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Abstract: This paper investigates the fractional local Poisson equation using the homotopy perturba-
tion transformation method. The Poisson equation discusses the potential area due to a provided
charge with the possibility of area identified, and one can then determine the electrostatic or gravi-
tational area in the fractal domain. Elliptic partial differential equations are frequently used in the
modeling of electromagnetic mechanisms. The Poisson equation is investigated in this work in the
context of a fractional local derivative. To deal with the fractional local Poisson equation, some
illustrative problems are discussed. The solution shows the well-organized and straightforward
nature of the homotopy perturbation transformation method to handle partial differential equations
having fractional derivatives in the presence of a fractional local derivative. The solutions obtained
by the defined methods reveal that the proposed system is simple to apply, and the computational
cost is very reliable. The result of the fractional local Poisson equation yields attractive outcomes,
and the Poisson equation with a fractional local derivative yields improved physical consequences.

Keywords: homotopy perturbation transformation method; fractional local Poisson equation; local
Caputo operator; Sumudu transform

1. Introduction

In mathematical physics, the Poisson equation (PE) is the most useful. In his book
Partial Differential Equations, Evans [1] explained the feature of the Poisson equation. In
their contributed book [2], Elman et al. elaborated on the significance of the Poisson equa-
tion. Derriennic et al. [3] concentrated on the Poisson equation at an arbitrary order and
proved several essential theorems. Griffiths and College [4] clarify their contribution to
electrodynamics. Kellogg [5] investigated the Poisson equation with intersecting interfaces.
Jassim [6] investigated the PE in its local sense with a fractional derivative. Chenet et al. [7]
conducted an intriguing study on the fractional local PE using an analytical method, yield-
ing very nice and significant results. The Poisson equation is an elliptic nonlinear partial
differential equation with numerous implementations in quantum theory, mechanical engi-
neering, and various other crucial and effective fields. It describes the continuous difference
in the capillarity across the interface between static fluids, namely water and air, as a result
of surface tension or, alternatively, wall pressure. The study of partial differential equations,
particularly those derived from finance mathematics, is where the elegance of symmetry
analysis is most apparent. The secret of nature is symmetry, but the majority of natural
observations lack symmetry [8].

The fractional local transport equations are essential in a variety of scientific fields,
including semiconductors [9], aeronautics [10], superconductivity [11], turbulence [12],
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plasma [13], gas mixtures [14], and biology [15]. Tarasov [16] examined fractional-order
transport equations, while Zaslavsky [17] discussed anomalous fractional dynamics trans-
port. Uchaikin and Sibatov [18] looked into the use of the application of this equation to
disordered semiconductors, Lutz [19] looked into transport equations with arbitrary-order
derivatives, Kadem et al. [20] looked into spectral techniques to solve fractional-order trans-
port equations, Meng Li et al. [21] looked into the numerical results of a linear transport
equation, and so on [22,23].

Because of its wide application, local fractional calculus has attracted the attention and
interest of mathematicians and researchers in recent years. Rayneau-Kirkhope et al. [24]
looked at ultra-light fractal architectures, the local fractional wave equation in fractal
strings was established by Singh et al. [25], Yang [26] looked at how heat moves via
discontinuous media, a heat conduction equation with arbitrary-order derivatives was
studied by Povestenko [27], heat conduction linked with a non-integer-order derivative
was investigated by Wang et al. [28], Shih [29] researched numerical heat transfer, the
heat-balance integral to fractional systems was investigated by Hristov [30], Yang discussed
the fractal heat conduction problem and Baleanu [31], etc. However, analytical methods
are rare for most, if not all, fractional partial differential equations [32–34]. Hence, building
effective numerical methods and schemes are fascinating and of relevance in practical
applications and with problems related to the real world [35,36].

The first to invent the homotopy perturbation technique (HPM) was the Chinese
mathematician JH He, who played a crucial role, in 1998 [37]. This method is just, eco-
nomical, and effective, and it eliminates unconditioned matrices, intricate integrals, and
endless series. This method does not require a problem-specific parameter. In 2010, Tarig
Elzaki introduced a novel integral transformation called the Ezaki transform (ET). The ET
transform is a modification of the Laplace and Sumudu transforms. Remember that abso-
lute differential equations with variable coefficients cannot be solved using the Sumudu
and Laplace transforms when the ET is used [38–40]. The HPTM combines the Elzaki
transformation with the homotopy perturbation method. Several scientists have utilized
the HPTM to solve differential equations, including heat-like problems, Navier–Stokes
problems, Fisher’s equation, the gas-dynamic model, and the hyperbolic equation [41–44].

In the current research work, we implemented a hybrid method for the solution of
fractional local Poisson equations. The present technique is a mixture of two well-known
techniques known as the Shehu transform and the homotopy perturbation method, which
is discussed in Section 4 of the paper. For the purpose of the validity of the suggested
technique, some illustrative problems are presented. Moreover, the homotopy perturbation
transformation method solution is determined at various fractional orders of the given
equations. It has been analyzed that the fractional-order results converge toward a classical
result for the problems, from a fractional-order to a classical-order approach. It is clear
from the series-form solution that the homotopy perturbation transformation method has
the desired degree of accuracy. Overall, the current method’s discussion and numerical
implementation have suggested that it can be easily extended to solve other fractional-order
differential equations.

2. Basic Definitions

This section examines the fundamental concept of fractional local calculus, which is
utilized in this study.

Definition 1. For the connection |x− x0| < σ, when ε, σ > 0 and ε ∈ R, we allow the functions
f (x) ∈ Cβ(a, b), while [45]

| f (x)− f (x0)| < ε$, 0 < $ ≤ 1, (1)

exists.
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Definition 2. Consider the interval [a, b] and (yj, yj+1), j = 0, · · · , N − 1, y0 = a, and yN = b
with δyj = yj+1 − yj, δy = max{∆y0, ∆y1, ∆y2, · · · } a partition of this interval. Then, the
fractional local integral of f (x) is defined as [45]

I($)b f (x) =
1

Γ(1 + $)

∫ b

a
f (y)(dy)$ =

1
Γ(1 + $)

lim
∆y→0

j=N−1

∑
j=0

f (yi)(∆yj)
$ (2)

Definition 3. If the function f (x) satisfies the conditions of Equation (1), the inverse formula of
Equation (2) is described as follows [45]:

d$ f (x0)

dx$ = D($)
x f (x0) =

∆$( f (x)− f (x0))

(x− x0)$ , (3)

where

∆$( f (x)− f (x0)) ∼= Γ(1 + $)[ f (x)− f (x0)]. (4)

In this work, the fractional local derivative is represented by the following formula:

d$

dx$

xn$

Γ(1 + n$)
=

x(n−1)$

Γ(1 + (n− 1)$)
, n ∈ N. (5)

3. Fractional Local Sumudu Transformation

Watugala [46] first proposed and developed the Sumudu transform, whereas
Belgacem et al. [47] and Belgacem and Karaballi [48] identified and studied some of
its essential features. Katatbeh and Belgacem [49] solved fractional differential equations
employing the Sumudu transformation. Gupta et al. [50] solved generalized fractional
kinetic equations using the Sumudu transform. The implementations of the Sumudu trans-
formation to the Bessel function and equations were researched by Guo [51]. Srivastava
[52] presented and examined more Sumudu characteristics. Using the Sumudu trans-
form method, Gao et al. [53] discovered the analytic results to several fractional ordinary
differential equations. Coupled with the HPM, the Sumudu transformation method is
used to explore the fractional population biological models [54]. Srivastava et al. [55]
initially introduce and define the fractional local Sumudu transformation of a function f (x)
as follows:

LFS${ f (x)} = F$(z) =
1

Γ(1 + $)

∫ ∞

0
E$(−z−$x$)

f (x)
z$ (dx)$, 0 < $ ≤ 1 (6)

Moreover, the inverse formula is as follows:

LFS−1
$ {F$(z)} = f (x), 0 < $ ≤ 1. (7)

4. Fractional Local Homotopy Perturbation Transformation Method

To establish the fundamental concept underlying the FLHPTM, we suppose the given
with a local fractional derivative linear differential equation.

L$u(x, y) + R$u(x, y) = h(x, y), (8)

where R$ is the remaining linear operator, L$ represents the linear fractional local differen-
tial derivative, and source function is h(x, y).

Applying the Sumudu local transformation on Equation (8), we obtain

U$(x, z) =u(x, 0) + z$u$(x, 0) + z2$u2$(x, 0) + · · ·+ z(k−1)$u(k−1)$(x, 0)

− zk$LFS$[R$u(x, y)] + zk$LFS$[h(x, y)].
(9)
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Using the local fractional inverse Sumudu transformation on Equation (9), we obtain

u(x, y) =u(x, 0) +
y$

Γ(1 + $)
u$(x, 0) +

y2$

Γ(1 + 2$)
(x, 0) + · · ·+ y(k−1)$

Γ(1 + (k− 1)$)
u(k−1)$(x, 0)

− LFS−1
$ [zk$LFS$[R$u(x, y)]] + LFS−1

$ [zk$LFS$[h(x, y)]].
(10)

Now, we apply the homotopy perturbation method [24–26]

u(x, y) =
∞

∑
n=0

pnun(x, y). (11)

Putting Equation (11) in Equation (10), we obtain the given solution:

∞

∑
n=0

pnun(x, y) =u(x, 0) +
y$

Γ(1 + $)
u$(x, 0) +

y2$

Γ(1 + 2$)
(x, 0) + · · ·+ y(k−1)$

Γ(1 + (k− 1)$)
u(k−1)$(x, 0)

− LFS−1
$

[
zk$LFS$

[
R$

∞

∑
n=0

pnun(x, y)

]]
+ LFS−1

$

[
zk$LFS$[h(x, y)]

]
.

(12)

which combines the fractional local Sumudu transformation method with homotopy per-
turbation method. Evaluating coefficients of identical powers of p yields

p0 : u0(x, y) =u(x, 0) +
y$

Γ(1 + $)
u$(x, 0) +

y2$

Γ(1 + 2$)
(x, 0) + · · ·

+
y(k−1)$

Γ(1 + (k− 1)$)
u(k−1)$(x, 0) + +LFS−1

$

[
zk$LFS$[h(x, y)]

]
,

p1 : u1(x, y) =− LFS−1
$

[
zk$LFS$

[
R$u0(x, y)

]]
,

p2 : u2(x, y) =− LFS−1
$

[
zk$LFS$

[
R$u1(x, y)

]]
,

...

(13)

Therefore, the solution of Equation (8) is defined as

u(x, y) = lim
N→∞

N

∑
n=0

un(x, y) (14)

5. Non-Differential Solutions for the Fractional Local Poisson Equation

In this section, we show the results for the local Poisson equation for the local frac-
tional derivative arising in fractal transonic flow with local fractional operator with the
initial condition.

Example 1. Consider the local fractional PE is given as [56]

∂$u(x, y)
∂y$ +

∂$u(x, y)
∂x$ = 0, 0 < $ ≤ 1, (15)

with the initial condition

u(x, 0) =
x$

Γ(1 + $)
. (16)

Using the fractional local Sumudu transformation on Equation (15), we have

U$(x, z) = u(x, 0) + z2$LFS$

[
−∂$u(x, y)

∂x$

]
, (17)
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which implies

U$(x, z) =
x$

Γ(1 + $)
+ z2$LFS$

[
−∂$u(x, y)

∂x$

]
. (18)

Using the local fractional inverse Sumudu transformation to Equation (18), we achieved as

u(x, y) =
x$

Γ(1 + $)
+ LFS−1

$

[
z2$LFS$

[
−∂$u(x, y)

∂x$

]]
. (19)

Now, applying homotopy perturbation method, we obtain

∞

∑
n=0

pnun(x, y) =
x$

Γ(1 + $)
+ LFS−1

$

[
z2$LFS$

[
−∂$ ∑∞

n=0 pnun(x, y)
∂x$

]]
. (20)

We obtain the following component of the series result by comparing the like powers of p.

p0 : u0(x, y) =
x$

Γ(1 + $)
,

p1 : u1(x, y) =
y$

Γ(1 + $)
,

....

(21)

we obtain the series-form solution of Equation (15), given as

u(x, y) = lim
N→∞

∞

∑
n=0

un(x, y),

=
x$

Γ(1 + $)
+

y$

Γ(1 + $)
.

(22)

Example 2. Consider the local fractional PE is given as

∂$u(x, y)
∂y$ +

∂$u(x, y)
∂x$ = 0, 0 < $ ≤ 1, (23)

with the initial condition

u(x, 0) = E$(x$). (24)

Using the fractional local Sumudu transformation on Equation (23), we have

U$(x, z) = u(x, 0) + z2$LFS$

[
−∂$u(x, y)

∂x$

]
, (25)

which implies

U$(x, z) = E$(x$) + z2$LFS$

[
−∂$u(x, y)

∂x$

]
. (26)

Using the local fractional inverse Sumudu transformation to Equation (26), given as

u(x, y) = E$(x$) + LFS−1
$

[
z2$LFS$

[
−∂$u(x, y)

∂x$

]]
. (27)
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Now, applying homotopy perturbation method, we obtain

∞

∑
n=0

pnun(x, y) = E$(x$) + LFS−1
$

[
z2$LFS$

[
−∂$ ∑∞

n=0 pnun(x, y)
∂x$

]]
. (28)

We obtain the following component of the series result by comparing the like powers of p.

p0 : u0(x, y) =E$(x$),

p1 : u1(x, y) =E$(x$)
y$

Γ(1 + $)
,

p2 : u2(x, y) =E$(x$)
y2$

Γ(1 + 2$)
,

....

(29)

We obtain the series-form solution of Equation (23), given as

u(x, y) = lim
N→∞

∞

∑
n=0

un(x, y),

=E$(x$)

[
1− y$

Γ(1 + $)
+

y2$

Γ(1 + 2$)
− y3$

Γ(1 + 3$)
+

y4$

Γ(1 + 4$)
− · · ·

]
.

(30)

Example 3. Consider local fractional PE is given as [56]

∂$u(x, y)
∂y$ +

∂$u(x, y)
∂x$ = 0, 0 < $ ≤ 1, (31)

with the initial condition

u(x, 0) = cos$(x$). (32)

Using the fractional local Sumudu transformation on Equation (31), we have

U$(x, z) = u(x, 0) + z2$LFS$

[
−∂$u(x, y)

∂x$

]
, (33)

which implies

U$(x, z) = cos$(x$) + z2$LFS$

[
−∂$u(x, y)

∂x$

]
. (34)

Using the local fractional inverse Sumudu transformation to Equation (34), we obtain

u(x, y) = cos$(x$) + LFS−1
$

[
z2$LFS$

[
−∂$u(x, y)

∂x$

]]
. (35)

Now, applying homotopy perturbation method, we obtain

∞

∑
n=0

pnun(x, y) = E$(x$) + LFS−1
$

[
z2$LFS$

[
−∂$ ∑∞

n=0 pnun(x, y)
∂x$

]]
. (36)
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We obtain the following component of the series result by comparing the like powers of p.

p0 : u0(x, y) = cos$(x$),

p1 : u1(x, y) = sin$(x$)
y$

Γ(1 + $)
,

p2 : u2(x, y) = sin$(x$)
y$

Γ(1 + $)
− cos$(x$)

y2$

Γ(1 + 2$)
,

....

(37)

We obtain the series-form solution of Equation (31), given as

u(x, y) = lim
N→∞

∞

∑
n=0

un(x, y),

= cos$(x$) + sin$(x$)
y$

Γ(1 + $)
− cos$(x$)

y2$

Γ(1 + 2$)
+ · · · .

(38)

Equation (38) can be presented in the following way

u(x, y) = sin$(x$)
∞

∑
l=0

(−1)l y(2l+1)$

Γ(1 + (2l + 1)$)
+ cos$(x$)

∞

∑
l=0

(−1)l y2l$

Γ(1 + 2l$)
,

= sin$(x$) sin$(y$) + cos$(x$) cos$(y$).

(39)

Example 4. Consider the local fractional PE equation is given as [56]

∂$u(x, y)
∂y$ +

∂$u(x, y)
∂x$ = 0, 0 < $ ≤ 1 (40)

with the initial condition

u(x, 0) = sin$(x$). (41)

Using the fractional local Sumudu transformation on Equation (40), we have

U$(x, z) = u(x, 0) + z2$LFS$

[
−∂$u(x, y)

∂x$

]
, (42)

which implies

U$(x, z) = sin$(x$) + z2$LFS$

[
−∂$u(x, y)

∂x$

]
. (43)

Using the local fractional inverse Sumudu transformation on Equation (43) is obtained as

u(x, y) = sin$(x$) + LFS−1
$

[
z2$LFS$

[
−∂$u(x, y)

∂x$

]]
. (44)

Now, applying homotopy perturbation method, we obtain

∞

∑
n=0

pnun(x, y) = sin$(x$) + LFS−1
$

[
z2$LFS$

[
−∂$ ∑∞

n=0 pnun(x, y)
∂x$

]]
. (45)
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We obtain the following component of the series result by comparing the like powers of p.

p0 : u0(x, y) = sin$(x$),

p1 : u1(x, y) = cos$(x$)
y$

Γ(1 + $)
,

p2 : u2(x, y) = cos$(x$)
y$

Γ(1 + $)
− h2 sin$(x$)

y2$

Γ(1 + 2$)
,

....

(46)

We obtain the series-form solution of Equation (40), given as

u(x, y) = lim
N→∞

∞

∑
n=0

un(x, y),

= sin$(x$)− cos$(x$)
y$

Γ(1 + $)
− sin$(x$)

y2$

Γ(1 + 2$)
+ · · · .

(47)

Equation (47) can be presented in the following way

u(x, y) = sin$(x$)
∞

∑
l=0

(−1)l y(2l+1)$

Γ(1 + (2l + 1)$)
− cos$(x$)

∞

∑
l=0

(−1)l y2l$

Γ(1 + 2l$)
,

= sin$(x$) sin$(y$)− cos$(x$) cos$(y$).

(48)

6. Conclusions

This paper investigates the fractional-order local Poisson equation using the homotopy
perturbation transformation method. The Poisson equation explains the potential area
resulting from a given charge, and if the potential area is known, one can compute the
electrostatic or gravitational area in the fractal domain. There is frequent usage of elliptic
partial differential equations in the modeling of electromagnetic mechanisms. This paper
investigates the Poisson equation in the context of a local fractional operator. Several
illustrative difficulties are given concerning the fractional local Poisson equation. The
needed results illustrate the well-organized and uncomplicated nature of the homotopy
perturbation transformation approach for partial differential equations with fractional
derivatives in the local fractional operator sense. The mentioned methodologies’ results
demonstrate that the suggested system is simple to implement and computationally precise.
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