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Abstract: Lots of symmetric properties are well-explored and analyzed in extremal graph theory,
such as the well-known symmetrization operation in the Turán problem and the high symmetric
in the extremal graphs. This paper is devoted to studying the Lagrangian of hypergraphs, which
connects to a very symmetric function—the Lagrangian function. Given an r-uniform hypergraph F,
the Lagrangian density πλ(F) is the limit supremum of r!λ(G) over all F-free G, where λ(G) is the
Lagrangian of G. An r-uniform hypergraph F is called λ-perfect if πλ(F) equals r!λ(Kr

v(F)−1). Yan
and Peng conjectured that: for integer r ≥ 3, there exists n0(r) such that if G and H are two λ-perfect
r-graphs with |V(G)| and |V(H)| no less than n0(r), then the disjoint union of G and H is λ-perfect.
Let St denote a 3-uniform hypergraph with t edges {e1, . . . , et} satisfying that ei ∩ ej = {v} for all
1 ≤ i < j ≤ t. In this paper, we show that the conjecture holds for G = S2 and H = St for all t ≥ 62.
Moreover, our result yields a class of Turán densities of 3-uniform hypergraphs. In our proof, we
use some new techniques to study Lagrangian density problems; using a result of Sidorenko to find
subgraphs, and a result of Talbot to upper bound the Lagrangian of a hypergraph.

Keywords: hypergraph Lagrangian; Lagrangian density; Turán density

1. Introduction

Symmetry is a major characteristic of mathematical beauty, and it is found in many
branches of mathematics. A number of symmetric properties are widely studied, analyzed
and applied in graph theory. For example, a well-known symmetrization operation is
widely applied in the study of the Turán type problems in extremal graph theory, and the
Lagrangian of hypergraphs concerned in this paper connects to a very symmetric function–
the Lagrangian function (see [1,2] for surveys).

For a finite set X and an integer r > 0, let X(r) = {A ⊆ X : |A| = r}. An r-uniform
hypergraph (r-graph) G on the vertex set V(G), is a subset of V(G)(r). We simply denote
G as the edge set of G. We call a 2-graph a simple graph. Denote G = V(G)(r)\G. Let
S ⊆ V(G), denote G − S = {e ∈ G : e ∩ S = ∅} and G[S] = {e ∈ G : e ⊆ S}. An
edge e = {v1, v2, . . . , vr} will be simply denoted by v1v2 . . . vr. Let Kr

n = X(r) denote the
complete r-graph on vertex set X with |X| = n. Denote [n] = {1, 2, . . . , n}. Given an
r-graph G on vertex set [n], define the Lagrangian function of G as

w(G, x) = ∑
e∈G

∏
i∈e

xi,

where x ∈ [0, ∞)n. w(G, x) can be interpreted as the density of a blow-up of G divide r!.
Define the Lagrangian of G as λ(G) = maxx∈∆ w(G, x), where

∆ =

{
x ∈ Rn :

n

∑
i=1

xi = 1, xi ≥ 0

}
.
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We call a weighting x a feasible weighting if x ∈ ∆. We call a feasible weighting x optimal
if w(G, x) = λ(G). Given r-graphs G and F, G is said to be F-free if G contains no copy of
F. The Lagrangian density πλ(F) of F is defined to be

πλ(F) = r! sup{λ(G) : G is F-free}.

The idea of continuous optimization is widely used not only in mathematics, but also in
other disciplines (see [3,4] and so on). The hypergraph Lagrangian method, first introduced
by Zykov [5] in 1949, is such a continuous optimization method that is helpful to solve
the extremal problems. One of the earliest applications of the hypergraph Lagrangian
method was applied by Motzkin and Straus [6] in 1965 to establish the connection (See
Theorem 1) between the Lagrangian of a simple graph and its maximum clique number. A
surprising application is that in the 1980’s, Frankl and Rödl [7] used it to disprove a famous
conjecture of Erdős. For more developments of the Lagrangian theory of hypergraphs
see [8,9]. Actually, determining the Lagrangian density of general r-graphs when r ≥ 3
is interesting in itself. However, there are very few known results in Lagrangian density
problems. We list some of the relevant results known so far as follows.

Since Kr
n−1 is F-free for an n-vertex r-graph F, then

πλ(F) ≥ r!λ(Kr
n−1).

We call an n-vertex r-graph F λ-perfect if πλ(F) = λ(Kr
n−1) (We will show the value

of λ(Kr
n) in Fact 4).

Motzkin and Straus [6] showed that every 2-graph K2
t is λ-perfect. Next, we turn

our attention to the hypergraphs. Let T be a tree or a forest that satisfies Erdős and Sós’
conjecture, and let F be an r-graph obtained by joining r− 2 fixed vertices into every edge of
T. Sidorenko [10] proved that F is λ-perfect for large tree. Let Hr be the r-graph with edge
set {v1 . . . vr−1vr, v1 . . . vr−1vr+1}. Sidorenko [9] showed that Hr is λ-perfect for r = 3 and 4.
Let Mr

t be the r-uniform matching with t pairwise disjoint edges. Let St denote a 3-uniform
hypergraph with t edges {e1, . . . , et} satisfying that ei ∩ ej = {v} for all 1 ≤ i < j ≤ t.
Hefetz and Keevash [11] showed that M3

2 is λ-perfect. The authors [12] proved that M3
t

and S4
t are λ-perfect. A result given by Bene Watts, Norin and Yepremyan [13] suggested

that Mr
2 is not λ-perfect for r ≥ 4. It is interesting to study the λ-perfect r-graphs. More

results yielding λ-perfect r-graphs are in the papers [10,14–22]. It is worth mentioning
that Yan and Peng [23] recently proved that the Lagrangian density of a 3-graph is an
irrational number, and independently, Wu [24] showed that the Lagrangian density of M4

3
is an irrational number. These two results give a positive answer to the question posed by
Baber and Talbot [25]: whether there is an irrational Turán density of a single hypergraph.
For more relevant Hypergraph Lagrangian results, one may refer to [10,17,22,26–38].

We call a graph linear if any two edges of it share at most one vertex in common. Our
original motivation is to seek some new tools to study the Lagrangian density of linear
3-graphs, and to give brief proofs. Denote the disjoint union of two r-graphs G and H as
G ∪ H. In 2019, Yan and Peng [22] posed an interesting conjecture.

Conjecture 1 (Yan and Peng [22]).

(i) For an integer r ≥ 3, there exists n0(r) such that a linear r-graph on at least n0(r) vertices
is λ-perfect.

(ii) For an integer r ≥ 3, there exists n0(r) such that if G and H are two λ-perfect r-graphs with
v(G) ≥ n0(r) and v(H) ≥ n0(r), then G ∪ H is λ-perfect.

The other motivation of this paper is to find a class of λ-perfect 3-graphs to support
Conjecture 1. We simplify S3

t to St, i.e., St = {uviwi : 1 ≤ i ≤ t and the vi’s and wi’s are
all distinct}. Let S2,t = S2 ∪ St. In this paper, we show that S2,t is λ-perfect for all t ≥ 62,
proving that (ii) of Conjecture 1 holds for G = S2 and H = St, also supporting (i) of
Conjecture 1 in some sense.
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Theorem 1. Let t ≥ 62 be an integer and G be a 3-graph. If G is S2,t-free, then

λ(G) ≤ λ(K3
2t+5) =

(t + 2)(2t + 3)
3(2t + 5)2 .

In particular, S2,t is λ-perfect.

The Lagrangian density problem is strongly related to the well-known Turán problem.
For a given positive integer n and an r-graph F, define the Turán number of F as the
maximum number of edges attained by an n-vertex F-free r-graph, and denote it as ex(n, F).
The Turán density of F is defined as

π(F) = lim
n→∞

ex(n, F)
(n

r)
,

such a limit is known to exist. Denote the extension of a graph F as HF, which is an r-graph
obtained from F by adding (r− 2) new vertices to each pair {vi, vj} that is not contained
in any edge of F. For example, H{123,456} = {ijvij : 1 ≤ i ≤ 3, 4 ≤ j ≤ 6}, where all vij are
different. A result of Sidorenko [9,10] yields that the Lagrangian density of F is equal to the
Turán density of HF. Hence, we can directly obtain the following corollary by Theorem 1.

Corollary 1. Let t ≥ 62 be an integer. Then π(HS2,t) = 2(t+2)(2t+3)
(2t+5)2 .

We remark that the lower bound for t can be improved slightly with some more
tedious discussion, we omit it here.

2. Preliminaries

Let us list some useful results of the Lagrangian function. First, we obtain the following
fact directly from the definition of Lagrangian.

Fact 1. Let G be an r-graph. If F is a subgraph of G, then λ(F) ≤ λ(G).

Call an r-graph G dense if λ(F) < λ(G) for every proper subgraph F of G. Therefore,
we may assume that G is dense when we estimate the Lagrangian upper bound of an F-free
r-graph G. We say that F covers pairs if every pair of vertices is contained in some edge of F.

Fact 2 (Frankl and Rödl [7]). If an r-graph G is dense, then G covers pairs.

Let G be an r-graph, and i, j ∈ V(G). Define

LG(j\i) =
{

g ∈
(

V(G)\{i, j}
r− 1

)
: g ∪ {j} ∈ E(G) and g ∪ {i} /∈ E(G)

}
.

There is a useful fact concerning the symmetry property of Lagrangian function. We
omit its proof here; see [12].

Fact 3. Let G be a dense r-graph on vertex set [n] and x be an optimal weighting on G. If for some
i, j ∈ [n], LG(i\j) = LG(j\i) = ∅. Then xi = xj.

Fact 4. λ(Kr
n) = (n

r)
1
nr .
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Proof of Fact 4. By Fact 3, ( 1
n , 1

n , . . . , 1
n ) is an optimum weighting of Kr

n, thus we have

λ(Kr
n) = λ(Kr

n, (
1
n

,
1
n

, . . . ,
1
n
)) =

(
n
r

)
1
nr .

Motzkin and Straus [6] proved that the Lagrangian of a simple graph G equals to the
Lagrangian of its complete subgraph with maximum order, which implies a simple proof
of Turán’s classical theorem. Let ω(G) denote the clique number of G, i.e., ω(G) = max{s :
K2

s ⊆ G}.

Theorem 1 (Motzkin and Straus, [6]). Let G be a simple graph with ω(G) = t,

λ(G) = λ(K2
t ) =

1
2

(
1− 1

t

)
.

However, it is not easy to determine the Lagrangian of an r-graph when r ≥ 3. The
following result is useful to calculate the Lagrangian of hypergraphs.

Lemma 1 (Frankl and Rödl [7]). Let G be an r-graph on vertex set [n] and x be an optimum
weighting on G. Then ( ∂w(G,x)

∂xi
is the partial derivative of function w(G, x) with respect to vari-

able x)
∂w(G, x)

∂xi
= rλ(G)

for every i ∈ [n] with xi > 0.

3. Proof of Theorem 1

For a given r-graph G and U ⊆ V(G), define the link graph of U in G as the hypergraph
with edge set {e ∈ (V(G)\U

r−|U| ) : e ∪ U ∈ E(G)}, and denote as GU . When U = {i} or
U = {i, j}, we simply write as Gi or Gij.

Lemma 2. Let G be a dense 3-graph on vertex set [n]. If λ(G) > λ(K3
2t+5), then for each vertex

i ∈ V(G), there is a clique on s vertices contained in Gi with s > (2t+5)2

6t+13 .

Proof of Lemma 2. Let x be an optimum weighting on G. Then, by Lemma 1, for every
vertex i ∈ G, we have

3λ(K3
2t+5) < 3λ(G) =

∂w(G, x)
∂xi

= w(Gi, x).

Note that xi > 0, which follows from G being dense. Since Gi is a simple graph,
by Motzkin–Straus Theorem, w(Gi, x) = λ(Ks)(1− xi)

3 < λ(Ks), where s is the clique
number of Gi. It follows that 3λ(K3

2t+5) < λ(Ks). Thus, by Fact 4 and Motzkin–Straus
Theorem, we have

1
2
· (2t + 4)(2t + 3)

(2t + 5)2 <
1
2
· s− 1

s
.

It yields that 1
s < 1− (2t+4)(2t+3)

(2t+5)2 , i.e., 1
s < 6t+13

(2t+5)2 . Therefore, s > (2t+5)2

6t+13 and we
are done.

Let s be a positive integer. The s-fold enlargement of the graph F is obtained from
F by adding the same s new vertices to every edge of F. For example, the 3-graph
{123, 134, 145, . . . , 1t(t + 1)} is the 1-fold enlargement of {23, 34, 45, . . . , t(t + 1)}, a path on
t vertices. The following proposition is a consequence of a result of Sidorenko [10].
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Proposition 1 (Sidorenko [10]). Let G be a 3-graph. If λ(G) > λ(K3
2t+5), then G contains

a copy of the 1-fold enlargement of a path on 2t + 5 vertices.

Let A, B ∈ [n](r) be two distinct r-set. The colex ordering on [n](r) is the ordering
satisfying that A < B if max((A\B) ∪ (B\A)) ∈ B. For instance, 236 < 146 in N(3). Let
C(m; r) be the r-graph consisting of the first m sets in the colex ordering of N(r). There is a
famous conjecture proposed by Frankl and Füredi [39] in 1989. They conjectured that the
Lagrangian of any r-graph with m edges is no more than λ(C(m; r)).

Note that if m = (`3) + (`−1
2 ) = (`+1

3 )− (`− 1), then C(m; 3) = [`+ 1]3\{`(`+ 1)i :
i ∈ [`− 1]}. Clearly, {`, `+ 1} is not covering pairs in C(m; 3). Thus C(m; 3) is not dense
by Fact 2. Hence λ(C(m; 3)) ≤ λ(K3

` ). Moreover, we have λ(C(m; 3))) ≥ λ(K3
` ) since

K3
` ⊆ C(m; 3)). Therefore, λ(C(m; 3))) = λ(K3

` ). For r = 3, Talbot [35] first showed the
conjecture holds whenever (`3) ≤ m ≤ (`3) + (`−1

2 )− `. After then, big progress has been
made in [28–30,36,37,40].

Theorem 2 (Talbot [35]). Let m and ` be integers satisfying(
`

3

)
≤ m ≤

(
`

3

)
+

(
`− 1

2

)
− `,

then for any 3-graph G with m edges, λ(G) ≤ λ(C(m; 3)). Moreover, λ(C(m; 3)) = λ(K3
l ).

Corollary 2. Let G be a 3-graph with m edges. If λ(G) > λ(K3
` ), then m ≥ (`3) + (`−1

2 )− `+ 1.

Proof of Corollary 2. For the contrary, suppose that m ≤ ( l
3) + (l−1

2 ) − l. Let G′ be the
3-graph obtained from G by adding arbitrarily s edges to G such that ( l

3) ≤ e(G′) ≤
( l

3) + (l−1
2 )− l, where s ≥ 0 is an integer. By Fact 1, we have λ(G) ≤ λ(G′). Moreover,

by Theorem 2, we have λ(G′) ≤ λ(K3
l ). Thus, λ(G) ≤ λ(K3

l ), which contradicts that
λ(G) > λ(K3

l ).

We now give two crucial lemmas.

Lemma 3. Let t ≥ 62 and 2t + 6 ≤ n ≤ 2t + 9 be two positive integers. Let G be a dense n-vertex
3-graph. If G is S2,t-free, then λ(G) ≤ λ(K3

2t+5).

Proof of Lemma 3. For the contrary, suppose that λ(G) > λ(K3
2t+5). Since λ(G) > λ(K3

2t+5),
by Proposition 1, there exists a copy of the 1-fold enlargement of a path on 2t + 5 vertices
in G. Denote this 3-graph as S with V(S) = {a1, a2, . . . , a2t+5} ∪ {o} and E(S) = {oa1a2,
oa2a3, . . . , oa2t+4a2t+5}. Clearly, {oa1a2, . . . , oa2i−1a2i, . . . , oa2t+3a2t+4} forms a copy of St+2
in S (see Figure 1).

For 1 ≤ k1 < k2 < k3 < k4 < k5 ≤ t + 3, denote

U = U(k1, . . . , k5) = {a2k1−1, a2k2 , a2k3−1, a2k4 , a2k5−1} and H = G[U].

Note that V(S)\U contains a copy of St with edge set ∪i∈[6]Ei, where

E1 = {oa1a2, oa3a4, . . . , oa2k1−3a2k1−2},
E2 = {oa2k1 a2k1+1, oa2k1+2a2k1+3, . . . , oa2k2−2a2k2−1},
E3 = {oa2k2+1a2k2+2, oa2k2+3a2k2+4, . . . , oa2k3−3a2k3−2},
E4 = {oa2k3 a2k3+1, oa2k3+2a2k3+3, . . . , oa2k4−2a2k4−1},
E5 = {oa2k4+1a2k4+2, oa2k4+3a2k4+4, . . . , oa2k5−3a2k5−2},
E6 = {oa2k5 a2k5+1, oa2k5+2a2k5+3, . . . , oa2t+4a2t+5}.
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Since G is S2,t-free, H is S2-free. We claim that e(H) ≤ 4. Suppose that e(H) ≥ 5,
and relabel the vertex set of H as [5]. Without loss of generality, assume that 123 ∈ H. Since
H is S2-free, thus there is no edge of H containing {4, 5}. If there is no edge of H containing
{4} or {5}, then H ⊆ K3

4, which contradicts that e(H) ≥ 5. So there are at least two edges
of H such that one contains 4 and the other contains 5. Without loss of generality, assume
that 124 ∈ H. Similarly, there is no edge of H containing {3, 5}. So, 125 ∈ H, and thus,
there is no edge of H containing {3, 4}. Therefore, E(H) ⊆ {123, 124, 125}, a contradiction.
Hence, e(H) ≤ 4.

There are (t+3
5 ) such {k1, k2, k3, k4, k5}, and for each e ∈ H, there are at most (t

2)

such {k1, k2, k3, k4, k5} so that e ⊆ {a2k1−1, a2k2 , a2k3−1, a2k4 , a2k5−1}. Note that H ⊆ G and
e(H) = (5

3)− e(H) ≥ 6. Then

e(G) ≥
6 · (t+3

5 )

(t
2)

=
(t + 3)(t + 2)(t + 1)

10
. (1)

By Corollary 2,

e(G) ≤
(

n
3

)
−
((

2t + 5
3

)
+

(
2t + 4

2

)
− (2t + 5) + 1

)
≤

(
2t + 9

3

)
−
((

2t + 5
3

)
+

(
2t + 4

2

)
− (2t + 5) + 1

)
.

Let

f (t) =
(

2t + 9
3

)
−
((

2t + 5
3

)
+

(
2t + 4

2

)
− (2t + 5) + 1

)
− (t + 3)(t + 2)(t + 1)

10
.

Then

f (t) =
−t3 + 54t2 + 419t + 714

10
and f ′(t) =

−3t2 + 108t + 419
10

.

The roots of f ′(t) = 0 are 54−
√

4173
3 and 54+

√
4173

3 . Since the quadratic function f ′(t)

concave, f (t) is increasing in [0, 54+
√

4173
3 ), and decreasing in ( 54+

√
4173

3 ,+∞). By direct

calculation, we have 54+
√

4173
3 < 62 and f (62) < 0. Hence, f (t) < 0 since t ≥ 62, that is,

e(G) < (t+3)(t+2)(t+1)
10 . This is a contradiction with (1). We complete the proof.

Figure 1. A copy of St+2 in S.

Lemma 4. Let t ≥ 62 and n ≥ 2t + 10 be two positive integers. Let G be a dense n-vertex 3-graph.
If G is S2,t-free, then λ(G) ≤ λ(K3

2t+5).
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Proof of Lemma 4. For the contrary, suppose that λ(G) > λ(K3
2t+5). For each u ∈ V(G),

denote a maximum clique in Gu as Ku. Since λ(G) > λ(K3
2t+5) with t ≥ 62, by Lemma 2,

v(Ku) ≥ (2t + 5)2

6t + 13
≥ 43.

Furthermore, by Proposition 1, there exists a copy of the 1-fold enlargement of a path
on 2t + 5 vertices in G. Denote this 3-graph as S with V(S) = {a1, a2, . . . , a2t+5} ∪ {o}
and E(S) = {oa1a2, oa2a3, . . . , oa2t+4a2t+5}. Clearly, {oa1a2, . . . , oa2i−1a2i, . . . , oa2t+3a2t+4}
forms a copy of St+2 in S (see Figure 1). If we delete one vertex of {a1, a2, . . . , a2t+5} with
an odd number of subscript, then we can still find a copy of St+2 in S. However, If we
delete one vertex of {a1, a2, . . . , a2t+5} with an even number of subscript, then we can
only guarantee that there is a copy of St+1 in S. The situation is always ‘worse’ when the
subscript of the deleted vertex is even than when it is odd.

Since n ≥ 2t + 10, there are at least four vertices in V(G)\V(S), we denote four
vertices among them as u1, u2, u3, u4 and denote U = {u1, u2, u3, u4}. Since G is dense,
then G covers pairs by Fact 2. We consider Guiuj for all 1 ≤ i < j ≤ 4, recall that
Guiuj = {v ∈ V(G) : vuiuj ∈ G}.

Claim 1. Guiuj ⊆ {o, a2, a4, . . . , a2t+4} for all 1 ≤ i < j ≤ 4.

Proof of Claim 1. Suppose that there is w ∈ V(G)\{o, a2, a4, . . . , a2t+4} such that u1u2w ∈
G. Recall that v(Kw) ≥ 43, so we can pick two vertices in V(Kw) − {o, u1, u2}, say
v1, v2. Thus, {u1u2w, wv1v2} forms a copy of S2 in G − {o}. We will show that there
exists a copy of St in S− {w, u1, u2, v1, v2}. Recall that w /∈ {a2, a4, . . . , a2t+4}, the worst
case (For the sake of brevity of the proof, we consider only the worst case and omit
other cases where {v1, v2} = {a2i, a2j+1} or {v1, v2} = {a2i+1, a2j+1}) is w = a2k+1 and
{v1, v2} = {a2i, a2j}, where 0 ≤ k ≤ t + 2 and 1 ≤ i < j ≤ t + 2. Assume that
i < j ≤ k, delete a2i, a2j, a2k+1 ∈ {a1, a2, . . . , a2t+5} and abandon a2i−1, a2j−1. We can
find a copy of St with edge set {oa1a2, . . . , oa2i−3a2i−2} ∪ {oa2i+1a2i+2, . . . , oa2j−3a2j−2} ∪
{oa2j+1a2j+2, . . . , oa2k−1a2k} ∪ {oa2k+2a2k+3, . . . , oa2t+4a2t+5} in S. So, G contains a copy of
S2,t, a contradiction. The proofs for k < i < j or i ≤ k < j are similar.

Claim 2. If u1u2a2 ∈ G, then for each k ∈ {1, 3, . . . , 2t + 5}, Gu1ak = Gu2ak = {o}.

Proof of Claim 2. Fix k ∈ {1, 3, . . . , 2t + 5}. First we prove that Gu1ak ⊆ {o, a2}. Suppose
that there is w /∈ {o, a2} such that u1akw ∈ G, then {a2u2u1, u1akw} forms a copy of S2. It
is not hard to see that there exists a copy of St in S− V(S2). Thus, G contains a copy of
S2,t, a contradiction. Similarly, Gu2ak ⊆ {o, a2}. Now we suppose that u1aka2 ∈ G. Then
for k′ ∈ {1, 3, 5, ..., 2t + 5} and k′ 6= k, Gu2ak′ = {o}. Otherwise {u2ak′ a2, a2aku1} forms a
copy of S2, and clearly there exists a copy of St in S − V(S2). Thus, G contains a copy
of S2,t, a contradiction. Let v, w ∈ V(Kak )− {o, u1, u2, a2}. {u1a2ak, akvw} forms a copy
of S2. Our goal is to find a copy of St in S ∪ {u2} − {ak, a2, v, w}, thus, we obtain a copy
of S2,t in G and we are done. The worst case is {v, w} = {a2l , a2l′}, where 1 < l < l′ ≤
t + 2. Assume that 2l < k < 2l′. In this case k 6= 1, we abandon a1, a2l−1, a2l′+1 and
find a copy of St−1 with edge set {oa3a4, . . . , oa2l−3a2l−2} ∪ {oa2l+1a2l+2 . . . , oak−2ak−1} ∪
{oak+1ak+2, . . . , oa2l′−2a2l′−1} ∪ {oa2l′+2a2l′+3, . . . , oa2t+4a2t+5} in S. This copy of St−1 to-
gether with {ou2a1} forms a copy of St, and we are done. The proofs for k < 2l < 2l′ or
l < l′ < k are similar.

Claim 3. If u1u2a2 ∈ G, then uiuja2 /∈ G for every pair i ∈ {1, 2}, j ∈ {3, 4}.

Proof of Claim 3. Without loss of generality, assume that u1u3a2 ∈ G. By Claim 2, uiako ∈ G
for every pair i ∈ [3] and k ∈ {1, 3, . . . , 2t + 5}. Let v, w ∈ V(Ka2)− {a1, u1, u2, u3, u4, o}.
Then {u1u2a2, a2vw} forms a copy of S2 in G. Our goal is to find a copy of St in S ∪ {u3} −
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{a2, v, w}, thus we obtain a copy of S2,t in G and we are done. Similar to the proof of
Claim 2, the worst case is {v, w} = {a2l , a2l′}, where 1 < l < l′ ≤ t + 2, and there is a
copy of St−1 not containing a1. This copy of St−1 together with {ou3a1} forms a copy of St,
and we are done.

Now we continue to prove the lemma. We first claim that {u1u2o, u3u4o} or {u1u3o,
u2u4o} or {u1u4o, u2u3o} is contained in G. Otherwise, without loss of generality suppose
that u1u2o /∈ G. By Claim 1, we have u1u2a2 ∈ G. If for some triple i ∈ {1, 2}, j ∈ {3, 4}
and k ∈ {4, 6, . . . , 2t + 4}, uiujak ∈ G, then {u1u2a2, uiujak} forms a copy of S2 in G. It
is not hard to see that there is a copy of S2,t in S− {a2, ak}, a contradiction. So we may
assume that uiujak /∈ G for every triple i ∈ {1, 2}, j ∈ {3, 4} and k ∈ {4, 6, . . . , 2t + 4}.
Moreover, by Claim 3, uiuja2 /∈ G for every pair i ∈ {1, 2}, j ∈ {3, 4}. Therefore, we
have u1u3o, u2u4o ∈ G. Hence, we have shown that the claim holds. Without loss of
generality, we assume that {u1u2o, u3u4o} is contained in G. Let c1, c2, c3, c4 ∈ V(Ka1)−
{o, u1, u2, u3, u4}. Then {c1c2a1, a1c3c4} forms a copy of S2. Our goal is to find a copy of
St in S ∪ {u1, u2, u3, u4} − {a1, c1, c2, c3, c4}, thus we obtain a copy of S2,t in G and we are
done. Similar to the proof of Claim 2, the worst case is {c1, c2, c3, c4} = {a2i, a2j, a2k, a2l},
where 1 < i < j < k < l ≤ t + 2. It is not hard to see that there exists a copy of St−2 in
S− {a1, c1, c2, c3, c4}. This copy of St−1 together with {u1u2o, u3u4o} forms a copy of St.
Thus we complete the proof.

Proof of Theorem 1. Let G be an S2,t-free 3-graph with vertex set [n]. We can assume that
G is dense, otherwise we replace G by a dense subgraph G′ of G with λ(G′) = λ(G). So G
covers pairs by Fact 2. If n ≤ 2t + 5, then λ(G) ≤ λ(K3

2t+5) by Fact 1. If 2t + 6 ≤ n ≤ 2t + 9,
then we are done by Lemma 3. Now assume that n ≥ 2t + 10. For the contrary, we suppose
that λ(G) > λ(K3

2t+5). By Lemma 4, there exists a copy of S2,t in G, a contradiction. So
πλ(S2,t) ≤ 3!λ(K3

2t+5). Since K3
2t+5 contains no S2,t, we have πλ(S2,t) ≥ 3!λ(K3

2t+5). Hence,
πλ(S2,t) = 3!λ(K3

2t+5). Thus, we complete the proof.
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Combinatorica 2019, 39, 1149–1171. [CrossRef]
14. Chen, P.; Liang, J.; Peng, Y. The Lagrangian density of {123, 234, 456} and the Turán number of its extention. Discuss. Math. Graph

Theory 2021, 41, 905–921. [CrossRef]
15. Hu, S.; Peng, Y. Lagrangian densities of enlargements of matchings in hypergraphs. Appl. Math. Comput. 2020, 374, 125068.

[CrossRef]
16. Hu, S.; Peng, Y.; Wu, B. Lagrangian densities of linear forests and Turán numbers of their extensions. J. Comb. Des. 2020,

28, 207–223. [CrossRef]
17. Jenssen, M. Continuous Optimisation in Extremal Combinatorics. Ph.D. Thesis, London School of Economics and Political Science,

London, UK, 2017.
18. Liu, S.; Peng, Y. Generating non-jumping numbers of hypergraphs. Bull. Korean Math. Soc. 2019, 56, 1027–1039.
19. Norin, S.; Yepremyan, L. Turán numbers of extensions. J. Comb. Theory Ser. A 2018, 155, 476–492. [CrossRef]
20. Pikhurko, O. An exact Turán result for the generalized triangle. Combinatorica 2008, 28, 187–208. [CrossRef]
21. Wu, B.; Peng, Y. Lagrangian densities of short 3-uniform linear paths and Turán number of their extensions. Graphs Comb. 2021,

37, 711–729. [CrossRef]
22. Yan, Z.; Peng, Y. λ-perfect hypergraphs and Lagrangian densities of hypergraph cycles. Discret. Math. 2019, 342, 2048–2059.

[CrossRef]
23. Yan, Z.; Peng, Y. An irrational Lagrangian density of a single hypergraph. SIAM J. Discret. Math. 2022, 36, 786–822. [CrossRef]
24. Wu, B. An Irrational Turán Density via Hypergraph Lagrangian Densities. Submitted.
25. Baber, R.; Talbot, J. New Turán densities for 3-graphs. Electron. J. Comb. 2012, 19, 22. [CrossRef]
26. Brandt, A.; Irwin, D.; Jiang, T. Stability and Turán numbers of a class of hypergraphs via Lagrangians. Comb. Probab. Comput.

2017, 26, 367–405. [CrossRef]
27. Chen, P.; Wu, B.; Zhang, Q. A note on a conjecture of Bene Watts–Norin–Yepremyan for Lagrangian. Appl. Math. Comput. 2022,

427, 127151. [CrossRef]
28. Gruslys, V.; Letzter, S.; Morrison, N. Hypergraph Lagrangians I: The Frankl-Füredi conjecture is false. Adv. Math. 2020, 365, 107063.

[CrossRef]
29. Gruslys, V.; Letzter, S.; Morrison, N. Hypergraph Lagrangians II: When colex is best. Isr. J. Math. 2021, 242, 637–662. [CrossRef]
30. Lei, H.; Lu L.; Peng, Y. On Lagrangians of 3-uniform hypergraphs. arXiv 2018, arXiv:1806.10846v1.
31. Lu, L.; Wang, Z. On Hamiltonian Berge cycles in [3]-uniform hypergraphs. Discret. Math. 2021, 344, 9. [CrossRef]
32. Mubayi, D. A hypergraph extension of Turán’s theorem. J. Comb. Theory Ser. B 2006, 96, 122–134. [CrossRef]
33. Norin, S.; Yepremyan, L. Turán numbers of generalized triangles. J. Comb. Theory Ser. A 2017, 146, 312–343. [CrossRef]
34. Gu, R.; Li, X.; Peng, Y.; Shi, Y. Some Motzkin-Straus type results for non-uniform hypergraphs. J. Comb. Optim. 2016, 31, 223–238.

[CrossRef]
35. Talbot, J. Lagrangians of hypergraphs. Comb. Probab. Comput. 2002, 11, 199–216. [CrossRef]
36. Tang, Q.; Peng, Y.; Zhang, X.; Zhao, C. Connection between the clique number and the Lagrangian of 3-uniform hypergraphs.

Optim. Lett. 2016, 10, 685–697. [CrossRef]
37. Tyomkyn, M. Lagrangians of hypergraphs: The Frankl-Füredi conjecture holds almost everywhere. J. Lond. Math. Soc. 2017,

96, 584–600. [CrossRef]
38. Wu, B.; Peng, Y. The Maximum Lagrangian of 5-uniform Hypergraphs without Containing Two Edges Intersecting at a Vertex.

Acta Math. Sin. Engl. Ser. 2022, 38, 877–889. [CrossRef]
39. Frankl, P.; Füredi, Z. Extremal problems whose solutions are the blow-ups of the small Witt-designs. J. Comb. Theory Ser. A 1989,

52, 129–147. [CrossRef]
40. Peng, Y.; Zhao, C. A Motzkin-Straus type result for 3-uniform hypergraphs. Graphs Comb. 2013, 29, 681–694. [CrossRef]

http://dx.doi.org/10.1007/BF02579215
http://dx.doi.org/10.1007/BF02124681
http://dx.doi.org/10.1016/j.jcta.2013.07.011
http://dx.doi.org/10.1016/j.ejc.2018.05.001
http://dx.doi.org/10.1007/s00493-019-3831-8
http://dx.doi.org/10.7151/dmgt.2219
http://dx.doi.org/10.1016/j.amc.2020.125068
http://dx.doi.org/10.1002/jcd.21687
http://dx.doi.org/10.1016/j.jcta.2017.08.004
http://dx.doi.org/10.1007/s00493-008-2187-2
http://dx.doi.org/10.1007/s00373-020-02270-w
http://dx.doi.org/10.1016/j.disc.2019.03.024
http://dx.doi.org/10.1137/21M1410798
http://dx.doi.org/10.37236/2360
http://dx.doi.org/10.1017/S0963548316000444
http://dx.doi.org/10.1016/j.amc.2022.127151
http://dx.doi.org/10.1016/j.aim.2020.107063
http://dx.doi.org/10.1007/s11856-021-2132-2
http://dx.doi.org/10.1016/j.disc.2021.112462
http://dx.doi.org/10.1016/j.jctb.2005.06.013
http://dx.doi.org/10.1016/j.jcta.2016.09.003
http://dx.doi.org/10.1007/s10878-014-9736-y
http://dx.doi.org/10.1017/S0963548301005053
http://dx.doi.org/10.1007/s11590-015-0907-2
http://dx.doi.org/10.1112/jlms.12082
http://dx.doi.org/10.1007/s10114-022-0388-z
http://dx.doi.org/10.1016/0097-3165(89)90067-8
http://dx.doi.org/10.1007/s00373-012-1135-5

	Introduction
	Preliminaries
	Proof of Theorem 1
	References

