties of plasma density fluctuations are of particular
practical interest due to the importance of the observed nonlocal properties of heat transfer
in thermonuclear plasmas. The developed methods for analyzing the nonlocal properties
of plasma density fluctuations so far have been based on approaches in which plasma
fluctuations are described in terms of models based either on a priori assumptions of a gen-
eral nature or on simplified approaches not based on solving kinetic equations. Therefore,
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the task of formalizing models within the framework of more general and more rigorous
approaches remains relevant.

In this paper, we present a theoretical model of density fluctuations in a medium with
stochastic nonlinear processes, which also covers the case of turbulent plasma. Accounting
for the nonlinearity of processes lies in the assumption of the existence of long-lived
fluctuations of the plasma density (on a qualitative level, this can be illustrated by the
possible existence of solitary waves: for example, two-dimensional solitons described
by the well-known Kadomtsev–Petviashvili equation). The kinetic model of a turbulent
medium makes it possible to describe the dynamics of a statistical ensemble of localized
density perturbation carriers (localized density fluctuations), which can be considered in a
linear approximation, taking into account such processes as (a) the birth of carriers from
the thermal energy of the plasma, (b) the reverse process of their disappearance, (c) motion
in a plasma with a finite free path, and (d) stoppage of the carrier without its disappearance
(capture) and resumption of motion. In this case, the phenomenologically introduced
parameters of these processes are subject to restoration by a comparison with experimental
data on the fine spectral characteristics of the scattering of the probing EM in plasma.

The theoretical model proposed by us is used to describe the cross-correlation re-
flectometry of nonlocality in a turbulent plasma. The proposed model generalizes the
previously developed models in that the spectral characteristics of the signals of such
reflectometry are obtained by solving the kinetic equation for the space–time dynamics of
plasma density fluctuations and take into account phenomena that have not been covered
by existing models. First of all, the property of significant dispersion of the distribution of
medium perturbation carriers over their free path length is taken into account, which is
precisely the generator of nonlocality (superdiffusion) of perturbation transfer. Next, we
briefly explain the specifics of nonlocality in transfer processes and the status of the theory
of such processes.

Normal (ordinary) diffusion is defined as Brownian motion and is described by a
Fokker–Planck type differential equation. The Green’s function of such an equation, which
describes the propagation of a disturbance from a point instantaneous source in a homoge-
neous stationary medium, is a Gaussian with an argument that determines the front prop-
agation law r f r(t) ∼ (Dt)β, where β = 1/2 and D is the diffusion coefficient. However,
this law is violated for a wide class of physical processes, where the free path distribution
function, the so-called step-length probability density function (PDF), for the carriers of the
medium disturbance turns out to be slowly decreasing with increasing distance, namely in
a power-law manner, and not exponentially. This leads to the divergence of the diffusion
coefficient, which is formally determined in the form of the dispersion of the PDF, and the
calculation of the above law of front propagation from the results of the analysis of the
corresponding Green’s function gives β > 1/2. This type of transfer is called superdiffusion
or nonlocal.

Superdiffusion transport, as well as the concept of Lévy flights associated with it,
introduced by Mandelbrot [1,2] (see p. IX in monograph [2] and reviews [3–5]), covers many
phenomena in physics and other disciplines. The model of nonlocal transfer, called “Lévy
walk with stops” (see [6–8] and review [9]), is relevant for such problems as the transfer
of resonant radiation in astrophysical gases and plasmas [10–13], biological migration
(Section 6 in [9]), and energy transfer by linear waves in plasmas [14].

Analytical methods are well developed for problems of stationary nonlocal transfer,
such as, for example, the theory of resonant radiation transfer with complete frequency
redistribution in the act of absorption and emission of a photon by an atom or ion in a gas
or plasma [15–27]. For more complex problems, namely nonstationary nonlocal transport,
a method for calculating the characteristics of nonlocal transport of interest (primarily
an approximate description of the Green’s function characterizing the dynamics of the
propagation front of the perturbation of a medium from an instantaneous point source) was
developed in [28] in the limit of infinite speed of light and generalized to the case taking
into account the delay (i.e., the finite speed of light) in [29–32]; see also review [33]. This
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method for describing nonstationary superdiffusion processes is applied in this work to
describe the kinetics of moving density fluctuations in a turbulent medium. This made it
possible to formulate an algorithm for reconstructing the nonlocal properties of stochastic
processes in a medium from the spectrum of its density fluctuations, which is diagnosed
from the scattering spectra of EM waves in the medium.

The developed approach is based on the use of the concept of Lévy walks (Lévy
flights taking into account the finite speed of carriers). Such a concept was proposed
in [34] for stochastic nonlinear processes, including the turbulence of the hydrodynamic
motion of continuous media. The description of distant spatial correlations was based on
a linear integral–differential equation with a slowly falling kernel, which corresponds to
superdiffusion (nonlocal) transport in the Lévy walk mode. The similarity laws obtained
in [34] made it possible to qualitatively establish a relationship with the Richardson law [35]
for the motion of the perturbation front in a hydrodynamic turbulent medium and the
Kolmogorov spectrum [36] for uniform stationary turbulence. In this paper, we formulate a
fundamentally close approach based on the concept of Lévy walks, albeit within a different
physical and mathematical model.

In the problem of correlation reflectometry of turbulent plasma of interest to us, the
phenomenon of nonlocality (superdiffusion) of heat and particle transfer processes is widely
studied in relation to this and other plasma diagnostics (see, for example, monograph [37]).
The models used to describe plasma density fluctuations vary over a wide range. Let us
explain this by the example of the radial Doppler correlation reflectometry of the tokamak
plasma, which is of interest to us. The pair correlation function of the plasma density can
be chosen from general statistical considerations as a time-independent function with a
Gaussian or power-law dependence on the coordinate difference: see, for example, (21)
in [38], where using the general approach [39], the expected signal of cross-correlation
reflectometry was calculated taking into account the volumetric scattering of the probing
wave. Another model is the representation of a turbulent field of density fluctuations as
a finite set of fluctuations with given kinematic parameters of individual perturbations—
lifetime, motion velocity, and mean free path (see, for example, the formula on p. 449
in [40]). Our goal is to obtain an analytical representation of the density of fluctuations
in a turbulent plasma, in which the free path and the velocity of motion are given by a
distribution with dispersion and not just by the average value. In this case, the analytical
description of density fluctuations itself is not an a priori given function but a solution to a
kinetic equation that takes into account elementary mechanical processes in the dynamics
of individual density perturbations.

The specific practical goal of this work is to apply the obtained theoretical results
to the interpretation of the data of correlation reflectometry of EM waves in the radio
frequency range for diagnosing turbulent plasma in tokamaks. Of particular interest is
the analysis of a phenomenon discovered at the T-10 tokamak and called “quasi-coherent
oscillations” [41–43] (in international terminology, quasi-coherent mode). Subsequently, the
same results were obtained on other tokamaks using the same diagnostics-reflectometry
(TEXTOR, ToreSupra, KSTAR, HL-2A, and J-TEXT tokamaks). In addition, the spectrum
with quasi-coherent components was also observed with the help of another diagnostic—
heavy ion beam injection (see, e.g., review [44]) on the same T-10 tokamak (the results
of these diagnostics are compared in [45]). If the observed symmetric peaks (relative
to the frequency of diagnostic probing radiation) in the scattering spectrum on density
fluctuations are the result of the presence of a distinguished velocity of their motion
relative to the plasma, then we have an analogue of the fine structure of Mandelstam–
Brillouin scattering. Such a structure was theoretically predicted for the scattering of
light by sound waves in elastic media, including liquids, amorphous media, and solids
(see the paragraph “Rayleigh scattering in gases and liquids” in [46]). The reason for the
appearance of a fine structure in the spectrum of scattered radiation (i.e., the “splitting” of
an almost monochromatic line, which is the spectrum in the absence of sound waves) is
the Doppler effect. Our goal is to develop a theoretical model for a unified interpretation
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of the experimental data on the radial and poloidal correlation reflectometry by solving
a single inverse problem. The solution of such a problem can be achieved only in the
case of an analytical model of the dependence of the cross-correlation function on two
variables: the spatial coordinate (minor radius of the axisymmetric toroidal plasma or the
poloidal coordinate within the magnetic flux surface) and the frequency of the electric
field of the scattered EM wave. The construction of an analytical model requires the
identification of the main physical effects, including the Doppler effect, in the fine structure
of the Mandelstam–Brillouin scattering spectrum. Currently, there are no analytical models
in the literature for the cross-correlation function mentioned above.

The content of the article is as follows. Section 2 presents the basic equations for the
scattering of EM waves and cross-correlation reflectometry in plasma. Section 3 proposes
a physical model and the corresponding system of equations for density fluctuations,
which reduces to an integral equation for the cross-correlation function of plasma density
fluctuations. This equation is expressed in terms of the Holstein functional [16], which
is characteristic of a wide range of nonlocal transfer processes, including the transfer
of resonant radiation in plasma and gases in the Biberman–Holstein model [15–17]. In
Section 4, the scattering spectrum of EM waves in a turbulent medium in a localized region
of space is calculated; in Section 5, the main cross-correlation characteristics of EM wave
scattering by various points of the medium are found. Section 6 formulates and solves in
a particular case the inverse problem of recovering nonlocal turbulence parameters. The
effectiveness of the developed approach is shown by the example of the interpretation of the
data of correlation reflectometry of EM waves of the radio frequency range for diagnosing
turbulent plasma in the T-10, TEXTOR, and ASDEX tokamaks.

2. Basic Equations for EM Wave Scattering and Cross-Correlation Reflectometry
in Plasma

In the case of scattering of a plane monochromatic electromagnetic wave, the electric
field vector of the incident wave has the form

E = E0eiωit−ikiρ, (1)

where ωi is the frequency of the incident plane wave (i stands for “incident”) and ki is its
wave vector. The electric field formed by the scattering of an incident wave by an ensemble
of free electrons is described by the following expression (see, for example, (8.12) in [47]):

E(r, t) =
r0

R

∫
d3ρg(ρ, t)ei(ωit′−kiρ)[n̂, [n̂, E0]]. (2)

Here, r0 is the classical radius of the electron, R is the distance from the charge to
the point of observation at a large distance from the electron, g(ρ, t) is the distribution
function of electrons along the spatial coordinate ρ at time t, n̂ is the unit vector in the
direction of propagation of the scattered wave, E0 is the amplitude of the electric field of the
incident wave, and t′ = t− r

c +
n̂ρ
c (c is the speed of light). Let us denote the wave vector

of the scattered wave with frequency ωs (s means “scattered”) as ks = n̂ωs/c, introduce
the scattering vector and the scattering frequency:

K = ks − ki,
ω = ωs −ωi.

(3)

Let the electrons move according to the law ρ = ρ0,j + vjt, which corresponds to the
motion of an individual particle, marked with the index j, along a straight trajectory with
the initial coordinate ρ0,j and velocity vj. Then the microscopic distribution function, which
takes into account density fluctuations in the system of point particles, has the form:

g(ρ, t) = ∑
j

δ
(
ρ− ρ0,j − vjt

)
, (4)
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where summation over j means summation over the contributions of individual particles.
Then the electric field of the scattered radiation equation, i.e., Equation (2), takes the form

E(r, t) = exp(iωit)[n̂, [n̂, E0]]
r0
R
∫

d3ρ ∑
j

δ
(
ρ− ρ0,j − vjt

)
exp(iKρ)

= exp(iωit)[n̂, [n̂, E0]]
r0
R ∑

j
exp

[
iK
(
ρ0,j + vjt

)]
,

(5)

To obtain the spectral distribution of fluctuations in the density of the scattering
medium, it is necessary to calculate the spectral distribution of the scattered field. In prac-
tice, the Fourier transform of the measured time dependence of the scattered field is carried
out over a limited time interval, during which a statistically reliable Fourier transform
can be formed. Reflectometry is characterized by time-selective probing. Therefore, it
is necessary to single out the fast time t f ast, according to which the Fourier transform is
carried out, and the slow time tslow, which is a mark of various measurement time inter-
vals, during which the macroscopic parameters of the probed medium can be considered
quasi-stationary, i.e.,

t = t f ast + tslow. (6)

Then,

E
(

r, t f ast + tslow

)
= exp

(
iωi

(
t f ast + tslow

))
[n̂, [n̂, E0]]

r0

R ∑
j

exp
[
iK
(

ρ0,j + vj

(
t f ast + tslow

))]
. (7)

Let us perform the Fourier transform over fast time:

Ê(r, ωs, tslow) =
1

(2π)1/2

∫
dt f ast e−iωst f ast E

(
r, t f ast + tslow

)
. (8)

Taking into account Equation (7), we obtain

Ê(r, ωs, tslow) =
1

(2π)1/2

∫
dt f ast e−iωst f ast exp

[
iωi

(
t f ast

+tslow)][n̂, [n̂, E0]]
r0
R

×∑
j

exp
[
iK
(

ρ0,j + vj

(
t f ast + tslow

))]
= [n̂, [n̂, E0]]

r0
R exp[iωitslow]∑

j
exp

[
iK
(
ρ0,j

+vjtslow)]
1

(2π)1/2

∫
dt f ast exp

[(
−iω + iKvj

)
t f ast

]
.

(9)

We consider that the time interval of the Fourier analysis is sufficiently large, so that
the well-known relation containing the Dirac delta function is satisfied with high accuracy:

1
2π

∫
dt f ast exp

[(
−iω + iKvj

)
t f ast

]
= δ

(
ω−Kvj

)
. (10)

Then,

Ê(r, ω, tslow) =
√

2π[n̂, [n̂, E0]]
r0

R
exp[iωitslow]∑

j
exp

[
iK
(
ρ0,j + vjtslow

)]
δ
(
ω−Kvj

)
. (11)

Let us average over the initial coordinates of the electrons. We consider separately
the sum

∫ d3ρ0

V ∑
j

exp
[
iK
(
ρ0 + vjtslow

)]
δ
(
ω−Kvj

)
=
∫ d3ρ0

V
exp[iKρ0]∑

j
exp

[
iKvjtslow

]
δ
(
ω−Kvj

)
. (12)
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Note that the averaging is carried out over the volume near the observation point r,
for example, with radius a, so ρ0 → r + ρ′0 and

∫ d3ρ0

V
exp[iKρ0] =

4π exp[iKr]
K3V

(sin(Ka)− Ka cos(Ka)). (13)

At a � 1/K, we have sin(Ka)−Ka cos(Ka)
K3 ≈ a3

3 ; then assuming that V = 4
3 πa3, we

finally have ∫ d3ρ0

V
exp[iKρ0] ≈ exp[iKr]. (14)

Then,

Ê(r, ω, tslow) =
√

2π[n̂, [n̂, E0]]
r0
R exp[iωitslow − iKr]∑

j
exp

[
iKvjtslow

]
δ
(
ω−Kvj

)
=
√

2π[n̂, [n̂, E0]]
r0
R exp[iωstslow − iKr]∑

j
δ
(
ω−Kvj

)
.

(15)

It can be seen that the result for the spectrum of scattered radiation field described
by Equation (15) includes the sum of the Fourier transforms of the density of individual
electrons; therefore, taking into account Equation (4), we can write

ǧ(ω, K) = ∑
j

δ
(
ω−Kvj

)
. (16)

Then Equation (15) can be rewritten in the following form, omitting the dependence
on the slow variable tslow and renaming R = |r|:

Ê(r, ω, K) =
√

2π[n̂, [n̂, E0]]e−i(K,r) r0

|r| ǧ(ω, K). (17)

The spectral-angular distribution of the radiation power scattered by a charged particle
with a classical radius r0 from point r to point r1 at time t (we neglect the delay of scattered
diagnostic EM waves) has the form (see, for example, (8.15) and (8.18) in [47]):

dW(ω, n̂, r1, t)
dΩn̂ dωs

=
cr0

2

4π
[n̂, [n̂, E0]]

2 lim
T0→∞

1
πT0
|ǧ(ω, K, r, t, T0)|2, (18)

where the Fourier transform means the corresponding transformation in fast variables (i.e.,
over a limited interval, practically sufficient for reliable calculation of the Fourier transform);
n̂ is the unit vector in the direction of propagation from point r to point r1; and Ωn̂ is the
corresponding solid angle. Adding the coordinate r to the function argument means
binding all parameters to a “slow” spatial variable, and the time integrals in calculating the
Fourier transform of the density should be taken on a limited time interval [0, T0] near the
(slow) time t. The time averaging operation T0 is necessary to find the spectral composition
of the power (and not the entire energy) of the scattered radiation.

We will use the standard definition of the cross-correlation function of the scattered
field, C(τ̃), as a convolution (in fast time) of scattering signals from two points r1 and r2 in
the coordinate space:

C(τ̃, r1, r2) =

∫ +∞
−∞ dtE∗(r1, t, K1)E(r2, t + τ̃, K2)[∫ +∞

−∞ dt|E(r1, t, K1)|2
∫ +∞
−∞ dt|E(r2, t, K2)|2

]1/2 . (19)

The electric fields in Equation (19) are determined by Equation (17), which includes
statistical averaging over the electron parameters, which assumes the sum over j in
Equation (16).
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The Fourier transform of the function in Equation (19) with respect to the delay time τ̃
gives the spectral distribution, which is the final result of processing the experimental data
of cross-correlation reflectometry:

C(ω, r1, r2) =

lim
T0→∞

1
T0

Ê∗(r1, ω, K1)Ê(r2, ω, K2)√
lim

T01→∞

(
1

T01

∣∣Ê(r1, ω, K1)
∣∣2) lim

T02→∞

(
1

T02

∣∣Ê(r2, ω, K2)
∣∣2) (20)

where Ê(r1, ω, K1) is the Fourier transform in time of the electric field of the scattered EM
wave. In this case, in Equation (20), statistical averaging over the parameters of scatterers is
assumed, which corresponds to averaging over all microscopic parameters of electrons in
the distribution function in Equation (4).

3. Kinetic Model of Density Fluctuations in a Turbulent Medium

To describe the nonlocality of the transfer of density perturbations in a turbulent
medium, we will use the hypothesis [34] on the possibility of representing the dynamics of
localized perturbations of the medium using a linear integral–differential equation with an
integral over spatial variables. The kernel of such an integral is a slowly decreasing function
of coordinates, and the corresponding probability of a free path of carriers of a disturbance
in the medium belongs to the class of Lévy distributions. This approach assumes that
strong nonlinear interactions form an ensemble of stable long-lived perturbations of the
medium (for example, wave packets with the properties of solitons) that interact with the
medium (are produced and absorbed in it) in a balance mode described by linear kinetic
equations. Although the formalism proposed by us differs significantly from the formalism
of [34], in the conceptual aspect, we actually follow the hypothesis of [34].

We propose such an implementation of the approach [34] in which the stochastic prop-
erties of a medium with a strong nonlocality of the transfer of perturbations of its density
are described by a formalism such as nonlocal transfer of photons in the medium in the
Biberman–Holstein model [15,16]. This model is widely known as the transfer of resonant
radiation in the approximation of complete redistribution (CRD) of the frequency of a
photon in the elementary act of absorption of a photon by atoms or ions and its subsequent
emission by an excited atom or ion (for more details, see, for example, monographs [17,23]
and reviews [20,21,27]). Note that the property of forgetting the spectral-angular parame-
ters of a photon when it is re-emitted by an excited atom within the same spectral line is
quite acceptable when using this approach to describe stochastic processes in a turbulent
medium. To describe the transfer processes of density perturbations in the problems of
reflectometry that are of interest to us, it is necessary to move from the limiting case of
infinite velocity of carriers, applicable to the motion of photons in laboratory plasma and
used in the standard Biberman–Holstein model, to the case of the finite velocity of the
carriers. In terms of nonlocal (i.e., superdiffusion) transport properties, this means a transi-
tion from Lévy flights [1–5] to Lévy walks [6–9]. Accounting for the finite speed of light is
typical for problems of radiation transfer in astrophysical objects [10–13], but the problems
of nonstationary nonlocal transfer were considered only for the infinite speed of light,
and the finiteness of the speed of light was taken into account in the problems of transfer
of monochromatic radiation, which is not a superdiffusion. Problems of nonstationary
nonlocal transport for a finite fixed velocity of carriers were recently solved, in [29–33],
including the tracing in [31] of the transition between transport modes dominated by flights
or Lévy walks, i.e., between modes, when, respectively, it is appropriate or inappropriate
to neglect the effects of delay due to the finiteness of the velocity of the carriers.

The application of the concept of Lévy walks to the transport of density perturba-
tions in a quasi-homogeneous quasi-stationary medium means that the proposed model
assumes the following microscopic dynamics. Localized density perturbations generated
as a result of strong nonlinear processes can either remain trapped by the medium, almost
not moving relative to the medium (we will call them standing excitations of the medium),
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or (as localized nonlinear waves of the soliton type) move at a constant speed until the
act of “absorption” by the medium of a moving (traveling) excitation. By absorption, we
mean the capture (stopping) of a traveling excitation, i.e., its transformation into a standing
excitation of the medium with a finite lifetime, after which the standing excitation of the
medium turns into a traveling excitation. The process of birth of standing excitations is
an elementary mechanical process in the sense that there is also an inverse process of
destruction (quenching) when the energy of a localized perturbation of the medium is
returned to the medium as a whole, i.e., delocalized by certain inelastic processes. The law
of motion of traveling excitations is determined by the dispersion properties of nonlinear
waves in the medium and assumes the presence of some velocity distribution. Plasma
density fluctuations, which are of interest to us in the problem of reflectometry, can be
considered as localized perturbations of a quasi-homogeneous quasi-stationary medium
and the formalism of the Biberman–Holstein model can be applied to them, taking into
account the finite velocity of the perturbation carriers. At the same time, we will character-
ize the stochastic properties of the processes of birth and annihilation (extinguishing), free
path in the medium, and stopping (“absorption” of a traveling fluctuation) of the elemen-
tary excitation of the medium by phenomenologically introduced spectral probabilities.
The main parameters of these probability distributions are to be restored by solving the
inverse problem when interpreting the results of measurements of the scattering spectra of
diagnostic radiation and its cross-correlation reflectometry.

Let us consider the system of nonlocal transport equations for the intensity Iω̃(r, n, t)
(i.e., the energy flux density) of traveling fluctuations (carriers) and the density of standing
fluctuations f (ρ, t) in dimensional variables for one kind of carriers:

∂ f (r,t)
∂t = −

(
1
τ + σ

)
f (r, t) +

∫
dω̃ κω̃

}ω̃

∫
dΩ(n)Iω̃(r, v, t) + q(r, t),

1
v

∂Iω̃(r,v,t)
∂t + (n,∇)Iω̃(r, v, t) = −κω̃ Iω̃(r, v, t) + }ω̃

τ
Pω̃
4π f (r, t).

(21)

Here, τ is the average lifetime of standing fluctuations; σ is the average inverse
time for the disappearance of standing fluctuations (“quenching” of the excitation of
the medium); v is the speed of movement of traveling density fluctuations, which are
elementary “scatterers” of diagnostic waves, just as, for example, charged particles are
“scatterers” of EM waves (in the case of noncollective scattering, this is called Thomson
scattering for weakly relativistic particles and Compton scattering for relativistic particles),
v = nv; Pω̃ is the spectral distribution of the probability of emission of carriers with
frequency ω̃; κω̃ is the coefficient of “absorption” of carriers with frequency ω̃ (i.e., the
reciprocal free path of such carriers before stopping in the medium); and q(r, t) is the
source of standing fluctuations (the power density of the production of such fluctuations in
the medium).

When describing nonlocal (superdiffusion) transport, it is convenient to use the fol-
lowing functionals (in the three-dimensional case) (cf, for example, Section 1 in [20]):

W(ρ) = − 1
4πρ2

dT(ρ)
dρ

≡ 1
4πρ2 Wstep(ρ), T(ρ) =

∫
dω̃ Pω̃ exp[−κω̃ρ], (22)

In this case, the function Wstep(ρ) is the free path distribution function, the so-called
step-length probability density function (PDF) of carriers of disturbances in the medium.
The integral in Equation (22) is taken over all frequencies. Note also that the spectral
characteristics of the source and sink for traveling density fluctuations depend on the
velocity of these fluctuations. In what follows, we will explicitly indicate this dependence.

It is important to note that the frequency ω̃ used here is such a characteristic of
perturbation carriers that allows one to describe the dispersion of their free paths. The
frequency in Equations (21) and (22) can be interpreted as a fluctuating energy of carriers
(in the Biberman–Holstein model, the frequency of resonant radiation is uniquely related to
the energies of the corresponding elementary perturbations of the electrodynamic vacuum-
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photons) and significantly affects the mean free path. In what follows, we reduce the
description of the final results in terms of the Holstein function and thus construct a
formalism in which the dependence on the details of the spectral characteristics of the
elementary acts of emission and absorption of carriers is concentrated in the dependence of
the Holstein function on the spatial coordinate, which describes the probability of the free
path no less than a given distance.

To implement superdiffusion transport, the step-length PDF must be a slowly decreas-
ing function of the distance ρ, i.e., a power function (in dimensional form):

Wstep(ρ, v) =
γκ0(v)

(1 + κ0(v)ρ)
γ+1 , T(ρ, v) =

1
(1 + κ0(v)ρ)

γ , 0 < γ < 2, (23)

where 1/κ0(v) is the characteristic free path of carriers (traveling fluctuations) moving with
a (constant) velocity v.

For the problem of scattering of diagnostic EM waves, we will be interested in the
Fourier transform of the fluctuation density in space and time variables, since the electric
field of the scattered EM wave is determined by the Fourier transform of the fluctuation
density at a frequency value equal to ω = ωs−ωi, and the wave vector, equal to K = ks−ki
(where the index s means the scattered wave and i the incident). Thus, the frequency ω
indicated here has a different meaning than that in Equations (21) and (22).

In the system of Equation (21), we will assume that the dynamics of carriers occur
in a weakly inhomogeneous quasi-stationary medium, which is further understood as a
medium with characteristic spatio-temporal scales of change in the parameters σ, κω̃, and
Pω̃, which are much larger than the corresponding parameters of the carrier distribution
function. Then, when solving the system of kinetic equations using the Fourier and Laplace
transformations with respect to “fast” variables, the specified parameters of the medium
can be considered constant (“slow” variables).

After Fourier transformations with respect to the spatial coordinate, the system in
Equation (21) takes the form

∂ f̂ (K,t)
∂t = −

(
1
τ + σ

)
f̂ (K, t) +

∫
dω̃ κω̃

}ω̃

∫
dΩ(n) ˆIω̃(K, n, t) + q̂(K, t) = 0

1
v

∂ ˆIω̃(K,v,t)
∂t − i(n, K) ˆIω̃(K, v, t) = −κω̃

ˆIω̃(K, v, t) + }ω̃
τ

1
4π Pω̃ f̂ (K, t)

(24)

The solution of the second equation in the system with the initial condition ˆIω̃(K, v, 0) = 0
has the following form for t > 0:

ˆIω̃(K, v, t) =
}ω̃

τ

v
4π

Pω̃

t∫
0

dt′ exp
[
−v
(
t− t′

)
{−i(n, K) + κω̃}

]
f̂
(
K, t′

)
. (25)

Then the first part in Equation (24) can be rewritten as:

∂ f̂ (K, t)
∂t

= −
(

1
τ
+ σ

)
f̂ (K, t) +

1
τ

t∫
0

dt′ f̂
(
K, t′

)
y
(
K, t− t′, v

)
+ q̂(K, t), (26)

where, taking into account Equations (22) and (23), the function y is as follows:

y(K, t, v) =
4π

K
v2tW(vt) sin(vtK) =

γκ0

(1 + vtκ0)
γ+1

sin(vtK)
tK

. (27)

We will solve Equation (26) using the Laplace transform with respect to the fast time
variable, assuming f̂ (K, 0) = 0:

f̂ (K, t)⇒ F(K, s), y(K, t, v)⇒ Y(K, s, v). (28)
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Then we have

F(K, s) =
Q(K, s)

s + 1/τ + σ− 1/τY(K, s, v)
, (29)

where

Y(K, s) =
+∞∫
0

e−st′y
(
K, t′

)
dt′ =

γκ0

K

+∞∫
0

dt′ e−st′

(1 + vt′κ0)
γ+1

sin(vKt′)
t′

. (30)

As a result, for the transform function, we obtain the expression

f̂ (K, t) =
1

2πi

+0+i∞∫
+0−i∞

estF(K, s)ds =
1

2πi

+0+i∞∫
+0−i∞

ds estQ(K, s)
s + 1/τ + σ− 1/τY(K, s, v)

. (31)

Let us turn to the result of Equation (25), i.e., the equation for intensity, with Equation (31)
taken into account. Then

ˆIω̃(K, v, t) =
}ω̃

τ

v
4π

Pω̃

2πi

+0+i∞∫
+0−i∞

ds Q(K, s)
s + 1/τ + σ− 1/τY(K, s, v)

×
t∫

0

dt′ exp
[
−v
(
t− t′

)
{−i(n, K) + κω̃}+ st′

]
. (32)

The inner integral here can be calculated for t > 0,

t∫
0

dt2 exp[−v(t− t2){−i(n, K) + κω̃}+ st2] =
est − e−vt{−i(nK)+κω̃}

v{−i(n, K) + κω̃}+ s
θ(t). (33)

Then

ˆIω̃(K, n, t, v) =
}ω̃

τ

v
4π

Pω̃

2πi
θ(t)

+0+i∞∫
+0−i∞

ds Q(K, s)
s + 1/τ + σ− 1/τY(K, s, v)

est − e−vt{−i(n,K)+κω̃}

v{−i(n, K) + κω̃}+ s
. (34)

Let us define the density of fluctuations traveling with a speed v, which is an integral
value over the energy of individual carriers (the frequency ω̃ in Equation (21)), and we will
look for the Fourier transform of this function with respect to the spatial coordinate:

ĝ(K, t, v) =
1
v

∫
dω̃

ˆIω̃(K, v, t)
}ω̃

, (35)

where ˆIω̃(K, v, t) is the Fourier transform of the intensity with respect to the spatial coordi-
nate. Then, taking into account Equation (34), we have the following expression for ĝ:

ĝ(K, t, v) =
1

4π

θ(t)
2πi

∫
dω̃Pω̃

+0+i∞∫
+0−i∞

ds Q(K, s)
sτ + 1 + στ −Y(K, s, v)

est − e−vt{−i(n,K)+κω̃}

v{−i(n, K) + κω̃}+ s
θ(t). (36)

A factor
Q(K, s)/(sτ + 1 + στ −Y(K, s, v))

in Equation (36) describes the renormalization of the source of standing fluctuations. The
term στ corresponds to the number of “quenchings” of standing excitations of the medium
during their lifetime. The function Y describes the contribution of the medium excitation
transfer process: as the path length of traveling fluctuations in this factor in Equation (36)
tends to zero (i.e., the “absorption” coefficient tends to infinity), only the term στ remains
in the denominator, which corresponds to the limit of thermodynamic equilibrium with
respect to the birth and annihilation of standing excitations of the medium. In this case, the
relationship between the source and the sink of the excitation of the medium (in this case,
the standing excitation of the medium is the standing density fluctuations) is expressed in
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terms of the flux density of the carriers of the excitation of the medium (in this case, the
carriers of the excitation of the medium are traveling fluctuations) and is an analog of the
Kirchhoff law for radiation.

For the spectrum of the density of traveling fluctuations ĝ from Equation (36), by
means of the Laplace transform, we obtain the following expression:

ǧ(K, ω, v) = 1
(2π)2

1
2τ

√
π
2

Q(K,iω)
+iω+1/τ+σ−1/τY(K,iω,v)

∫
dω̃Pω̃

1
v{−i(n,K)+κω̃}+iω

+ 1
(2π)5/2

1
2τi
∫

dω̃Pω̃

+0+i∞∫
+0−i∞

ds Q(K,s)
s+1/τ+σ−1/τY(K,s,v)

× 1
v{−i(n,K)+κω̃}+s

(
− 1

s−iω −
1

v{−i(n,K)+κω̃}+iω

)
.

(37)

Integration of the second term ∼ 1
v
{
−i(n,K)+κω̃1

}
+iω

in parentheses gives zero, because

when closing through the right half-plane, it has no poles (closing through the right half-
plane is necessary for the convergence of Y(K, s, v)).

Let us consider in more detail the pole at point s = +iω. Since at α→ 0 , the singular
point is on the integration axis, it is necessary to bypass this pole along an infinitely small
semicircle on the left according to the bypass rule. Therefore, the contribution to the integral
from a given pole is determined by the semiresidue of the integrand. Then, for the density
spectrum of traveling density fluctuations, we have the expression:

ǧ(K, ω, v) = 1
(2π)3/2

1
2τ

Q(K,iω)
iω+1/τ+σ−1/τY(K,iω,v)

∫
dω̃Pω̃

1
v{−i(n,K)+κω̃}+iω

− i
(2π)5/2

1
2τ

+∞∫
−∞

dy Q(K,iy)
iy+1/τ+σ−1/τY(K,iy,v)P 1

y−ω

∫
dω̃Pω̃

1
v{−i(n,K)+κω̃}+iy .

(38)

Let us pay attention to the integrand in the second term in Equation (38). It means
the following:

1
v{−i(n, K) + κω̃}+ iω

=
√

2π

+∞∫
−∞

dte−iωte−vt{−i(n,K)+κω̃}θ(t).

Consider the integral in the first term in Equation (38), taking into account the inte-
grand and also Equation (22). Then it can be expressed in terms of the Holstein functional
T(vt, v):

∫
dω̃Pω̃

1
v{−i(n, K) + κω̃}+ iω

=
√

2π

+∞∫
0

dte−i(ω−(v,K))tT(vt, v)

Here, we have explicitly specified the second argument (velocity of the carrier) in the
Holstein function (cf Equation (23)). Then, for the spectrum, we have the following expression:

ǧ(K, ω, v) = 1
4π

Q(K,iω)
1+στ+iωτ−Y(K,iω,v)

+∞∫
0

dte−i(ω−(v,K))tT(vt, v)

− i
2(2π)2

+∞∫
−∞

dy Q(K,iy)
1+στ+iτy−Y(K,iy,v)P 1

y−ω

+∞∫
0

dte−i(y−(v,K))tT(vt, v).

(39)

The main contribution to the density of traveling fluctuations is made by the first term,
so the result for the Fourier–Laplace transform of their density is expressed in terms of
the Holstein functions shown in Equations (22) and (23), which describes the measure of
nonlocality (superdiffusion) of the transfer process. Taking into account the constancy of
the velocity of the carrier already indicated above as it moves from the point of birth to the
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point of stopping, we have the following expression for the contribution of the j-th particle
of the m-th kind to the Fourier–Laplace transform of the fluctuation density:

ǧm
(
K, ω, vj

)
=

1
4π

Qe f f
(m)
(
K, iω, vj

) +∞∫
0

dte−i(ω−(vj,K))tTm
(
vjt, vj

)
. (40)

which is the product of the renormalized (effective) source of standing fluctuations

Qe f f
(m)
(
K, iω, vj

)
=

Qm(K, iω)

1 + σmτm + iωτm −Ym
(
K, iω, vj

) , (41)

on the Fourier transform of the Holstein function taking into account the Doppler frequency
shift in the act of scattering of the probing radiation by a traveling fluctuation. Here,
Qm(K, iω) is the Fourier–Laplace transform for the source of standing fluctuations of sort
m, q(r, t) in Equation (21).

Further, we will use an approximate expression for an effective source at στ � ωτ � 1
(thermodynamic limit for the density of standing fluctuations).

As will be shown below, in practical problems, we will be interested in such a case
when the effect of “absorption” of carriers (traveling fluctuations of density), caused by the
finiteness of their free paths, will be small compared to the effect of the Doppler broadening
of the spectra due to the motion of carriers. This means that the integral in Equation (40) is
close to the Dirac delta function, since as the absorption coefficient formally tends to zero,
the Holstein function tends to unity, and we have:

lim
κ0→0

ǧm
(
K, ω, vj

)
=

1
8

Qm(K, iω)

1 + σmτm + iωτm
δ
(
ω−

(
vj, K

))
. (42)

This limit of free motion of density fluctuations is important for checking the coin-
cidence of the scattering spectrum with that in the well-known problem of noncollective
scattering of EM radiation by free particles.

4. Scattering Spectrum

To calculate the spectrum of scattered radiation, let us turn to the scattering spectrum
(Equation (18)) on particles of type m. Taking into account Equation (40), it takes the form:

dWm(ω,n̂,r1,t)
dΩn̂ dωs

= cr0
2

(4π)3

∣∣∣∣∣∑j Qe f f
(m)
(
K, iω, vj

) T0∫
0

dte−i(ω−(vj ,K))tTm
(
vjt, vj

)∣∣∣∣∣
2

.
(43)

∣∣∣∣∣∑j Qe f f
(m)
(
K, iω, vj

) T0∫
0

dte−i(ω−(vj ,K))tTm
(
vjt, vj

)∣∣∣∣∣
2

= ∑
j

∣∣∣Qe f f
(m)
(
K, iω, vj

)∣∣∣2∣∣∣∣∣T0∫
0

dte−i(ω−(vj ,K))tTm
(
vjt, vj

)∣∣∣∣∣
2

.

(44)

Note that after this step, the summation in the only remaining sum over particles can
be replaced by integration over the continuum distribution function of scattering particles
over velocities.

The next simplification is related to the assumption of perturbativity, i.e., the smallness
of the broadening of the Dirac delta function by the effect of the finite lifetime of carriers due
to their absorption (in our case, stopping of traveling fluctuations). When the absorption of
carriers in Equation (44) is completely neglected, the passage to the limit T0 → ∞ gives the
transformation of the square of the delta function (Equation (42)) to its first power (see, for
example, (8.16) in [47] and Equation (7) in [48]). Within the framework of the perturbative
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consideration of absorption, one of the integrals can be set to T(0, v) = 1, which gives the
following expression for the spectrum of radiation scattered by a particle with velocity v:

dWm(ω,n̂,v,r1,t)
dΩn̂ dωs

= cr0
2

π(4π)3 [ n̂, [n̂, E0]]
2
∣∣∣Qe f f (K, iω, v)

∣∣∣2∣∣∣∣∣+∞∫
0

dte−i(ω−(v,K))tTm(vt, v)

∣∣∣∣∣ (45)

The result of Equation (45) (without an effective source) differs from the well-known
expression for the spectrum of noncollective scattering of probing radiation by free charged
particles by the presence of the Holstein function in the integrand, which corresponds to
the broadening of the spectral line of the scattered radiation due to the finite lifetime of
the scatterer (compare, for example, (8.35) in [47], as well as Equation (14) in [48] and a
discussion there of the details of averaging over time T0 and the corresponding accurate
passage to an infinite upper limit in the integral over time).

For a particular form of the Holstein function (Equation (23)), the time integral in
Equation (45) can be calculated analytically. For γ 6= 1, we obtain (in Equations (46) and (47),
the index m for the sort of scattering particles is omitted):

+∞∫
0

dte−i(ω−(v,K))tT(vt, v) =
+∞∫
0

dt e−i(ω−(v,K))t

(1+κ0vt)γ

= − 1
(1−γ)κ0v F12

(
[1],
[
1− γ

2 , 3
2 −

γ
2
]
,−
( p

2
)2
)
+

π sin( γπ
2 +p)

Г(γ) sin(γπ)|ω−(v,K)|1−γ(κ0v)γ

−i 1
(ω−(v,K)) sin(γπ)

{
πpγ

Г(γ) cos
( γπ

2 + p
)

+ sin(γπ)p2

(2−γ)(1−γ)
F12

(
[1],
[ 3

2 −
γ
2 , 2− γ

2
]
,−
( p

2
)2
)}

,

(46)

where F12 is the generalized hypergeometric function, and in the absorption coefficient κ0,
for ease of notation, its dependence on velocity v is omitted. For γ = 1, we find:

+∞∫
0

dte−i(ω−(v,K))tT(vt, v)

= 1
κ0v
{
− cos(p)Ci(p) + sin(p)

(
π
2 − Si(p)

)}
−i sign(ω−(v,K))

κ0v
{

Ci(p) sin(p) + cos(p)
(

π
2 − Si(p)

)}
,

(47)

where p = |ω−(v,K)|
κ0v and Si and Ci are integral sine and cosine, respectively.

In what follows, to illustrate the effectiveness of the developed approach, we will apply
the general theoretical results to the interpretation of experiments on the cross-correlation
reflectometry in facilities for magnetic confinement of thermonuclear plasma. In this case,
we will be interested in the following specification of the parameters determined by the
geometry of the experiment and the expected distribution of density perturbation carriers
over velocities.

When probing the radial density profile of a toroidal axisymmetric plasma, the wave-
length of the injected EM field is chosen from the condition of reflection of the probing
radiation from a region of dense magnetized plasma. When EM waves are injected in
the electron cyclotron (EC) frequency range, EC waves are often used with the so-called
ordinary polarization. In this case, the radial reflection point (more precisely, the magnetic
surface on which the wave is reflected) is the point where the frequency of the injected wave
coincides with the local value of the plasma frequency. Note that, in addition to reflecting
the probing EM radiation while maintaining its fundamental frequency, radiation is also
scattered with a relatively small change in frequency. This shift is determined primarily by
the Doppler shift due to the scattering of the wave by traveling density fluctuations (see
Equation (42)), which essentially coincides with the effect of the formation of a structure of



Symmetry 2022, 14, 1265 14 of 31

the Mandelstam–Brillouin doublet type [46] in the scattering of light by sound waves in
elastic media. In addition, there is a broadening of the spectrum due to the finite lifetime of
the traveling density fluctuation (see broadening of the delta function due to the difference
of the Holstein function from unity in Equation (40)). Taking into account the relative small-
ness of the deviation of the scattered radiation frequency from the frequency of the probing
EM wave, ωi ≈ ωs, we have a simple equation for the modulus of the scattering vector:

K = 2n
ωi
c

sin
θ

2
, (48)

where n is the refractive index of the medium and θ is the angle between the scattered wave
and the incident wave.

To implement radial reflectometry, which is of practical interest to us, it is necessary to
inject and receive the reflected signal approximately perpendicular to the magnetic surfaces
so that the scattering vector K in Equation (3) is directed strictly along the minor radius of
the toroidal plasma column (see, for example, Figures 1–3 in [40]).

If there are several types of scatterers (density fluctuations) in the plasma with given
distribution functions for the velocities hm(v) and a given relative amount Am, then the
scattering spectrum contains the sum over the types of scatterers and the averaging over
the velocities for each type:

dW(ω, n̂, r1, t)
dΩn̂ dωs

= ∑
m

Am

∫
dvhm(v)

dWm(ω, n̂, r1, t, v)
dΩn̂ dωs

. (49)

We will be interested in the case of two types of scatterers: traveling density fluc-
tuations, whose velocity determines the components of the scattering spectrum with a
significant shift in the relative probing frequency, and “almost standing” density fluctu-
ations. In this case, both types of particles that scatter probing radiation have a certain
“thermal” velocity distribution near the average velocity of a given type of particles.

For traveling fluctuations, we will use the distribution over the velocity vector, which
has a Gaussian form:

h(v, v0, α) =

(
1√

2παv0

)3
exp

(
−
(
v− v0 − vpl

)2

2(αv0)
2

)
, (50)

where vpl is the average mass (i.e., hydrodynamic) velocity of the plasma in the laboratory
coordinate system (i.e., relative to the measuring equipment), v0 is the average velocity of
fluctuations in the plasma rest frame, and α describes the width of the velocity distribution
in the units of the average velocity. We will be interested in the case when the scattering
vector is directed perpendicular to the velocity of the hydrodynamic motion of the plasma.
Then, we can use the following distribution over velocity projections parallel to the vector K:

h
(

v‖,±v0,‖, α
)
=

(
1√

2παv0,‖

)2

exp

−
(

v‖ ± v0,‖

)2

2
(

αv0,‖

)2

, (51)

For almost standing fluctuations, the average velocity v0,‖ = 0 and the velocity
distribution width is given by the average thermal velocity equal to vT :

hc

(
v‖, vT

)
=

1√
2πvT

exp

(
−

v‖2

2vT2

)
. (52)
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The distribution over the free path of such fluctuations will be considered in the
diffusion model, i.e., T(ρ) = exp(−κ0ρ), which gives

+∞∫
0

dte−i(ω−(v,K))tT(|v|t) =
+∞∫
0

dte−i(ω−(v,K))t−κ0|v|t =
1

κ0|v|+ i(ω− (v, K))
. (53)

Under the assumptions described above, the total scattering spectrum will have the
form (here, some of the arguments indicated in Equation (49) are omitted):

dW(ω)
dΩn̂ dωs

= Ale f t
∫

dv‖h
(

v‖,−v0,‖, α
) dWle f t(ω)

dΩn̂ dωs
+ Aright

∫
dv‖h

(
v‖, v0,‖, α

) dWright(ω)

dΩn̂ dωs

+Acentr
∫

dv‖hc

(
v‖, vT

)
dWcentr(ω)
dΩn̂ dωs

,
(54)

where the left and right components of the spectrum correspond to the contribution of
scatterers with, respectively, positive and negative values of the velocity projection onto
the direction of the scattering vector, and the modules of the velocities of motion along
and against the direction of the scattering vector are considered to be the same, which
correspond to the motion of density fluctuations of the same type.

5. Cross-Correlation Function of Scattering

According to Equation (20), the spectrum of the cross-correlation function can be
expressed in terms of the correlator of fluctuations in the density of radiation scatterers.
Consider the numerator in Equation (20) in the case when there are several types of
diagnostic radiation scatterers:

lim
T0→∞

1
T0

Ê∗(r1, ω, K1)Ê(r2, ω, K2)

= 2π[n̂1, [n̂1, E0]][n̂2, [n̂2, E0]]ei(K1,r1)−i(K2,r2) r0
2

|r1||r2|

× lim
T0→∞

1
T0

∑
m1

∑
j1

ǧm1
∗(r1, K1, ω, vj1

)
∑
m2

∑
j2

ǧm2

(
r2, K2, ω, vj2

)
.

(55)

Here, “slow” spatial coordinates are introduced into the arguments of the functions
f̌m, which were previously specified but were omitted by default.

In the case of noncollective (incoherent) scattering that we are considering, the inter-
ference effects of the contributions of fluctuations of different types can be neglected. Then,
we have the numerator of the expression for the spectrum of the cross-correlation function
in the form:

lim
T0→∞

1
T0

Ê∗(r1, ω, K1)Ê(r2, ω, K2)

= (2π)3[n̂1, [n̂1, E0]][n̂2, [n̂2, E0]]ei(K1,r1)−i(K2,r2) r0
2

|r1||r2|

× lim
T0→∞

1
T0

∑
m

∑
j1

ǧm
∗(r1, K1, ω, vj1

)
∑
j2

ǧm
(
r2, K2, ω, vj2

) (56)

Accordingly, one of the factors in the denominator equation, i.e., Equation (20), has
the form:

lim
T01→∞

(
1

T01

∣∣Ê(ω, r1, K1)
∣∣2) = 2π[n̂1, [n̂1, E0]]

2 r0
2

|r1|2
lim

T01→∞

1
T01

∑
m

∑
j

∣∣ǧm
(
r1, K1, ω, vj

)∣∣2. (57)

Then, taking into account Equations (56) and (57), we can obtain the final expression
for the spectrum of the cross-correlation scattering function (Equation (20)) in terms of the
correlator of the Fourier–Laplace transforms of the scatterer density in the form
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C(ω, r1, r2) =
[n̂1,[n̂1,E0]]
|[n̂1,[n̂1,E0]]|

[n̂2,[n̂2,E0]]
|[n̂2,[n̂2,E0]]|

×
ei(K1,r1)−i(K2,r2) lim

T0→∞
1

T0
∑m

[
∑j1

ǧm
∗(r1,K1,ω,vj1)∑j2

ǧm(r2,K2,ω,vj2)
]

{[
lim

T01→∞
1

T01
∑m1 ∑j1 |ǧm1(r1,K1,ω,vj1)|

2
][

lim
T02→∞

1
T02

∑m2 ∑j2 |ǧm2(r2,K2,ω,vj2)|
2
]}1/2

(58)

Let us consider in more detail the correlator of the density of traveling fluctuations in
the numerator of the spectrum of the cross-correlation function in Equation (58) in the case
of weak inhomogeneity, taking into account the result for density, in Equation (40), and the
finite limit in the time integral:

∑
m

∑
j1

ǧm
∗(r2, K2, ω, vj1

)
∑
j2

ǧm
(
r2, K2, ω, vj2

)
= 1

4π ∑
m

∑
j2

ǧm
(
r2, K2, ω, vj2

)
∑
j1

Qe f f
∗(r1, K1, iω, vj1

) T0∫
0

dt1ei(ω−(vj1
,K1))t1 Tm

(
vj1 t1, vj1 , r1

)
.

(59)

Note that here the “slow” spatial variable r1 is added to the arguments of the Holstein
function since the characteristic value of the absorption coefficient, κ0, in Equation (23),
depends on it.

In the case of the noncollective (incoherent, according to the generally accepted ter-
minology [47]) scattering considered by us, the interference effects of the contributions of
fluctuations of different types can be neglected. Our next key simplification of the general
expressions is to take into account only those movements that correspond to the transition
of the same density fluctuation from one observed point to another by free movement at a
constant speed. This corresponds to taking into account only fluctuations with a velocity

v(r12)
j1

=
∣∣∣v(r12)

j1

∣∣∣ r1 − r2

|r1 − r2|
. (60)

Taking into account also the assumption about the perturbativity of the finite free path
effect used in deriving Equation (45), the integral in Equation (59) can be calculated:

T0∫
0

dt1ei(ω−(vj1
,K1))t1 Tm

(
vj1 t1, vj1 , r1

)
= T0 exp

[
i
(

ω−
(

K1, v(r12)
j1

))
∆t12

(j1)
]

Tm

(∣∣∣v(r12)
j1

∣∣∣∆t12
(j1),

∣∣∣v(r12)
j1

∣∣∣), (61)

where the delay time of the recorded signal for radial reflectometry is determined by the
direct passage of the scattering density fluctuations between the observed points:

∆t12
(j1) =

|r1 − r2|∣∣∣v(r12)
j1

∣∣∣ . (62)

For the case of poloidal reflectometry, when the scattering vector is directed along the
minor radius of the toroidal plasma column and points are observed at the same values of
the minor radius and different values of the poloidal angle, at a high poloidal rotation rate
(comparable to or higher than the traveling fluctuation velocity in the plasma rest frame) in
the expression for the delay time of the scattered electric field, it is necessary to take into
account the velocity of the poloidal hydrodynamic motion of the plasma:

∆t12
(j1) =

|r1 − r2|∣∣∣vpol + v(r12)
j1

∣∣∣ . (63)

The Holstein function takes into account only the dependence on the difference in
spatial coordinates of observation points, while for the absorption coefficient in the Hol-
stein function, we have to allow for the dependence on the velocity and may neglect the
dependence on the space coordinate. Then, the correlator of the densities of traveling
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fluctuations for the type of particles m, which take into account the motions from point 2 to
point 1, can be represented as follows:

∑
m

∑
j

ǧm
∗(r1, K1, ω, vj

)
ǧm
(
r2, K2, ω, vj

)
= T0

4π ∑
m

∑
j

Tm

(∣∣∣v(r12)
j

∣∣∣∆t12
(j1),

∣∣∣v(r12)
j

∣∣∣)× ∣∣∣ǧm

(
r2, K2, ω, v(r12)

j

)
Qe f f

∗
(

r1, K1, iω,
∣∣∣v(r12)

j

∣∣∣)∣∣∣
× exp

[
i
(

ω−
(

K1, v(r12)
j

))
∆t12

(j1)
]
.

(64)

One of the factors in the denominator of the cross-correlation function in Equation (58)
can similarly be written as

∑
j1

∣∣∣ǧm1

(
r1, K1, ω, v(r12)

j1

)∣∣∣2 =
T0

4π ∑
j1

∣∣∣ǧm1

(
K1, ω, v(r12)

j1

)
Qe f f

∗
(

K1, iω,
∣∣∣v(r12)

j1

∣∣∣)∣∣∣. (65)

Then, the final result for the spectrum of the cross-correlation function with a known
relative number Am of carriers of the m-th kind takes the form:

C(ω, r2 → r1) =
[n̂1,[n̂1,E0]]
|[n̂1,[n̂1,E0]]|

[n̂2,[n̂2,E0]]
|[n̂2,[n̂2,E0]]|

ei(K1,r1)−i(K2,r2) ∑
m

Am

×

[
∑
j

Tm

(∣∣∣v(r12)
j

∣∣∣∆t12
(j),

∣∣∣v(r12)
j

∣∣∣) exp[i(ω−(K1,vj))∆t12
(j)]
∣∣∣gm

(
r2,K2,ω,v(1,2)

j

)∣∣∣]{[
∑
m1

∑
j1

∣∣∣gm1

(
r1,K1,ω,v(1,2)

j1

)∣∣∣]×[∑
m2

∑
j2

∣∣∣gm2

(
r2,K2,ω,v(1,2)

j2

)∣∣∣]}−1/2 .
(66)

It can be seen that the result explicitly depends on the Holstein function, which
describes the nonlocality of the transfer process, since its deviation from the exponential
dependence (in particular, a power-law decay with increasing distance) leads to a slow
decay with increasing distance (in particular, to a difference in the decay of pair density
correlations from exponential in the case of using a Gaussian function).

Note that here the “slow” spatial variable r1 is added to the arguments of the Holstein
function, since the characteristic value of the absorption coefficient, κ0 in Equation (23),
depends on it.

Let us consider the case of radial correlation reflectometry, when we can put K1 = K2 = K,
and the scattering vector has only the radial component Kr. For one kind of scatterers with
velocity distribution h(v), from Equation (66), we obtain:

C(ω, r2 → r1) = ei(K,r) 〈T(|vr|∆t12, |vr|) exp[i(ω− Krvr)∆t12]|g(r2, Kr, ω, vr)〉|
{〈|g(r1, Kr, ω, vr)|〉 〈|g(r2, Kr, ω, vr)|〉 }1/2 , (67)

where the angle brackets denote the averaging over the velocities along the direction of the
vector r1 − r2 between the observation points, i.e.,

〈ϕ(vr)〉 =
∫

dvrh(vr)ϕ(vr), (68)

where vr is the radial projection of the vector in Equation (60). Note that Equation (67)
shows that C(ω, 0) = T(0) = 1.

From Equation (67), one can see the general physical meaning of the cross-correlation
function obtained in our model: it is the result of averaging (over the spectral density
of fluctuations) the product of two factors, the probability that a traveling fluctuation
can freely pass (i.e., without “absorption” of a traveling fluctuation, which means the
stoppage of this fluctuation in the medium) the distance between two scattering points of
the probing radiation (this probability is described by the Holstein function) and the phase
factor describing the phase shift of the scattered radiation due to the delay in the scattering
signal for a freely moving scatterer of probing radiation (the Doppler frequency shift of the
scattered radiation is also taken into account in the phase shift).
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The correlation function in Equation (67) assumes the localization of the contribution
of density fluctuations to the scattered radiation at a fixed frequency of the probing radia-
tion. This assumption underlies the method of radial correlation Doppler reflectometry in
tokamaks: the scanning of a probing wave in frequency corresponds to the scanning of the
spatial profile of density fluctuations over the minor radius of the plasma column. However,
detailed studies of the problem of wave scattering have shown the possible significant role
of nonlocalized, volumetric scattering when it is necessary to take into account scattering
from all points of the probing wave trajectory in plasma (see, for example, [49]). The ques-
tion of the significance of volumetric scattering remains open. To solve it, it is necessary
to take into account the significant nonstationarity of the cross-correlation function of the
plasma density in the sense that the velocity distribution of traveling fluctuations of density
may strongly influence the spectrum of the scattered electric field and the spectrum of the
cross-correlation of these fields. In this paper, we restrict ourselves to the assumption of
spatial localization and check the possibility of interpreting measurements in tokamaks in
the standard approach to the problem of localization of the scattering region.

The cross-correlation function C(ω, r2 → r1) (Equation (20)), for which we obtained
the analytical description in Equations (66) and (67), is a complex quantity depending on
the frequency and the distance between of a pair of points. When processing experimental
data, it is customary to calculate the amplitude (modulus of coherence, |C(ω, r2 → r1)|)
and the phase Φ (cross-phase) of the cross-correlation function shown in Equation (20):

Φ = Im {ln[C(ω, r2 → r1)]}. (69)

In the case of a monochromatic distribution of fluctuations over their velocity, the
derivative of the cross-phase with respect to frequency takes the form:

∂Φ
∂ω
∼=
|r1 − r2|

v
. (70)

This expression is often used to estimate the velocity of fluctuations from the slope
of the curve describing the spectral dependence of the cross-phase. We note that in the
case of a nonmonochromatic distribution of traveling fluctuations over velocities, such
an estimate can significantly overestimate the average velocity estimate, since taking
into account this nonmonochromaticity leads to the partial compensation of oscillations
in Equations (66) and (67) and a decrease in the phase of the complex quantity (see the
next section).

An analysis of the cross-correlation function in Equation (66) shows (see Section 6)
that its difference from the exponential decay with increasing distance (in particular, from
the Gaussian form) is due to the slow decay of the Holstein function. This makes it possible
to explain the results of processing the measurements of the electric fields of scattered EM
waves in experiments on plasma reflectometry in tokamaks (see, for example, the need to
introduce a second, additional, Gaussian distribution to explain the results obtained for the
cross-correlation function in Figures 5 and 6 in [40]).

6. Inverse Problem of Recovering Nonlocality Parameters of Density
Fluctuation Transfer

Let us turn to the formulation and solution of the inverse problem of recovering the
main characteristics of traveling and almost standing fluctuations of density from the
known scattering spectrum in Equation (18) and cross-correlation function in Equation (20),
based on the analytical representations in Equations (45), (49), and (66) we have obtained).
We assume a strong “quenching” of almost standing fluctuations: στ � ωτ � 1.

The sought-for parameters are as follows:

• The vector of the average velocity of traveling fluctuations v0, which includes its
projections on the scattering vector and on the direction between the observation
points for cross-correlation analysis (in the case of radial correlation reflectometry;
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these directions coincide and are such along the minor radius of the axially symmetric
toroidal plasma);

• Width of the velocity distribution function of traveling fluctuations, α, introduced in
Equation (50);

• The absorption coefficient of traveling fluctuations, κ0, in the Holstein function
Equation (23), which will be considered in the following form, which contains two
sought-for parameters, κ0,res and β:

κ0(v) = κ0(v0) exp

(
(v− v0)

2

(βv0)
2

)
≡ κ0,res exp

(
(v− v0)

2

(βv0)
2

)
, (71)

• The decay rate of the Holstein function Equation (23), γ, describing the degree of
nonlocality of the transfer of density fluctuations;

• The average “thermal” velocity of almost standing density fluctuations, vT , that
describes the width of the velocity distribution and plays a role similar to the parameter
α introduced above for traveling fluctuations;

• Absorption coefficient for almost standing density fluctuations, κ0,c, when specifying
the Holstein function in the form Tc(ρ) = exp(−κ0,cρ) for almost standing fluctuations;

• The relative number (weight) of traveling fluctuations whose velocities are directed
along the direction to the observer (see Figures 1–3 in [40]), Aright, and in the opposite
direction, Ale f t, as well as almost standing fluctuations, Acentr.

When solving the inverse problem, it is assumed that the mean free path of traveling
density fluctuations is much larger than that of almost standing fluctuations, i.e., κ0,c � κ0.

In the turbulence models previously used to interpret the measurement results (see,
for example, the formula on p. 449 [40]), there were sought-for parameters that are also
present in our model, namely:

• Average lifetime of density fluctuations τ (note that the lifetime distribution function
is taken as exponential, which is also done in our model);

• Average velocity of traveling fluctuations v0;
• The mean free path of traveling fluctuations 1/κ0, which determines the decay of the

cross-correlation function.

We have added the following important parameters, which became possible due to
the solution of the kinetic equation for density fluctuations:

• The width of the distribution function around the average velocity of the density
fluctuations (e.g., the width of the Gaussian velocity distribution, i.e., the effective
temperature of the density fluctuations). This value contributes to the width of the
side components of the spectral intensity of the scattered radiation in the Mandelstam–
Brillouin doublet (this corresponds to the introduction of the parameter α);

• The width of the free path distribution function (this corresponds to the parameter γ
in the Holstein function).

In what follows, we take the quenching parameter στ = 20, which is the ratio of
the average lifetime of standing fluctuations to the average time of their disappearance,
and not of their transformation into traveling fluctuations. This choice corresponds to
the thermodynamic limit of the effective source of standing fluctuations (Equation (41)).
Actually, this parameter and the entire effective source drop out of the cross-correlation
function due to its cancellation in the numerator and denominator, since we assume a weak
dependence of the effective source on phase-space variables compared with the Fourier–
Laplace transforms of plasma density fluctuations. The very idea of the cross-correlation
function is to minimize its dependence on the source of the studied carriers and maximize
its dependence on kinematic, traveling properties of carriers.

Next, we consider the application of the proposed algorithm to the interpretation of
the results of measurements on the T-10, TEXTOR, and ASDEX tokamaks.
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6.1. T-10 Tokamak

When solving the inverse problem of recovering the characteristics of density fluctua-
tions from the experimental data of reflectometry on the T-10 tokamak (Figure 4a,b in [40]),
it is possible to determine the numerical values of parameters.

(1) The fixed input parameter, i.e., the modulus of the scattering wave vector, K
(Equation (48)): It is specified by the geometry of the diagnostics, while the value of the
refractive index is taken close to unity, taking into account density fluctuations near the
surface on which the probing waves are reflected. For T-10 tokamak case [40], we take
K = 16.3 cm−1.

(2) The parameters found at the first stage of optimization from the position of the
maxima of the quasi-coherent components in the scattering spectrum: the average values of
the longitudinal (i.e., radial) v0,‖ and transverse v0,⊥ (with respect to the scattering vector)
velocities of traveling fluctuations: v0,‖ = v0,⊥ = 4.2× 104 cm/s.

It is important to note that the accuracy of estimating the modulus of the scattering
vector is limited by the fact that the refractive index at the reflection point (cut-off) of the
O-wave generally vanishes and it is necessary to solve the wave problem of reflection
from the plasma layer with considerable density fluctuations. In addition, segments on
the way to cut-off can make a significant contribution to scattering. Therefore, strictly
speaking, from the position of the peaks in the Mandelstam–Brillouin doublet, one can
only find the product of the scattering vector and the average velocity of traveling density
fluctuations. However, even under conditions of limited accuracy in the reconstruction
of these parameters, it is possible to obtain reasonable estimates of the required degree of
nonlocality of the transfer of density fluctuations.

(3) Optimized parameters (i.e., found by solving the inverse problem): Ale f t = 0.01,
Aright = 0.013, Acentr = 0.01, α = 0.458, vT = 104 cm/s, vpol = 2.0 × 104 cm/s,
κ0,res = 0.3 cm−1, β = 1, κ0,centr = 10 cm−1, and γ = 0.55, where vpol is the velocity
of the poloidal rotation of plasma.

The results of reconstruction and comparison of the experimental and calculated
theoretical curves are shown below, in Figures 1–4.
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Figure 1. Spectrum of radiation scattered by traveling and almost standing density fluctuations: 
experimental spectrum from Figure 4a [40] (black curve), the result of the best fitting of this spec-
trum calculated by Equations (49) and (45) (orange curve). The individual components of the spec-
trum are shown: the contributions of nearly standing fluctuations (red dotted line) and radially 
traveling fluctuations from the observation point to the observer (blue dotted line) and in the oppo-
site direction (green dotted line). Discharge parameters: current 𝐼 = 160 kA, magnetic field 𝐵 =2.5 T, and electron density 𝑛 = 1.2 × 10 cm . The radial coordinate of the reflection point of the 
probing beam is 𝑟 = 19.5 cm (presumably, the scattering point of the probing wave). 

To illustrate the relative role of different mechanisms of spectrum broadening in 
quasi-coherent components, Figure 2 shows the spectra for a monochromatic velocity dis-
tribution of density fluctuations. It can be seen that the broadening due to the finite length 
of the free path is much smaller than the “thermal” broadening of traveling fluctuation 
velocity, which is determined by the width of their velocity distribution. 

 
Figure 2. Scattered radiation spectrum with a monochromatic distribution of traveling and almost 
standing density fluctuations over velocities (lilac curve) (Equations (49) and (45)) in comparison 
with the experimental spectrum from Figure 4a [40] (black curve). Individual components of the 

Figure 1. Spectrum of radiation scattered by traveling and almost standing density fluctuations:
experimental spectrum from Figure 4a [40] (black curve), the result of the best fitting of this spectrum
calculated by Equations (49) and (45) (orange curve). The individual components of the spectrum
are shown: the contributions of nearly standing fluctuations (red dotted line) and radially traveling
fluctuations from the observation point to the observer (blue dotted line) and in the opposite direction
(green dotted line). Discharge parameters: current I = 160 kA, magnetic field B = 2.5 T, and electron
density ne = 1.2× 1013 cm−3. The radial coordinate of the reflection point of the probing beam is
r = 19.5 cm (presumably, the scattering point of the probing wave).
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Figure 2. Scattered radiation spectrum with a monochromatic distribution of traveling and almost
standing density fluctuations over velocities (lilac curve) (Equations (49) and (45)) in comparison with
the experimental spectrum from Figure 4a [40] (black curve). Individual components of the spectrum
are shown: the contribution of almost standing fluctuations (red dotted line) and radially travelling
fluctuations from the observation point to the observer (blue dotted line) and in the opposite direction
(green dotted line). The discharge parameters are the same as those shown in Figure 1.
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Figure 3. Comparison of the calculations of the cross-correlation function (Equation (66)) for poloi-
dal correlations, with the optimal values found when fitting the experimental data for the scattering 
spectrum and the radial coordinate dependence of the cross-correlation function (the results of the 
fitting are shown in Figures 1 and 4a,b). (a) Coherence phase (Equation (69)); (b) modulus of coher-
ence, which is the modulus shown in Equation (66), as a function of frequency for three different 
values of the plasma poloidal rotation velocity 𝑣 . The orange dotted curve corresponds to the 
case of a monochromatic distribution of density fluctuations over their velocities for the optimal 
value of 𝑣 . Dashed vertical lines show the position of the peaks of the theoretical curves in Figure 
1 corresponding to the optimal value of the average velocity of traveling density fluctuations. The 
black curve is experimental [40]: (a) Figure 4b and (b) Figure 4c in Ref. [40]. The discharge parame-
ters coincide with those shown in Figure 1. The radial coordinate of two reflection points of the 
probing beam is 19.5 cm (presumably, the scattering point of the probing wave), and the poloidal 
distance between reflection points is 1 cm. 

A comparison of the theoretical and experimental cross-correlation functions as func-
tions of the radial distance between two points with the same poloidal coordinate for dif-
ferent fixed frequencies of the scattered radiation is shown in Figure 4. In addition, the 
results in Figure 4a show a comparison of theoretical curves for different values of the 
nonlocality parameter, 𝛾, to illustrate the sensitivity of the optimization result to this pa-
rameter. For broadband oscillations with a frequency 𝑓 = ±200 kHz, the possibility of ex-
cellent agreement between the model radial correlation function and the experimental 
data is shown (Figure 4b). For high frequencies (Figure 4c), one can see a rapid damping 
of the calculated curve. This comparison for various frequencies shows the range of the 
applicability of our model for the quasi-coherent mode to the description of experimental 
data: for the center of the quasi-coherent mode (Figure 4a) and the wings of this mode 
(Figure 4b), the agreement is good, whereas for larger detuning from the center of the 
quasi-coherent mode, there is no agreement. 

Figure 3. Comparison of the calculations of the cross-correlation function (Equation (66)) for poloidal
correlations, with the optimal values found when fitting the experimental data for the scattering
spectrum and the radial coordinate dependence of the cross-correlation function (the results of
the fitting are shown in Figures 1 and 4a,b). (a) Coherence phase (Equation (69)); (b) modulus of
coherence, which is the modulus shown in Equation (66), as a function of frequency for three different
values of the plasma poloidal rotation velocity vpol . The orange dotted curve corresponds to the case
of a monochromatic distribution of density fluctuations over their velocities for the optimal value
of vpol . Dashed vertical lines show the position of the peaks of the theoretical curves in Figure 1
corresponding to the optimal value of the average velocity of traveling density fluctuations. The
black curve is experimental [40]: (a) Figure 4b and (b) Figure 4c in Ref. [40]. The discharge parameters
coincide with those shown in Figure 1. The radial coordinate of two reflection points of the probing
beam is 19.5 cm (presumably, the scattering point of the probing wave), and the poloidal distance
between reflection points is 1 cm.

Figure 1 shows that the side components of the scattering spectrum (at a frequency
ω/2π ≈ ±110 kHz), which are called quasi-coherent oscillations [41–43], can be interpreted
as a Mandelstam–Brillouin doublet in light scattering in an elastic medium. Therefore,
from the location of the peak and the width of the spectrum of scattered radiation, one can
(by solving the inverse problem) find the value of the projection of the average velocity of
fluctuations in the direction of the scattering vector K (with the reservation indicated above)
and the dispersion of the velocity of traveling fluctuations described by the parameter α.

To illustrate the relative role of different mechanisms of spectrum broadening in quasi-
coherent components, Figure 2 shows the spectra for a monochromatic velocity distribution
of density fluctuations. It can be seen that the broadening due to the finite length of the
free path is much smaller than the “thermal” broadening of traveling fluctuation velocity,
which is determined by the width of their velocity distribution.

The results of solving the inverse problem for the cross-correlation function for the
problem of reflectometry at the T-10 tokamak [40] are shown below. Figure 3 shows the
spectral distribution for a fixed distance between two points with the same minor radius
coordinate and different poloidal coordinates. Figure 3a shows that the slope of the calcu-
lated phase in the region of the spectrum of each quasi-coherent component (left or right)
significantly differs from that of the experimental curve, while the slope of the theoretical
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curve for the optimal value of poloidal rotation velocity vpol approximately coincides with
the experimental one only outside these regions. At the same time, by varying vpol , it is
possible to obtain good agreement between the theoretical and experimental results for the
modulus of the cross-correlation function, which is shown in Figure 3b (the modulus of
the complex function of pair correlations is often called the coherence function). Figure 3a
also shows a comparison of theoretical calculations for two different velocity distribution
functions of density fluctuations, monochromatic and Gaussian, with the width obtained
by solving the inverse problem of fitting experimental data for the scattered radiation
spectrum shown in Figure 1.
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(orange dotted line). Discharge parameters: current 𝐼 = 140 kA, magnetic field 𝐵 = 2.5 T, and elec-
tron density 𝑛 = 1.2 × 10  cm . The radial coordinate is counted from the point of reflection of 
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Figure 4. Coordinate dependence of the modulus of the cross-correlation function (Equation (66))
(coherence modulus) for the frequencies (a) f = ±110 kHz and (b) f = ±200 kHz for different
values of the parameter γ: γ = 0.5 (dashed blue line), γ = 0.55 (orange curve), γ = 0.6 (green
dotted line), and γ = 0.7 (red dotted line). The purple curve in figures (a) and (b) was calculated at
κ0 = 1 cm−1 in the Holstein function (Equation (23)) and the rest of the curves for the dependence
of the absorption coefficient on the velocity according to Equation (71). Black dots are experimental
values: (a) quasi-coherent oscillations—Figure 5a [40]; (b,c) broadband oscillations—Figure 5b [40].
(c) shows the coherence modulus for frequencies f = ±300 kHz (blue curve) and f = ±400 kHz
(orange dotted line). Discharge parameters: current I = 140 kA, magnetic field B = 2.5 T, and
electron density ne = 1.2× 1013 cm3. The radial coordinate is counted from the point of reflection of
the probing beam r = 10 cm (presumably, the scattering point of the probing wave).

A comparison of the theoretical and experimental cross-correlation functions as func-
tions of the radial distance between two points with the same poloidal coordinate for
different fixed frequencies of the scattered radiation is shown in Figure 4. In addition,
the results in Figure 4a show a comparison of theoretical curves for different values of
the nonlocality parameter, γ, to illustrate the sensitivity of the optimization result to this
parameter. For broadband oscillations with a frequency f = ±200 kHz, the possibility of
excellent agreement between the model radial correlation function and the experimental
data is shown (Figure 4b). For high frequencies (Figure 4c), one can see a rapid damping
of the calculated curve. This comparison for various frequencies shows the range of the
applicability of our model for the quasi-coherent mode to the description of experimental
data: for the center of the quasi-coherent mode (Figure 4a) and the wings of this mode
(Figure 4b), the agreement is good, whereas for larger detuning from the center of the
quasi-coherent mode, there is no agreement.

The results presented in Figures 1–4 are the first attempt in the literature to simulta-
neously interpret poloidal and radial correlation reflectometry data by solving a unified
inverse problem for the cross-correlation function as a function of two variables, the fre-
quency of the scattered electric field and the spatial coordinate. The agreement between the
theoretical and experimental results is good, except for the phase of the cross-correlation
function. The latter can be partially explained by the difficulty of studying this characteris-
tic both in theory and in experiment. In particular, the error in determining the phase of a
complex function increases with a decrease in the modulus of the function.
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6.2. TEXTOR Tokamak

In the TEXTOR tokamak, poloidal correlations of plasma density fluctuations have
been studied [50]: the observation points were located on the same minor radius coordinate
(the same magnetic surface) and at different poloidal angles within this magnetic surface.
In this case, one has to take into account the poloidal hydrodynamic motion with the delay
(Equation (63)) in the cross-correlation function (Equations (66) and (67)). Solving the
inverse problem of restoring the characteristics of density fluctuations from the experimen-
tal data of reflectometry on the TEXTOR tokamak (Figure 3a,b in [50]), one can similarly
determine the numerical values of the following parameters:

(1) Fixed input parameters: K = 10 cm−1. The poloidal distance between reflection
points of the probing radiation along the magnetic surface is 8 cm. The following parameters
were taken equal to those in the T-10 tokamak due to the closeness of the experiment
geometry and discharge parameters: κ0,res = 0.3 cm−1, β = 1, κ0,centr = 1 cm−1, and
γ = 0.55.

(2) The parameters found at the first stage of optimization from the position of the
maxima of the quasi-coherent components in the scattering spectrum: the average values of
the longitudinal (i.e., radial) v0,‖ and transverse v0,⊥ (with respect to the scattering vector)
velocities of traveling fluctuations of scatterers: v0,‖ = v0,⊥ = 6.45× 104 cm/s.

(3) Optimized parameters (i.e., found by solving the inverse problem): Ale f t = 0.03,
Aright = 0.03, Acentr = 0.12, α = 0.2, vT = 103 cm/s, and plasma poloidal rotation velocity
vpol = 3× 105 cm/s.

The results of reconstruction and comparison of the experimental and calculated
theoretical curves are presented below, in Figures 5 and 6. It can be seen from Figure 6a that
the cross-phase slope upon averaging over frequency in the spectral range of the respective
Mandelstam–Brillouin component is close enough to the experimental one and the coherence
in Figure 6b qualitatively reproduces the main features of the experimental curve.
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A comparison of theoretical and experimental data shows, as in the case of the T-10 
tokamak, a partial agreement. The theoretical curve for the modulus of the cross-correla-
tion function reproduces not only the position of the central peak of the quasi-coherent 
mode (QCM) components for fluctuations radially moving along and against the scatter-
ing vector but also a modulation of the smooth line shape of the QCM, which can be seen 
on the theoretical curve. This means that the modulation of the frequency dependence of 
the cross-correlation function, explicitly represented in our final analytic results, i.e., 
Equations (66) and (67), works well enough. The theoretical phase is close to the 

Figure 6. Comparison of calculations of the cross-correlation function (Equations (20) and (66))
with the found optimal values when fitting the experimental data for the scattering spectrum.
(a) Cross-phase (Equation (69)); (b) modulus in Equation (66) as a function of frequency. The black
curve is the experimental one [50] ((a) Figure 3b and (b) Figure 3c). The orange curve is the result of
simulation using the parameter values from the best fitting of the scattering spectrum in Figure 5.
Dashed vertical lines show the position of the peaks of the theoretical curve in Figure 5 corresponding
to the optimal value of the average velocity of traveling density fluctuations.

A comparison of theoretical and experimental data shows, as in the case of the T-10
tokamak, a partial agreement. The theoretical curve for the modulus of the cross-correlation
function reproduces not only the position of the central peak of the quasi-coherent mode
(QCM) components for fluctuations radially moving along and against the scattering
vector but also a modulation of the smooth line shape of the QCM, which can be seen
on the theoretical curve. This means that the modulation of the frequency dependence
of the cross-correlation function, explicitly represented in our final analytic results, i.e.,
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Equations (66) and (67), works well enough. The theoretical phase is close to the experi-
ment only after averaging the slope of the spectrum over the entire region of the left or
right QCM line shape component, and the reasons for the difference can be the same as in
the case of the T-10 tokamak.

6.3. ASDEX Tokamak

The study of poloidal correlations of plasma density fluctuations in the ASDEX toka-
mak has been carried out at a given poloidal tilt of the probing radiation horns (see Figure 1
in [51,52]); therefore, Doppler frequency shifts are clearly visible in the experimental spec-
tra (see Figure 5c in [51] and Figure 2a in [52]). However, such spectra have insufficient
resolution, due to which it is not possible to single out the fine structure of the spectrum
unambiguously. Despite this, it is possible to conduct a qualitative assessment of the
experimental results. Figure 2a in [52] clearly shows a characteristic shift to the left by
~1 MHz due to the poloidal rotation of the plasma, with maxima ±200 kHz to the left and
to the right with respect to the poloidal rotation Doppler shift.

Figure 7a shows the result of restoring the modulus of the cross-correlation function
for the same parameter values as for the T-10 tokamak, but for K = 25.6 cm−1, which in
ASDEX is different from the T-10 case because of the difference of the probing wavelength.
It can be seen that at r = 0.5 cm, we have a qualitative agreement with local quasi-coherent
maxima. Figure 7b shows the coordinate dependence of the cross-correlation function for
various values of the parameter γ at a frequency f = ±200 kHz relative to a frequency shift
of ~1 MHz, which corresponds to quasi-coherent oscillations.

The good agreement of the theoretical curve for the radial dependence of the cross-
correlation function at the largest distances where this dependence was measured (0.5–1 cm)
shows that the developed approach makes it possible to reproduce that part of the radial
dependence that is most difficult to reproduce using theoretical models without taking
into account the effects of nonlocality. Indeed, even for a simple fitting of such long-tailed,
non-exponential functions, one has to introduce two Gaussians, associated with local rather
than superdiffusion transport (see the captions for Figures 5 and 6 in [40]).
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7. Conclusions

This work is devoted to the application of the superdiffusion formalism to describe
the kinetics of moving density fluctuations in a turbulent medium and to the formulation
of an algorithm for reconstructing the nonlocal properties of stochastic processes in a
medium from the spectrum of its density fluctuations, diagnosed from the scattering
spectra of electromagnetic (EM) waves in the medium. The developed approach is based
on the application of the concept of Lévy walks to the description of nonlocal properties
of fluctuations in the density of a turbulent medium. This approach makes it possible to
determine these properties from the scattering spectra of EM waves and cross-correlation
reflectometry. A system of equations for density fluctuations is proposed, which is reduced
to an integral equation for the pair correlation function of plasma density fluctuations. This
equation is expressed in terms of the Holstein functional, which is characteristic of a wide
range of nonlocal transfer processes, including the transfer of resonant radiation in plasma
and gases in the Biberman–Holstein model. A universal description is obtained of the
relationship between the quasi-coherent component observed in tokamaks in the spectrum
of scattered EM waves in plasma and the Mandelstam–Brillouin scattering process. It is
shown that the nonlocality of spatial correlations in a turbulent medium is due to long-
range carriers of medium fluctuations, for which the distribution function over the free
path length is described by the Lévy distribution. The effectiveness of the proposed method
is shown by the example of the interpretation of the data of radial and poloidal correlation
reflectometry of EM waves of the radio frequency range for the diagnostics of turbulent
plasma in the T-10, TEXTOR, and ASDEX tokamaks.

Note that the value of the parameter γ = 0.55 found via solving an inverse problem
for the degree of nonlocality of the transfer of radially traveling plasma density fluctuations
in the T-10 tokamak is close enough to the value of the analogous parameter γ ≈ 2/3 in the
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empirical t3/2 Richardson law for the dynamics of the perturbation front in the medium
from an instant point source in the case of hydrodynamic turbulence (such a value of the
parameter γ in the Richardson law follows from (7.7) and (7.8) in [31]). This is an argument
in favor of the fact that the observed density fluctuations may be of turbulent origin.

We also note that the quasi-coherent component in the spectrum can be considered
not as the motion of density fluctuations in the plasma rest frame (which is accepted in
our approach) but as a result of scattering of probing EM radiation by density fluctuations,
which can be considered static, i.e., standing in the rest frame of the plasma, and moving
relative to the receiver of the reflected radiation only due to the toroidal and poloidal
rotation of the plasma as a whole, i.e., the hydrodynamic motion of plasma in a tokamak.
In this case, at the point of observation identified by the signal reception conditions under
the assumption that the probing radiation is scattered locally, there will also be a radial
motion of the plasma forward and backward with the same velocity relative to the radiation
receiver. In this case, the radial correlation will reflect the correlation of the spatial structure,
which is static in the rest frame of plasma, and in fact also characterizes the formation
(transfer) of perturbations in the radial direction, without which the existence of such a
correlation would be impossible. Therefore, in any case, the model we propose describes
the correlation properties of plasma density fluctuations and allows one to estimate the
degree of nonlocality of bonds in plasma.

In conclusion, we note that the present work is the result of applying a general
theoretical approach [28–33] to the practical problem of controlled thermonuclear fusion
and demonstrates the relevance of the development of analytical approaches in the theory
of nonlocal transfer (a modern review of the status and history of analytical approaches
related to the theory of nonlocal transfer of radiation can be found in [53]).
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