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Abstract: An important research aspect of Spectrum-Based Fault Localization (SBFL) is the influence
factors of the effectiveness of suspiciousness formulas from the perspective of symmetry. Coinci-
dental correctness is one of the most important factors impacting the effectiveness of suspiciousness
formulas. The influence of fault localization by coincidental correctness has attracted a large amount
of research in the perspective of empirical study; however, it can hardly be considered as sufficiently
comprehensive when there are a large number of the symmetrical suspiciousness formulas. There-
fore, we first develop an innovative theoretical framework with function derivation investigating
suspiciousness formulas impacted by coincidental correctness. We define three types of relations
between formulas affected by coincidental correctness: namely, improved type, invariant type and
uncertain type. We investigated 30 suspiciousness formulas using this framework and group them
into three categories. Furthermore, we conduct an empirical study to verify the effectiveness of SBFL
affected by coincidental correctness on four relatively large C programs. We proved that coincidental
correctness has a positive effect on 23 out of these 30 formulas, no effect on 5 of them, and the ef-
fect on the remaining 2 of them depend on certain conditions. The experimental results show that
the effectiveness of some suspiciousness formulas can be enhanced and that of some suspiciousness
formulas remain unchanged.

Keywords: fault localization; coincidental correctness; theoretical analysis; suspiciousness formulas

1. Introduction

Software testing and debugging are important and time-consuming activities in soft-
ware engineering. Attempting to reduce the faults in software is estimated to consume
50–70% of the time devoted to software debugging and maintenance [1]. Due to the cost
of expensive debugging, locating faults is a very resource-consuming activity in the over-
all software development lifecycle. Therefore, much research has been devoted to fault
localization in order to increase the quality of software and reduce its cost. Spectrum-based
fault localization is one promising approach that aims at identifying the executed program
statements that contain likely faults. Fault localization has a wide range of application
scenarios in real life. Due to software faults in the body control module, about 433,000 cars
will be recalled on safety specifications in North America in 2015, as shown in Figure 1.
The automatic train protection system stopped for the Wuhan–Guangzhou high speed
railway 55,901 because the unconditional emergency shutdown included software bugs
in the radio block center system that received the stop instructions during the operation
in 2012, as shown in Figure 2. It can be seen that software failure may cause huge economic
losses and even endanger people’s lives. Therefore, it is very necessary to locate faults
to improve and ensure software quality. The common assumption is that the program
will produce the wrong output and fail when the faulty statements are executed. How-
ever, in some cases, the faulty statements were executed and did not induce failure. The
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PIE model proposed by Voas [2] emphasizes that the occurrence of a failure must satisfy
three conditions: (a) the faulty statement was executed; (b) the program has transitioned
to an infectious state; and (c) the infection state propagated to program output. When
the program produces the correct output, when condition (a) is met, but not condition (c),
coincidental correctness (CC) arises. In particular, coincidental correctness might degrade
the effectiveness of fault localization.

Figure 1. Ford Car.

Figure 2. High-Speed Railway.

Masri et al. [3] demonstrated that the occurrence of coincidental correctness was
prevalent, and that coincidental correctness was a safety-reducing factor for Tarantula and
could enhance its effectiveness. The previous studies [3–6] have tackled the prevalence
of coincidental correctness and its degrading effect on the effectiveness of fault localization.
They indicated that cleansing coincidental correctness from the test suite might enhance
the effectiveness of fault localization. Assi et al. [7] empirically study the impact of weak
and strong CC on coverage-based fault localization techniques and indicated that small
and large proportions of CC tests are strongly harmful to fault localization. In addition,
Masri et al. [8] showed that the majority of program dynamic dependencies do not transfer
any measurable information; that is, in most cases, two statements or variables in a dynamic
dependency chain do not necessarily mean the connection between them. Therefore,
the most infectious states in the program might not propagate to program output, which
leads to a high rate of coincidental correctness.

In the study [9], the impact of coincidental correctness on Jaccard, Tarantula, AMPLE,



Symmetry 2022, 14, 1267 3 of 17

and Ochiai formulas was investigated through the proof of inequality. Feyzi [10] proposed
a framework, CGT-FL, diminishing the negative impact of coincidental correctness tests
on the effectiveness of fault localization by a value-based cooperative game-theoretic
method. Hofer [11] present a technique that identifies potential outcomes of coincidental
correctness, and their empirical study shows that the removal of the actual coincidental
correctness often positively influences the ranking of the faulty statements.

After Lee et al. [12] proved that Tarantula is equal to QE formulas, a more compre-
hensive investigation was conducted, where more groups of suspiciousness formulas have
been proved equivalently [13]. Xie et al. [14] proposed a theoretical analysis of the risk
evaluation formulas for fault localization. Such an observation can give an explanation
on why the relations between two formulas is equivalent or better. However, they proved
the relationship between suspiciousness formulas without considering the existence of coin-
cidental correctness. It has not yet been studied how the other SBFL formulas are affected by
coincidental correctness? Thus, it is worthwhile to theoretically investigate how the other
SBFL formulas are affected by coincidental correctness.

Inspired by this observation, we first develop an innovative theoretical framework
to prove the effectiveness of SBFL formulas in order to identify whether the effectiveness
of a formula is affected by the factor of coincidental correctness. In this paper, we proposed
a theoretical framework by the derivative of function to investigate how 30 SBFL formulas
are affected by coincidental correctness. We prove 30 SBFL formulas, which were selected
from Naish et al. [13], because their theoretical investigation is the most systematic and
comprehensive one for SBFL formulas. We performed a set of empirical studies across four
C programs to evaluate the effectiveness of SBFL formulas. The experimental results show
that the effectiveness of some SBFL formulas was improved, and the effectiveness of some
SBFL formulas was unchanged The contributions of this paper are summarized as follows.

• We developed a function theoretical framework, which compared the derivative value
of a formula between the original test suite and the test suite removing coincidental
correctness to determine the suspiciousness value of a formula.

• Using this framework, we investigated 30 SBFL formulas when removing coincidental
correctness. We are able to find that 23 of these 30 formulas are improved formulas,
five of them are unaffected formulas, and the remaining two of them are uncertain.

• We conducted the experiments with four C open-source programs to evaluate coinci-
dental correctness on the effectiveness of SBFL. The results show that the effectiveness
of some suspiciousness formulas was enhanced indeed and some other suspiciousness
formulas were unchanged.

The remainder of this paper is organized as follows. Section 2 provides the background
of spectrum-based fault localization and coincidental correctness. Section 3 presents our
framework and empirical study. Finally, Section 4 provides the conclusions.

2. Background
2.1. Spectrum-Based Fault Localization (SBFL)

The spectrum of the program is an execution profile which indicates the parts of the pro-
gram that are active during the execution of the program. Spectrum-based fault localization
needs to identify the parts of the program whose activity is most related with the detection
of faults. SBFL intends to locate program faults by utilizing various program spectra
and the test result of passed or failed obtained from dynamically testing. After obtaining
the necessary information, SBFL utilizes various formulas to compute the suspiciousness
of program statements and produces a ranking list to locate the fault. Golagha et al. [15]
proposed the model to assess the potential effectiveness of fault localization. Simalarly,
Dutta et al. [16] proposed a modified Fisher’s test-based statistical method that maked use
of test execution results as well as statement coverage information to determine the suspi-
ciousness of executable statements. Ghosh et al. [17] used logistic mapping function to
achieve chaotic sequence, which first calculated the suspiciousness score for each program
statement and then assigned ranks according to that score. Considering that the interactive



Symmetry 2022, 14, 1267 4 of 17

behaviors among software entities implied some fault patterns, Zhao et al. [18] introduced
the fault influence of interactive entities and developed a novel synthetical fault localiza-
tion approach based on the software network. Wu et al. [19] adopted OPTICS clustering
to group failed test cases, the failed test cases in this cluster, with all passed test cases
to locate a single-bug.

For each statement s, these data can be represented as a vector of four elements,
n(s) = < nep, nup, ne f , nu f >, where nep and ne f denote the number of passed and failed
test cases executing statement s, respectively; nup and nu f represent the number of passed
and failed test cases not executing s, respectively. Obviously, the sum of test suite T is equal
to the sum of these four parameters for each statement.

Many suspiciousness formulas, such as those of Tarantula [20,21], Jaccard [22], and
Ochiai [23], are designed in order to make the faulty statements at the top of the ranking
list. Generally speaking, different formulas were designed for various purposes in terms
of different intuitions. With more and more formulas proposed, researchers started to study
the factors of the performance of different formulas. In these studies [9,24], coincidental
correctness is considered whether or not it can affect the effectiveness of fault localization.

2.2. Coincidental Correctness (CC)

Definition 1 (Coincidental correctness element cce). Given a program element e, fT(e) rep-
resents the ratio of failed test cases executing e, and pT(e) denotes the ratio of passed test cases
executing e. A good candidate for coincidental correctness element cce is that a program element
occurs in all failed runs and in a non-zero but not excessively large percentage of passing runs. A
coincidental correctness element cce is defined by a characteristic function f(e) as follows:

f (e) =
{

cce , fT(e) = 1∧ 0 < pT(e) < 1
0 , otherwise

(1)

Definition 2 (Coincidental correctness test cases). A test case executed coincidental correctness
element cce but did not result in a failure. Coincidental correctness test cases are denoted as TCC
and the size of TCC is more than or equal to 0.

A test suite T comprises a set of failed test cases TF and a set of passed test cases
TP, where TP might contain a subset of true passed test cases TtrueP and another subset
of coincidental correctness test cases TCC. Assume that the test suite contains n coincidental
correctness test cases.

There are three locations of program fault in Figure 3. One fault only appears
in the failed execution trace TR f , and there, accidental correctness did not occur, as shown
in Figure 3a. When one fault both appears in the failed execution trace TR f and the passed
execution trace TRp, accidental correctness occurs, as shown in Figure 3b. However, one
fault only presents in the passed execution trace TRp and the fault could not be found
in the case in Figure 3c.

Figure 3. Three possible locations of the fault.

2.3. Assumptions

Before proposing our theoretical analysis framework of the suspiciousness formulas,
we express several assumptions as follows.
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• We assume that the SBFL formulas are applied to the program with test oracle; that
is to say, the execution result of the program is failed or passed for any test case
in premise.

• We assume that the program only contains one fault. In other words, we investigated
30 suspiciousness formulas under the single-fault scenario because multiple faults
will interfere with each other.

• The test suite is assumed to contain at least one failed test case because there existed a
failed test case for triggering the fault in the program. For any program statement s,
we have ne f > 0.

3. Our Framework
3.1. Motivation

All of this motivated us to investigate techniques to clean coincidental correct test
cases to enhance SBFL. Coincidental correctness may degrade the effectiveness of fault
localization [2,5]. We will use an example program shown in Figure 4 to explain the effect
of coincidental correctness on fault localization. The function foo() returns the calculated
results of three input integers. We generate six test cases (dubbed t1 to t6), whose values
are as follows: (6, 3, 9), (2, 4, 6), (4, 0, 3), (5, 2, 0), (5, 4, 2), (5, 0, 2). We manually seed a fault
into statement s5, as shown in Figure 4.

Figure 4. A motivating example.

The symbol ‘•’ denotes that a statement is executed under test in Table 1. Column 1
lists the number of program statements. Column Coverage presents coverage information
in the original test suite and column Coverage(CC) presents coverage information in the
test suite removing coincidental correctness test cases. Test cases t3 and t6 are coinciden-
tal correctness test cases by the definition. Columns 3 and 4 show the suspiciousness
of each statement and the corresponding rank using Tarantula [20,21] and Naish1 [14]
based on coverage information, respectively. Columns 6 and 7 show the suspiciousness
of each statement and the corresponding rank using Tarantula and Naish1 based on cov-
erage information after removing coincidental correctness test cases, respectively. The
last row shows the number of the examined statements to locate the fault in the best case
and in the worst case. The second to last row shows the result of the passed execution
(dubbed “T”) and failed execution(dubbed “F”).

In columns 3 and 6, the suspiciousness value of statements s5, s6 is changed from 0.6
to 1 and that of the other statements is unchanged based on the original coverage infor-
mation and coverage information after removing coincidental correctness test cases using
Tarantula. We need to examine one to three statements to locate a fault based on coverage
information after removing coincidental correctness test cases using Tarantula. However,
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we need to examine two to three statements based on coverage information using Tarantula.
It can be seen that removing coincidental correctness test cases can improve the effective-
ness of Tarantula. Whereas, in columns 4 and 7, the suspiciousness value of all statements
is unchanged using Naish1. It can be seen that removing coincidental correctness test cases
cannot improve the effectiveness of Naish1. This is because Naish1 is already good enough,
but this is not caused by removing CC.

The motivation of our paper is similar to a recent paper which presented a theoretical
analysis of the risk evaluation formulas for fault localization [14]. However, they focus
on the relationship between two formulas; we pay attention to the impact of the effective-
ness of two formulas when removing coincidental correctness test cases. In additionally,
the literature [3] used empirical methods to analyze the impact of coincidental correctness.
Abou Assi et al. [7] conducted a study that aimed at assessing the impact of coinciden-
tal correctness, on the effectiveness of SBFL, in both of its forms, weak and strong. Our
approach is different from them.

After the pioneering work by Masri et al. [3], who proposed to demonstrate the preva-
lence of coincidental correctness test cases, many methods have been presented for coinci-
dental correctness, such as the following studies [4,5,10,11]. In our model, a sound method
is presented to theoretically prove whether the formulas are impacted by coincidental
correctness. Our paper aims to develop a function theoretical framework to investigate
suspiciousness formulas when removing coincidental correctness.

Table 1. Fault localization affected by coincidental correctness on a motivating example.

Statements
Coverage Tarantula Naish1 Coverage (CC) Tarantula Naish1

t1 t2 t3 t4 t5 t6 sus. Rank sus. Rank t1 t2 t4 t5 sus. Rank sus. Rank

s1 • • • • • • 0.5 4 0 3 • • • • 0.5 4 0 3
s2 • • • • • • 0.5 4 0 3 • • • • 0.5 4 0 3
s3 • • • • • • 0.5 4 0 3 • • • • 0.5 4 0 3
s4 • • • • • • 0.5 4 0 3 • • • • 0.5 4 0 3

s5 (fault) • • • • • 0.6 2 1 1 • • • 1 1 1 1
s6 • • • • • 0.6 2 1 1 • • • 1 1 1 1
s7 • • 1 1 −1 8 • • 1 1 −1 8
s8 • • • • • • 0.5 4 0 3 • • • • 0.5 4 0 3

Result F T T F F T F T F F

Fault rank 2–3 1–2 1–3 1–2

3.2. Theoretical Analysis

Generally speaking, the derivation is a calculation formula in mathematical calculation.
The derivation is not only the basis of calculus but also an important pillar of calculus
calculation. It is defined as the limit of the quotient between the increment of the dependent
variable and the increment of the independent variable when the increment of the indepen-
dent variable tends to zero. When a function has a derivative, it is said that the function is
differentiable or differentiable. In mathematics, the derivation of a function is expressed
as f ′(x). If the functions u(x) and v(x) are derivable, the formula f ′(x) is described
as follows.

f ′(x) = (
u(x)
v(x)

)′ = (
u(x)′v(x)− u(x)v(x)′

v2(x)
) (2)

We removed and discarded coincidental correctness test cases from Tp just like in the
literature [2,7] in order to improve the effectiveness of SBFL. The SBFL formula (referred
to as N(e) in this paper) will arrive at a more faithful value when subtracting n from
nep. Formula N(e) is marked as N(e)′ when N(e) is computed on the test suite removing
coincidental correctness. A more faithful value of N(e) means that fault localization is more
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accurate. Therefore, researchers expect to improve the suspiciousness value of formula
N(e) by removing coincidental correctness under the single-fault scenario. Our frame-
work is based on the concept that the determinant for the effectiveness of a formula is
the number of statements with risk values higher than the risk value of the faulty statement.
Our framework is based on the concept of the derivative that suspiciousness formulas
are considered as the function of variable nep, which is the number of passed test cases
executing statement s, and the derivative of function f (nep) is computed to determine
whether the value of the derivative is greater than 0.

Considering formula N(e) as a function of variable nep, we propose a function frame-
work to compute the derivative of function f (nep) (i.e., Formula (3)) to investigate the effect
of coincidental correctness on SBFL formulas. For formulas N(e), the numerator is denoted
as u, and the denominator is denoted as v.

f ′(nep) = (
u
v
)′ = (

u′v− uv′

v2 ) (3)

We classified that there are three cases for the value of f ′(nep), as shown in Table 2.

Table 2. The relationship of monotonic suspiciousness function.

Function Variable Derivative Monotonic Function Relationship Formula Type

f (nep)

nep less than 0 Monotonically decreasing f (nep − n) > f (nep) T1

constant — — f (nep − n) = f (nep) T2

nep less than 0 Monotonically decreasing f (nep − n) > f (nep) T3
or more than 0 or increasing or f (nep − n) < f (nep)

1. “T1—improved typ”. When f ′(nep) < 0, f (nep) is a monotonically decreasing function
to discriminate f (nep − n) > f (nep), i.e., N(e)′ � N(e). That is, when removing
coincidental correctness test cases, the suspiciousness value of the SBFL formulas is
increasing; therefore, the effectiveness of the SBFL formulas is improved.

2. “T2—invariant type”. When f ′(nep) is equal to 0, f (nep) is to discriminate
f (nep − n) = f (nep), i.e., N(e)′ = N(e). That is, when removing coincidental cor-
rectness test cases, the suspiciousness value of SBFL formulas is unchanged; therefore,
the effectiveness of the SBFL formulas is unchanged.

3. “T3—uncertain type”. It is uncertain that the value of f ′(nep) is more than 0 or less than
0. The value of f ′(nep) needs to be discussed inter-partition. That is, when removing
coincidental correctness test cases, the suspiciousness value of SBFL formulas is
uncertain; therefore, the effectiveness of SBFL formulas is uncertain.

In this paper, the block diagram of our approach is shown in Figure 5. Coincidental
correctness test cases are removed from the whole test cases. We proposed a theoretical
framework and theoretically proved 30 suspiciousness formulas by coincidental correctness,
which were selected from Naish et al. [25], because their theoretical analysis for suspi-
ciousness formulas is the most systematic and comprehensive one. Finally, we evaluated
the impact of the effectiveness of SBFL techniques (i.e., Tarantula, Ochiai, Russel&Rao,
Naish2, Jaccard, Naish1, Wong1) by coincidental correctness.
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Figure 5. The block diagram of our approach.

3.2.1. The Improved Formulas by Removing Coincidental Correctness Test Cases

Through the theoretical analysis framework we proposed, we investigated the 30 sus-
piciousness formulas in Table 3. The formulas, whose type is T1, are the improved formu-
las by removing coincidental correctness. We mainly prove Jaccard, Goodman, Naish2,
Wong3, Fleiss, Tarantula, Ochiai and Arithmetic Mean of “T1−improved type” formulas by
the framework proposed in the previous section.

Table 3. The investigated formulas by removing CC test cases.

Name Formula Expression Type

Jaccard ne f

ne f + nu f + nep
T1

Anderberg ne f

ne f + 2(nu f + nep)
T1

S∅rensen-Dice 2ne f

2ne f + nu f + nep
T1

Dice 2ne f

ne f + nu f + nep
T1

qe ne f

ne f + nep
T1

Simple Matching ne f + nup

ne f + nu f + nep + nup
T1

Sokal 2(ne f + nup)

2(ne f + nup) + nu f + nep

T1

Rogers&Tanimoto ne f + nup

ne f + nup + 2(nu f + nep)
T1

Russel&Rao ne f

ne f + nu f + nep + nup
T1

M2 ne f

ne f + nup + 2(nu f + nep)
T1

Kulczynski2 1
2
(

ne f

ne f + nu f
+

ne f

ne f + nep
) T1

Rogot1 1
2
(

ne f

2ne f + nu f + nep
+

nup

2nup + nu f + nep
) T1

Goodman 2ne f − nu f − nep

2ne f + nu f + nep
T1

Hamann ne f + nup − nu f − nep

ne f + nu f + nep + nup
T1

Naish2 ne f −
nep

nep + nup + 1
T1
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Table 3. Cont.

Name Formula Expression Type

AMPLE2 ne f

ne f + nu f
−

nep

nep + nup
T1

Wong3
ne f − h, where h =

nep, if nep 6 2
2 + 0.1(nep − 2), if 2 < nep 6 10
2.8 + 0.001(nep − 10), if nep > 10

T1

Wong2 ne f − nep T1

Fleiss 4ne f nup − 4nu f nep − (nu f − nep)2

(2ne f + nu f + nep) + (2nup + nu f + nep)
T1

Tarantula ne f

ne f + nu f
/(

ne f

ne f + nu f
+

nep

nep + nup
) T1

Ochiai ne f√
(ne f + nu f )(ne f + nep)

T1

Arithmetic Mean 2ne f nup − 2nu f nep

(ne f + nep)(nup + nu f ) + (ne f + nu f )(nep + nup)
T1

Mean 2ne f nup − 2nu f nep

(ne f + nep)(nup + nu f ) + (ne f + nu f )(nep + nup)
T1

Naish1
{
−1 , if ne f < F
P− nep , if ne f = F

T2

Wong1 ne f T2

Binary
{

0 , if ne f < F
1 , if ne f = F

T2

Hamming etc. ne f + nup T2

Euclid
√

ne f + nup T2

CBI Inc. ne f

ne f + nep
−

ne f + nu f

ne f + nu f + nep + nup
T3

Cohen 2ne f nup − 2nu f nep

(ne f + nep)(nup + nep) + (ne f + nu f )(nu f + nup)
T3

Theorem 1. Jaccard′ � Jaccard.

Proof of Theorem 1.
f ′(nep) = (

ne f

ne f + nu f + nep
)′ =

1
v2 (−ne f ) (4)

It is clear that the numerator is less than 0 and the denominator is greater than 0,
so f ′(nep) < 0. f (nep) is a decreasing function; therefore, f (nep − n) > f (nep), that is
Jaccard′ � Jaccard.

Theorem 2. Goodman′ � Goodman.

Proof of Theorem 2.

f ′(nep) = (
2ne f − nu f − nep

2ne f + nu f + nep
)′ =

1
v2 [−v− u] =

1
v2 (−4ne f ) (5)

The numerator is less than 0 and the denominator is greater than 0, so f ′(nep) < 0. f (nep)
is a decreasing function; therefore, f (nep − n) > f (nep), that is Goodman′ � Goodman.

Theorem 3. Naish2′ � Naish2.



Symmetry 2022, 14, 1267 10 of 17

Proof of Theorem 3.
f ′(nep) = (ne f −

nep

nep + nup + 1
)′ =

1
v2 (−2nep − nup − 1) (6)

The numerator is less than 0 and the denominator is greater than 0, so f ′(nep) < 0. f (nep)
is a decreasing function; therefore, f (nep − n) > f (nep), that is Naish2′ � Naish2.

Theorem 4. Wong3′ �Wong3.

Proof of Theorem 4. If nep 6 2, then we have f ′(nep) = −1.
If 2 < nep 6 10, then we have f ′(nep) = −0.1.
If nep > 10, then we have f ′(nep) = −0.001.
No matter what value of nep is, f ′(nep) is always less than 0; therefore, f (nep − n) >

f (nep), that is Wong3′ �Wong3.

Theorem 5. Fleiss′ � Fleiss.

Proof of Theorem 5.

f ′(nep)= (
u
v
)′ =(

u′v− uv′

v2 ) =
1
v2 [(−2nu f − 2nep)v− 2u]′ (7)

=
1
v2 [−4(nu f + nep)2 − 4(nu f + nep)(ne f + nup)− 8ne f nup + 2(nu f + nep)2] (8)

=
1
v2 [−2(nu f + nep)2 − 4(nu f + nep)(ne f + nup)− 8ne f nup] (9)

It is obvious that f ′(nep) < 0. f (nep) is a decreasing function; therefore, f (nep − n) >
f (nep), that is Fleiss′ � Fleiss.

Theorem 6. Tarantula′ � Tarantula.

Proof of Theorem 6. Formula Tarantula can be re-written as

f (nep)=
ne f nep + ne f nup

nep(2ne f + nu f ) + ne f nup
(10)

f ′(nep) = (
u
v
)′ =(

u′v− uv′

v2 ) =
1
v2 [ne f v− (ne f nep +ne f nup)(2ne f +nu f )] (11)

=
1
v2 (−n2

e f nup − ne f nupnu f ) (12)

It is clear that f ′(nep) < 0. f (nep) is a decreasing function; therefore, f (nep − n) >
f (nep), that is Tarantula′ � Tarantula.

Theorem 7. Ochiai′ � Ochiai.

Proof of Theorem 7.
f ′(nep) = (

ne f√
(ne f + nu f )(ne f + nep)

)′ (13)

=
−ne f v−1/2

2v2 =
−ne f

2v5/2 (14)

It is clear that f ′(nep) < 0. f (nep) is a decreasing function; therefore, f (nep − n) >
f (nep), that is Ochiai′ � Ochiai.

Theorem 8. Arithmetic mean′ � Arithmetic mean.

Proof of Theorem 8.

f ′(nep) = (
u
v
)′ =(

u′v− uv′

v2 ) (15)

=
1
v2 [−2nu f v− (2ne f nup − 2nu f nep)(nnp + 2nu f + ne f )] (16)

=
1
v2 [−2nu f (4ne f nup + ne f nu f + nu f nup)− 2ne f n2

up − 2n2
e f nup] (17)
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Because the molecular is less than 0, f ′(nep) < 0. f (nep) is a decreasing function; there-
fore, f (nep − n) > f (nep), and we can prove that Arithmetic mean′ � Arithmetic mean.

3.2.2. The Unaffected Formulas by Removing Coincidental Correctness Test Cases

Theorem 9. Naish1′ = Naish1.

Proof of Theorem 9. Because P = nep + nup, Naish1 is transformed into the following form:

f (nep) =
{
−1 , if ne f < F
nup , if ne f = F

(18)

It is clear that Naish1 is not related with variable nep; thus, Naish1′ = Naish1. Through
observing the parameters of formulas in Table 3, we found that these formulas, namely,
Wong1, Binary, Hamming, Euclid, etc., have no relationship with variable nep. Therefore,
removing coincidental correctness test cases from test suites does not affect the SBFL
formulas, which type is T2 in Table 3.

3.2.3. Uncertain of Formulas Affected by Removing Coincidental Correctness Test Cases

Theorem 10.


CBI Inc’�CBI Inc , if 0 < nep < x2
CBI Inc’≺CBI Inc , if x2 < nep
CBI Inc’=CBI Inc , if nep = x2

Proof of Theorem 10.

f ′(nep) =
−ne f

(ne f + nep)2 +
ne f + nu f

(ne f + nu f + nep + nup)2 (19)

=
1

(ne f + nep)2(ne f + nu f + nep + nup)2 g(nep) (20)

Suppose g(nep) = nu f n2
ep − 2ne f nupnep − (nu f n2

e f + 2nupn2
e f + ne f n2

u f + 2ne f nu f nup +

ne f n2
up).

The denominator in formulas is more than 0; therefore, f ′(nep) is determined by
g(nep). Suppose g(nep) = 0, a = nu f , b = −2ne f nup, c = −(nu f n2

e f + 2nupn2
e f + ne f n2

u f +

2ne f nu f nup + ne f n2
up). We have a quadratic equation g(nep) = an2

ep + bnep + c = 0. We
adopt4 = b2 − 4ac to judge the solutions of the equation. 4 is more than 0, and the equa-
tion has a positive or negative solution because the constant c is less than 0. We suppose
two solutions of equation are x1 and x2 (i.e., x1 < 0 < x2), as shown in Figure 6. We discuss
three cases as follows:

(1) Suppose 0 < nep < x2, we have g(nep) < 0, i.e., f ′(nep) < 0, thus, f (nep − n) > f (nep),
that is, CBI Inc′ � CBI Inc;

(2) Suppose nep > x2, we have g(nep) > 0, i.e., f ′(nep) > 0, thus, f (nep − n) < f (nep),
that is, CBI Inc′ ≺ CBI Inc;

(3) Suppose nep = x2, we have g(nep) = 0, i.e., f ′(nep) = 0, thus, f (nep − n) = f (nep),
that is, CBI Inc′ = CBI Inc.
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Figure 6. The parabola of function g(nep).

Theorem 11.


Cohen’�Cohen , if 0 < nep < x2
Cohen’≺Cohen , if x2 < nep
Cohen’=Cohen , if nep = x2 or nep = x2

Cohen′ > Cohen.

Proof of Theorem 11.
v = n2

ep + (ne f + nup)nep + ne f nup + (ne f + nu f )(nu f + nup) (21)
v′ = 2nep + (ne f + nup) (22)

f ′(nep) = (
u
v
)′ =(

u′v− uv′

v2 ) =
1
v2 (−2nu f v− uv′)=

1
v2 g(nep) (23)

g(nep) = 2nu f n2
ep − 4ne f nupnep − (2n2

e f nup + 2ne f n2
up + 2nu f ne f nup + 2nu f (ne f + nu f ) (nu f + nup)) (24)

The denominator v2 is more than 0; hence f ′(nep), is determined by f (nep). Suppose
g(nep) = 0, we adopt4 = b2 − 4ac to judge the solution of the equation. 4 is more than
0, and the equation has a positive or negative solution, because the constant is less than 0.
We suppose that two solutions of the equation are x1 and x2 (i.e., x1 < 0 < x2). Consider
the following three cases

(1) Assume 0 < nep < x2, then f (nep) < 0, i.e., f ′(nep) < 0, we have f (nep − n) > f (nep),
that is, Cohen′ > Cohen;

(2) Assume nep > x2, then f (nep) > 0, i.e., f ′(nep) > 0, we have f (nep − n) < f (nep),
that is, Cohen′ ≺ Cohen;

(3) Assume nep = 0 ro nep = x2, then f (nep) = 0, i.e., f ′(nep) = 0, we have
f (nep − n) = f (nep), that is, Cohen′ = Cohen.

In all, the effectiveness of formulas CBI Inc and Cohen (Type T3 in Table 3) can
be improved by cleansing removing coincidental correctness test cases, which depends
on the range of nep. If nep is less than x2, then the effectiveness of them can be improved
by cleansing removing coincidental correctness test cases. Otherwise, the case would be
the contrary.

3.3. Empirical Study

In this section, we evaluated the effectiveness of “T1—improved type” formulas (e.g., Taran-
tula [20] and Naish2 [14]) and “T2—invariant type” formulas (e.g., Naish1 [14] and Wong [24])
based on coverage information using test suite T and test suite T discarding TCC. To obtain
coincidental correctness test cases accurately, we instrumented the faulty statement of a program
that sets a flag as soon as the faulty statement is met. That is, coincidental correctness arises
when the faulty statement is met in the passed execution. After that, removing coincidental
correctness test cases, we verified the effectiveness of four fault localization techniques. Given
TF and TP, our aim is to identify TCC so that test cases TCC would be discarded from T in order
to verify whether it can improve the effectiveness of SBFL.
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3.3.1. Subject Programs

Table 4 lists the program name, description information, lines of code not including
non-blank and non-comment in the base versions, number of faulty versions, test suite size
and fault type. These programs are written in C language. All four unix programs along
with their test suites are obtained from SIR (Software Infrastructure Repository) [26]. To
evaluate our technique, we use four UNIX programs as subject programs. The gzip has
the real faults with 211 test cases, which is a file compression/decompression tool with
5365 lines of code. The grep has the real faults with 806 test cases, which is a text search tool
to find one or more input files for lines with 9205 lines of code. The sed has the real and
seeded faults with 360 test cases, which is a stream editor to filter the text with 6763 lines
of code. The flex has the real faults with 567 test cases and a lexical analyzer generator
with 9766 lines of code. Among them, we tested 20 faulty versions of the gzip program
and 22 faulty versions of the sed program; similarly, we test 14 faulty versions of the grep
program and 20 faulty versions of the flex program. We conducted the experiments on these
programs because they were utilized in related work. In addition, faulty versions with no
failed test cases were excluded from our experiments because testing a fault required one
failed test case at least. In all, 76 faulty versions of relatively large programs were tested
for the experiments. Our experiments are run on a Linux server with a 3.07 GHz Intel(R)
Xeon(R) CPU and 16G memory. The operating system is Ubuntu 12. 04. 2 with Open-JDK
1.7 installed and the compiler is gcc-4.6.3 [27].

Table 4. Subject programs.

Program Name Description Information Lines of Code Number of Faulty
Version Test Suite Size Fault Type

gzip data compression/decompression 5365 20 211 real
grep search for a pattern in a file 9205 14 806 real
sed a stream text editor 6763 22 360 real, seeded
flex a fast lexical analyzer generator 9766 20 567 real

3.3.2. Results and Analysis

For a visual comparison, we adopted EXAM score [28], the ratio of the percentage
of faults located to the percentage of code examined, to assess the effectiveness of fault
localization by line chart. Figure 7 illustrates the effectiveness comparisons between SBFL
using test suite T and test suite T discarding TCC in the faulty versions of the program. For
clarity, the horizontal axis shows the percentage of code examined, whereas the vertical
axis denotes the percentage of the faults located. As shown in Figure 7, the evaluated SBFL
techniques based on coverage information using test suite T discarding TCC are marked
as Tarantula (CC), Ochiai (CC), Russel&Rao(CC), Naish2(CC), Jaccard(CC), Naish1(CC),
Wong1(CC), while the SBFL techniques based on coverage information using test suite T
are marked as Tarantula, Ochiai, Russel&Rao, Naish2, Jaccard, Naish1, and Wong1.

As can be seen from Figure 7, the curve of SBFL based on coverage information using
test suite T discarding TCC is higher than that of SBFL based on coverage information
using test suite T. This suggests that removing coincidental correctness test cases can
significantly enhance the effectiveness of “T1—improved Type” formulas, while removing
coincidental correctness test cases does not improve the effectiveness of “T2—invariant
Type” formulas. For example, by examining approximately 10% of the code, in Figure 7a,
Tarantula(CC) can locate 82.78% of the faults, whereas Tarantula can only locate 79.16%;
in Figure 7b, Ochiai(CC) can locate 71.261%, whereas Ochiai can only locate 59.425%;
in Figure 7c, Russel&Rao(CC) can locate 76.113%, whereas Russel&Rao can only locate
66.105%; in Figure 7d, Naish2(CC) can locate 81.89%, whereas Naish2 can only locate
73.88%; in Figure 7e, Jaccard(CC) can locate 70.261%, whereas Jaccard can only locate
58.424%; in Figure 7f, both Naish1(CC) and Naish1 can locate 91.66%, and both Wong1(CC)
and Wong1 can locate 77.78%.
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Figure 7. EXAM score comparisons on all four subjects.

Through the empirical study, we demonstrated that coincidental correctness some-
times does degrade the effectiveness of SBFL, such as Tarantula and Naish2, and that coin-
cidental correctness sometimes does not degrade the effectiveness of SBFL, such as Naish1
and Wong1. However, the effectiveness of “T3—uncertain type” formulas affected by
coincidental correctness depends on the range of passed test cases and inter-partition.

Table 5 shows the time overhead of SBFL(CC) and SBFL in all faulty versions of each
subject. The evaluated SBFL techniques based on coverage information using test suite T
discarding TCC are marked as SBFL(CC). SBFL(CC) consumes the time to collect coverage in-
formation, to cleanse coincidental correctness test cases and to compute the suspiciousness.
In contrast, SBFL consumes the time to obtain coverage information and compute the sus-
piciousness. Without loss of generality, we computed the total time overhead of Tarantula,
which is a presentative of SBFL. In Table 5, column Trace&Cleaning(s) denotes the time
overhead on all test cases by collecting coverage information and cleansing coincidental
correctness, column Susp.computation illustrates the time to compute the suspiciousness
in both cases, and column Total(s) means the total time of fault localization. As seen in
Table 5, SBFL(CC) requires additional time to identify accidental correctness test case; there-
fore, it has high time overhead. In our experiments, the last column indicates that the ratio
of the total time of SBFL(CC) in all faulty versions for each subject is 1.03 to 1.25 times that
of SBFL.
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Table 5. The time overhead of SBFL(CC) and SBFL in each subject with all test cases(s).

Program
Trace and Cleaning(s) Susp. Computation(s) Total(s) #SBFL(CC)

SBFL(CC) SBFL SBFL(CC) SBFL SBFL(CC) SBFL #SBFL

gzip 6912.36 6738.39 303.27 291.06 2405.21 2343.15 1.03
grep 33,617.52 28,025.28 1512.96 1386.80 4391.31 3676.51 1.19
sed 6922.23 6541.32 288.15 282.06 2403.46 2274.46 1.06
flex 44,072.20 35,001.90 1950.20 1752.40 4602.24 3675.43 1.25

3.3.3. Discussion

We assumed that at least one failed test case and one passed test case were contained
in the test suite. It is feasible and reasonable because such an assumption is widely accepted
and required for debugging. One failed test case can trigger the fault, and one passed test
case is needed for the computation of the suspiciousness. In addition, we have the assump-
tion that the programs under test have a test oracle for suspiciousness formulas, that is,
the execution result of either failed or passed can be decided. Through theoretical analysis
and empirical study, we investigated the 30 suspiciousness formulas.

The work [3] showed that removing coincidental correctness test cases was a safety
reducing factor for SBFL formulas, in which they only considered Jaccard, Tarantula, AM-
PLE, and Ochiai formulas, and they did not investigate the effect of other SBFL formulas
by removing coincidental correctness. Our theoretical study showed that 23 of the 30 sus-
piciousness formulas were improved by removing coincidental correctness. However,
through our theoretical analysis, five of these 30 SBFL techniques are not at all affected by
coincidental correctness, and two of them are affected by coincidental correctness depend-
ing on certain conditions. Cleansing coincidental correctness test cases from the test suites
is not meaningful and time-consuming in the above two cases.

(1) We assume that the program only contains one fault in the proof. In addition, we inves-
tigated 30 suspiciousness formulas under the single-fault scenario because of multiple
faults interfering with each other.

(2) We conducted the experiments to verify the effectiveness of suspiciousness formulas,
such as “T1—improved type” formulas and “T2—invariant type” formulas. However,
we could not verify the effectiveness of the “T3—uncertain type” formulas in Table 3,
because the value of f ′(nep) depends on the number of passed test cases and further
discuss the inter-partition of nep.

(3) The number of lines of code for the four programs, including gzip, grep, sed and
flex, is from 5000 to 10,000. We apply the whole test suite as the input to individual
subject programs. They have been adopted to evaluate fault localization techniques
in previous work [1,29]. Some of them, which are relatively large, are real-world
programs and have real-life scales [30]. This allows us to integrate our approach into
a larger-scale code analysis tool.

3.3.4. Summary

Overall, using the proposed framework, we have theoretically proved 30 suspicious-
ness formulas after removing coincidental correctness test suites. We can find that 23
of these 30 formulas are improved formulas, five of them are unaffected formulas, and
the remaining two of them are uncertain. We conducted the experiments with four C
open-source programs to evaluate coincidental correctness on the effectiveness of SBFL (i.e.,
Tarantula, Ochiai, Russel&Rao, Naish2, Jaccard, Naish1, Wong1). The experimental results
show that removing coincidental correctness test cases can significantly enhance the ef-
fectiveness of “T1—improved Type” formulas; Tarantula, Ochiai, Russel&Rao, Naish2,
Jaccard are “T1—improved Type” formulas through empirical study. Whereas, removing
coincidental correctness test cases sometimes does not improve the effectiveness of “T2—
invariant Type” formulas. Both Naish1 and both Wong1 are “T2—invariant Type” formulas
through empirical study.
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4. Conclusions

With the prevalence of coincidental correctness, it is important to know how suspi-
ciousness formulas are affected by coincidental correctness. In this paper, we proposed
a functional framework to prove that coincidental correctness impacts SBFL techniques.
Through theoretical analysis, we demonstrated that removing coincidental correctness
degrades the effectiveness of SBFL in most cases, but sometimes, it does not affect the ef-
fectiveness of some SBFL formulas. Considering coincidental correctness, we evaluated
the effectiveness of the 30 SBFL formulas by theoretical analyses. Our approach classified
the 30 investigated SBFL formulas into three categories: removing coincidental correctness
improved the effectiveness of SBFL, which is named “T1—improved type” formulas; re-
moving coincidental correctness did not affect on the effectiveness of SBFL, which is named
“T2—invariant type” formulas; and the effect on the effectiveness of SBFL by removing
coincidental correctness depends on certain conditions, which are named “T3—uncertain
type” formulas. We conducted an empirical study on four C programs and found that
the effectiveness of some suspiciousness formulas can be enhanced; however, the effec-
tiveness of some other suspiciousness formulas can be unchanged. Generally speaking,
our empirical study is useful to highlight the interesting phenomena, which can suppose
the generalization needed to be tested and verified by theoretical proof. This study indicates
that theoretical proof and empirical study are essential and complementary in software
engineering. This provides a theoretical basis for removing coincidental correctness test
cases for locating faults in the field of software engineering.

In the future, we want to deeply solve the interesting problem highlighted by this
study: to compare the effectiveness of more formulas under the factors influencing coinci-
dental correctness. This has motivated us to adopt a theoretical approach to study some
other factors influencing the effectiveness of fault localization. Finally, we want to apply
our approach to more subject programs written in other languages and perform more
detailed empirical studies.
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