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Abstract: To improve the spectral efficiency of symmetry-based intelligent reconfigurable surface
(IRS)-assisted MIMO communication systems, this paper investigates the joint precoding and passive
beamforming optimization problem for millimeter-wave point-to-point MIMO systems under both
ideal and practical IRS phase shifts. For the ideal IRS phase shifts setup, we derive a simplified
approximate spectral efficiency expression based on Jensen’s inequality and propose a minimum
mean square error (MMSE)-based algorithm to transform the simplified non-convex problem into a
solvable convex function. For the practical IRS phase shifts setup, we propose a multi-start stepwise
optimization algorithm to obtain the passive beamforming by stepwise iterative search. Finally,
with the above-obtained passive beamforming, the optimal precoding is derived by performing the
singular value decomposition (SVD) on the effective channel and water-filling power allocation. The
simulation results verify our performance analysis and demonstrate that spectral efficiency can be
effectively improved compared to various benchmark schemes.

Keywords: intelligent reflecting surface; MIMO; beamforming optimization; discrete phase shifts;
spectral efficiency

1. Introduction

Millimeter-wave MIMO systems can effectively overcome the free-space path loss
problem by employing beamforming techniques to achieve higher spectral efficiency; how-
ever, a large number of antenna elements and radio frequency (RF) chains will inevitably
generate significant overhead and power consumption [1,2]. The intelligent reflecting
surface (IRS), with its increased potential for significant energy consumption reductions,
has become a green and cost-effective solution [3,4]. Specifically, an IRS is a large electro-
magnetic metasurface consisting of metals, dielectrics, and tunable elements that can realize
the real-time amplitude/phase adjustment of the incident electromagnetic wave signal
through adjusting the physical properties of electromagnetic elements, such as capacitive,
impedance, or inductive resistance, to achieve three-dimensional spatial beamforming and
improve the performance of the communication system [5,6]. When the direct communi-
cation link between the base station (BS) and the user is blocked by an obstacle, the BS
can align the transmitting beam to the IRS, and then the IRS can align the reflected beam
to the user by adjusting the phase of the array elements so that a good communication
performance can still be maintained between the BS and the user. In addition, the IRS can
be deployed on indoor ceilings, walls, or building facades, bringing great flexibility to
wireless systems [7].

There are two technical difficulties in the beamforming optimization of an IRS-assisted
millimeter wave MIMO system. One is the deep coupling between the precoding and the
passive beamforming of the IRS in the spectral efficiency maximization objective problem,
which makes it extremely difficult to solve the joint optimization problem. The other is that
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the reflection element of an IRS is subject to strict instantaneous power limitations, that is,
non-convex unit modulus constraints, which makes the spectral efficiency optimization
problem non-convex and difficult to solve.

Based on the above issues, several previous works have focused on beamforming
optimization for IRS-assisted communication systems. The researchers in [8] investigated
the problem of maximizing the spectral efficiency of IRS-assisted MIMO communication
systems but did not consider joint optimization with active beamforming. The researchers
in [9] jointly optimized the precoding at the BS and the passive beamforming at the IRS,
and transformed it into convex semidefinite planning (SDP) problem, which is solved by
the semi-definite relaxation technique (SDR), but the computational complexity is high. In
view of the high computational complexity of the SDR algorithm, the researchers in [10]
first simplified the objective problem using fractional programming techniques and then
obtained an approximate optimal solution based on the block coordinate descent (BCD)
method. The researchers in [11] focused on the maximization of channel capacity in point-
to-point MIMO systems, which is approximately transformed into the maximization of
total channel gain. An effective alternating iterative method is developed to obtain the
local optimal solution of passive beamforming, but the spectral efficiency is not ideal. In
addition, the above literature is based on the ideal IRS with a continuous phase shifts setup,
and due to the manufacturing process and hardware limitations, the reflection phase of
the practical IRS can only obtain a certain number of specific discrete values. Although
the researchers in [12] considered the practical IRS with finite resolution phase shifters, it
directly quantifies the optimal continuous phase shift to the discrete phase shift domain,
which is bound to bring non-negligible errors when the resolution accuracy is low. In [13],
the non-convex spectral efficiency optimization problem of the MIMO system assisted by
an IRS with discrete phase shifts was transformed into a discrete phase search problem,
but the optimal phase shifts of all reflection elements are obtained by an exhaustive search,
and this algorithm is highly unsuitable when the reflection elements are large. In particular,
considering the propagation characteristics of millimeter-waves, the simulation based on
the Rayleigh fading channel or Rician fading channel in the above literature is not realistic.

Based on the above analysis, most of the existing IRS-assisted beamforming optimiza-
tion work for MIMO systems cannot obtain the desired spectral efficiency, and some have
the problem of high computational complexity and limitations of application scenarios.
How to effectively solve the non-convex spectral efficiency problem caused by the non-
convex, single-mode constraint and how to jointly optimize the precoding and passive
beamforming are the keys to improving the spectral efficiency. In order to maximize the
spectral efficiency of the IRS-assisted millimeter-wave MIMO system when the BS–user
direct path is blocked, this paper proposes beamforming schemes for the ideal IRS with a
continuous phase shifts setup and for the practical IRS with a discrete phase shifts setup,
respectively. The contributions of this paper can be summarized as follows:

• For the complex spectral efficiency optimization problem in an ideal IRS, the original
spectral efficiency optimization problem is transformed into an effective channel gain
maximization problem based on Jensen’s inequality, which is easier to solve.

• For the effective channel gain maximization problem with non-convex single-mode
constraints, a passive beamforming scheme based on an MMSE is proposed in this
paper, and it transforms the non-convex optimization problem into a minimum mean
square error problem of the optimal solution and the actual matrix, and, further, the
closed solution is obtained.

• For the non-convex spectral efficiency optimization problem in a practical IRS, this
paper proposes a multi-start, stepwise optimization scheme, which transforms the
beamforming at the IRS into a phase search problem. Multiple starting points are
generated through chaotic mapping, and the optimal discrete phase shift of the IRS is
obtained by iterative steps, which greatly reduces the complexity.

The remainder of this paper is organized as follows: Section 2 presents the system
model and the problem formulation. Then, Section 3 proposes two beamforming optimiza-
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tion schemes for solving the formulated problem under different IRS setups. Section 4
provides the numerical results and their pertinent discussions. Finally, we summarize the
full paper in Section 5.

2. System Model and Problem Formulation

In this section, the IRS-assisted point-to-point MIMO communication system model,
channel model, and optimization problem are established.

2.1. System Model

The architecture of an IRS-assisted point-to-point MIMO communication system is
shown in Figure 1, where the BS is equipped with Nt antennas and the number of data
streams is Ns, with Ns ≤ Nt. The data streams are first modulated by the precoder F and
then reflected by the IRS attached to the wall, where the IRS is equipped with M reflection
elements to serve the user equipped with Nr antennas. The IRS equipped with a controller
can dynamically adjust the reflection coefficient based on the propagation environment
learned through periodic sensing via the same passive array (when not reflecting). Due
to significant path loss, we assume that each element at the IRS can re-scatter the signal
independently, and the signals which are reflected twice or more are ignored. Furthermore,
the direct BS–user path is blocked due to obstacles and severe path loss, the BS–IRS and IRS–
user paths have already known the perfect channel state information (CSI) through channel
estimation and effective feedback techniques, and the IRS controller communicates with
the BS through a separate radio link for the CSI exchange. The specific channel estimation
techniques have been studied in various works [14–16]. Thus, the received signal of the
BS–IRS–user path is expressed as:

y =

√
P
Ns

(HrΦGFs) + z (1)

where P is the total transmit power and z ∈ CNr×1 is the noise vector, which obeys complex
Gaussian distribution with a 0 mean and σ2 INr covariance, where σ2 denotes the average
noise power and INr denotes the Nr-dimensional unit matrix. The input signal s ∈ CNs×1

satisfies E
[
ssH] = P

Ns
∗ INs , where the E[·] unit is a statistical expectation and ∗ denotes

a multiplication. F ∈ CNt×Ns is the precoding matrix satisfying ‖ F ‖2
F= Ns, and, due to

the symmetric structure of the precoding system, the combiner at the receiver side can be
designed similarly to the precoder at the transmitter side, and so we omit it and focus on the
design of the precoding. The IRS combines all the received multi-path signals at the BS, and
re-scatters the combined signal. Φ = diag

(
βejθ1 , βejθ2 , . . . , βejθM

)
∈ CM×M is the diagonal

passive beamforming matrix at the IRS, where θi ∈ [0, 2π], i = 1, 2, . . . , M is the phase of
passive beamforming matrix and β ∈ [0, 1] is the amplitude, and, generally, we set to β = 1.
However, in practical process manufacturing, the phase of the IRS can only take a certain
number of specific discrete values, and we set θ to belong to Γ =

{
0, ∆θ, . . . , ∆θ

(
2b − 1

)}
,

where ∆θ = 2π/2b, b is the number of bits quantized. Hr ∈ CNr×M and G ∈ CM×Nt denote
the BS–IRS and IRS–user channels, respectively.
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Figure 1. IRS-assisted point-to-point MIMO communication system with Nt BS antennas, Nr user
antennas, and M IRS elements.

Since the high free-space path loss of the millimeter-wave channel leads to finite
spatial selectivity or scattering, the channel model used in a conventional MIMO is no
longer applicable for millimeter-wave MIMO systems, and we adopt the geometric Saleh–
Valenzuela channel model [17,18]. We set the antennas at the BS to employ a uniform linear
array (ULA) and the antennas at the IRS to employ a uniform planar array (UPA), and then
the BS–IRS channel can be expressed as:

G =

√
NtNr

Ncl Nray

Ncl

∑
i=1

Nray

∑
l=1

αilar(φr,l , ψr,l)at(θt,l)
H (2)

where Ncl is the number of scattering clusters, Nray is the number of paths in each cluster,
and αil is the complex gain of the l-th path in the i-th scattering cluster and follows the
complex Gaussian distribution, which is usually assumed to be 1. ar(φr,l , ψr,l) and at(θt,l)
denote the antenna array response vectors at the receiver and transmitter, respectively,
where φr,l , ψr,l , and θt,l are the azimuth angles of departure (AoD), the zenith angles of
departure (ZoD), and the azimuth angles of arrival (AoA), respectively, and the array
response vectors are expressed as follows:

at(θ) =
1√
Nt

[
1, ej 2π

λ d sin (θ), . . . , ej 2π
λ (Nt−1)d sin (θ)

]T
(3)

ar(φ, ψ) = 1√
Nr

[
1, . . . , ej 2π

λ d(α sin (φ) sin (ψ)+β cos(ψ)),

. . . , ej 2π
λ d((

√
Nr−1) sin (φ) sin (ψ)+(

√
Nr−1) cos(ψ))

]T (4)

where λ is the wavelength and d indicates the antenna spacing. In addition, the central angle
of the cluster is uniformly distributed in the angular domain and the angular expansion
of the multipath components in the cluster follows the Laplace distribution. Further, the
IRS–user channel is modeled similarly to the BS–IRS channel.
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Based on Shannon’s theorem, the spectral efficiency (SE) can be presented as:

SE = log2 det
(

INr +
P

σ2Ns
HH

e f f FFH He f f

)
(5)

where the effective channel He f f = HrΦG is the BS–IRS–user channel. det(·) and (·)H

are the conjugate transpose of the matrix and operation of the determinant of a matrix,
respectively. In order to maximize the spatial multiplexing gain of the MIMO, we set
Ns = rank

(
He f f

)
. From Equation (5), it can be seen that the spectral efficiency is limited

by both the passive beamforming matrix and the precoding matrix. In order to maximize
the achievable spectral efficiency of the system, the active and passive beamforming needs
to be jointly optimized.

2.2. Problem Formulation

Based on the above system model, this subsection aims to maximize the spectral
efficiency of the IRS-assisted MIMO communication system by jointly optimizing the pre-
coding and passive beamforming, while the passive beamforming matrix needs to satisfy
the single-mode discrete constraint of the IRS reflection elements and the precoding con-
straint mentioned previously. The mathematical description of the optimization problem is
as follows:

max
F,Φ

log2 det
(

INr +
P

σ2NS
HH

e f f FFH He f f

)
(6a)

s.t.‖F‖2
F = Ns (6b)

Φ = diag
(

ejθ1 , ejθ2 , . . . , ejθM
)

(6c)

θm ∈ Γ, m = 1, 2, . . . , M. (6d)

where (6b) is the power constraint of the precoder, (6c) is the unit amplitude constraint of the
IRS reflecting elements, and (6d) is the discrete constraint of the IRS reflection elements. We
note that in the IRS with the discrete phase shifts setup, (6d) need not be considered. Since
the objective function is non-convex and (6c) is a non-convex constraint, the optimization
problem is a difficult multi-variate, mixed-integer nonconvex optimization problem. In
addition, the precoding matrix F is coupled with the passive beamforming matrix, which
makes the solution even more challenging.

3. Proposed Algorithm

In this section, we propose the MMSE-based algorithm for the ideal IRS with a continu-
ous phase shifts setup and the multi-start stepwise optimization algorithm for the practical
IRS with a discrete phase shifts setup, aiming to improve the system spectral efficiency and
reduce the computational complexity.

3.1. MMSE-Based Algorithm for the Ideal IRS Setup

For an IRS-assisted millimeter-wave MIMO system with continuous phase shifters,
the phase of the reflection elements of the IRS can be taken to any value of [0, 2π]. In this
subsection, in order to maximize spectral efficiency, we propose an MMSE-based algorithm.
Specifically, we first deflate the above problem into a simplified expression to facilitate
the solution, and then we use the special structure of the passive beamforming matrix to
derive its efficient closed-form solution based on the MMSE idea. Finally, the optimal pre-
coding matrix is derived by performing the SVD on the effective channel and water-filling
power allocation.

To obtain the desired passive beamforming matrix and precoding matrix, we let the
effective matrix He f f

H perform the following singular value decomposition:
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He f f
H = UΛVH = [U1 U2]

[
Λ1 0

0 0

][
VH

1

VH
2

]
= U1Λ1VH

1 (7)

where U1 ∈ CNr×rank(He f f ) is the semi-unitary matrix satisfying UH
1 U1 = I, V1 ∈ CNt×rank(He f f )

is the semi-unitary matrix satisfying VH
1 V1 = I, Λ1 = diag

(
λ2

1, λ2
2, . . . , λ2

rank(He f f )

)
∈

Crank(He f f )×rank(He f f ) is the diagonal matrix, and λ1 ≥ λ2 ≥ . . . ≥ λrank(He f f )
. Then, when

the passive beamforming matrix Φ is given, the ideal precoding matrix is obtained from
the following equation:

Fopt = V1Q
1
2 (8)

where V1 is the right singular matrix of He f f and Q = diag(p1, p2, . . . , pNs)CNs×Ns is the
power allocation matrix, where pi is the power allocated to the i-th data stream and
i = 1, 2, . . . , Ns, satisfying ∑Ns

i=1 pi = Ns and {pi}Ns
i=1 ≥ 0. Substituting Fopt into the spectral

efficiency objective function of Equation (5), we can obtain a spectral efficiency expression
containing only the passive beamforming matrix

SE = log2 det
(

INr +
P

σ2 Ns
HH

e f f FFH He f f

)
= log2 det

(
INr +

P
σ2 Ns

(U1Λ1VH
1 V1Q

1
2 (V1Q

1
2 )

H
(U1Λ1VH

1 )
H
)

(a)
= log2 det

(
INr +

P
σ2 Ns

Λ1QΛ1
H
)

(b)
=

Ns
∑

i=1
log2(1 +

Pλ2
i pi

Nsσ2 )

(9)

where (a) is due to UH
1 U1 = I, VH

1 V1 = I, and |I + AB| = |I + BA|, and (b) is due to the
particularity that both Λ1 and Q are diagonal matrices. According to Jensen’s inequality [19],
the following spectral efficiency deflation inequality exists over the downlink:

Ns

∑
i=1

log2(1 +
Pλ2

i pi

Nsσ2 )
(c)
≤ Ns log2(1 +

P∑Ns
i=1 λ2

i
N2

s σ2 ) = Ns log2(1 +
P
∥∥∥He f f

∥∥∥2

F
N2

s σ2 ) (10)

where (c) becomes the equality when, and only when, all singular values are equal. Inspired

by (10), we propose to improve the spectral efficiency of the system by optimizing
∥∥∥He f f

∥∥∥2

F
under the constraint of (6b) and (6c) so as to obtain an approximate efficient closed-form
solution of the reflection matrix Φ. We reformulate the problem as follows:

max
F,Φ

∥∥∥He f f

∥∥∥2

F
= Tr(He f f He f f

H) = Tr(HrΦGGHΦ−1HH
r )

s.t.(6b), (6c)
(11)

Notice that the problem is also a non-convex optimization problem, but the problem
can be transformed into a minimum mean square error problem between the optimal
solution and the actual solution. By using the special structure of its objective function, an
efficient approximate closed solution can be derived. The specific algorithm is as seen in
Equations (12)–(16).

Assuming that there is no amplitude constraint for the reflection elements of the IRS,
the optimal solution in Equation (11) is as follows:

(HrΦ)opt = WH
(1:Nr) = WH

opt (12)

where W(1:Nr) is the left (right) singular matrix corresponding to the largest Nr singular
value of GGH = WΣWH , and the problem can be transformed into the problem of minimiz-
ing the Euclidean distance between the optimal solution and the actual solution, namely,
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the minimum mean square error problem. From the matrix basics, it is known that the
Euclidean distance of the matrix can be expressed in the form of a trace, and the equivalent
objective problem is transformed into

min
Φ

Tr
[
(Wopt −Φ−1HH

r )(Wopt −Φ−1HH
r )

H]
(13)

Since the objective problem in Equation (13) is convex function with respect to Φ, the
non-convex optimization problem can be efficiently solved by transforming it into an easily
solvable convex problem. The specific solution is as follows:

Tr
[(

Wopt −Φ−1HH
r

)(
Wopt −Φ−1HH

r

)H
]

= Tr






w1 − e−jθ1 ĥH

r,1

w2 − e−jθ2 ĥH
r,2

w3 − e−jθ3 ĥH
r,3

w4 − e−jθ4 ĥH
r,4




w1 − e−jθ1 ĥH

r,1

w2 − e−jθ2 ĥH
r,2

w3 − e−jθ3 ĥH
r,3

w4 − e−jθ4 ĥH
r,4


H



=

M

∑
m=1

{(
wm − e−jθm ĥr,m

)(
wm − e−jθm ĥr,m

)H
}

=
M

∑
m=1

{(
wmwH

m + ĥr,m ĥH
r,m − e−jθm ĥr,mwH

m − ejθm wm ĥH
r,m

}

(14)

where wm is the m-th row vector of Wopt and ĥH
r,m is the m-th row vector of HH

r . Substituting
wm ĥH

r,m , αmejβm into Equation (14), the objective function of the MMSE problem can be
transformed into

M

∑
m=1

max
θm

(αme−j(βm+θn) + αmej(βm+θn)) (15)

It is easy to obtain the optimal solution for θm, as follows:

θ∗m = −βm = −arg(wm ĥr,m) (16)

Next, we use the obtained optimal passive beamforming matrix to optimize the
precoding matrix F. According to Equation (8), this problem is essentially a power allocation
problem, which can be solved by the water-filling algorithm [20]. The power allocation
process is similar to filling water into a pool of different grooves. Under the premise of a
certain total power (water amount), more transmit power is allocated to the sub-paths with
a large channel gain (deep grooves) and less transmit power is allocated to the sub-paths
with a small channel gain (shallow groove) so as to obtain the maximum value of the sum
of the spectral efficiency of each sub-path. Firstly, by introducing the Lagrange multiplier µ
into Equation (9), we can obtain

L(µ, pi) =
Ns

∑
i=1

log2(1 +
Pλ2

i pi

Nsσ2 ) + µ(Ns −
Ns

∑
i=1

pi) (17)

By taking the partial derivative of the transmit power pi for each sub-path and
making the partial derivative equal to 0, we can obtain the optimal solution of pi as

pi
opt = ( 1

µ ln 2 −
Nsσ2

Pλ2
i
)
+

, where (·)+ , max{·, 0}. The Lagrange multiplier µ can be ob-

tained by the power constraint, i.e., µ = 1

(Ns+
Ns
P ∑Ns

i=1
λ2

i
σ2 ) ln 2

. If we let Qopt be the optimal

power allocation matrix, we can obtain the optimal precoding matrix Fopt = V1(Qopt)
1
2 .

The above specific process is based on the MMSE scheme, and the algorithm flow is
summarized in Algorithm 1.
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Algorithm 1 MMSE-Based Algorithm

Input: Hr =
[
hr,1 hr,2 . . . hr,Nr

]H , G, P, σ
Initialization: feasible Φ = IM
1: Perform SVD on GGH as GGH = WΣWH

2: Compute Wopt = W(1:Nr)

3: for i = 1 : M, do
4: wm = Wopt(m, :)
5: ĥH

r,m
= HH

r (m, :)
6: θ∗m = −arg(wm ĥr,m)
7: end for
8: Compute Φopt = diag(ejθ∗1 , ejθ∗2 , . . . , ejθ∗M )
9: Compute He f f = HrΦoptG, and then perform SVD on it as He f f

H = U1Λ1VH
1

10: Water injection power allocation according to pi
opt = ( 1

µ ln 2 −
Nsσ2

Pλ2
i
)
+

and compute

Fopt = V1(Qopt)
1
2

Output: Φoptand Fopt

3.2. Multi-Start, Stepwise Optimization Algorithm for the Practical IRS Setup

For an IRS-assisted millimeter-wave MIMO system with discrete phase shifters, the
phase of the reflection elements of the IRS can only take a certain number of discrete values.
Therefore, the beamforming design of the IRS-assisted millimeter-wave MIMO system is
a discrete constraint optimization problem. An intuitive idea is to quantify the obtained
phase shift matrix for continuous constraints optimization to the nearest point in Γ based
on the algorithm in Section 3.1, which can be obtained according to the following formula:

θ
opt
m = argmin

θ∈Γ
|θ − θm

∗| (18)

where θm
∗ is the optimal element of the passive beamforming matrix based on the MMSE

algorithm in Section 3.1 and θ
opt
m is the corresponding optimal discrete phase shift value.

However, this method of continuous phase shift quantization is bound to cause non-
negligible errors at a low quantization accuracy, and so we must develop a new stepwise
optimization scheme.

In order to maximize the spectral efficiency, we transform the optimization problem
into a discrete phase search problem for IRS reflection elements. Although the classical
traversal search algorithm can find the optimal solution, its complexity grows exponentially
with the number of IRS reflection elements. For example, when the phase set contains
2b different phases, there are (2b)

M
different combinations of phase shift matrices. To

reduce the complexity, we propose a stepwise optimization algorithm, which splits the
overall design problem of the beamforming matrix Φ into the phase search problem of M
reflection elements. When a particular reflection element phase is searched, the phase of
other reflection elements is fixed, the selected phase is traversed from the set of optional
phases and its objective function is calculated, and the phase corresponding to the optimal
solution is selected.

Specifically, first of all, to avoid the algorithm from falling into a local optimal solution,
we randomly generate N sets of reflection matrices through the following logistic chaos
mapping sequence as the N starting points of the search, where the elements belong to
Γ =

{
0, ∆θ, . . . , ∆θ

(
2b − 1

)}
:

x(t + 1) = ux(t)(1− x(t)) (19)

where t denotes the number of chaotic iterations and u ∈ (3.6, 4] is the chaotic parameter [21]
which allows the mapping to be completely chaotic to make the search starting point
diverse and uniform. The search is performed from each initial point to find the respective
optimal solution, and then the best phase shift is selected from these optimal solutions as
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the final optimization result, which can reduce the probability of the algorithm falling into
local optimal solutions, to a certain extent.

Secondly, during the optimal phase search of the m-th reflection element, the phases
of the m + 1-th to M-th reflectors are fixed and correspond to the elements in Φ, and
the phase of the m-th reflector is selected by traversal from Γ =

{
0, ∆θ, . . . , ∆θ

(
2b − 1

)}
.

The phases of the first to the m− 1-th reflection elements are taken as the optimal values
obtained in the previous iteration so that the 2b − 1 phase matrix is constructed and the
corresponding spectral efficiency is calculated according to Equation (5), and the phase of
the m-th reflection element is selected as the phase value corresponding to the maximum
spectral efficiency. It should be noted that the design of the precoding matrix is referred to
in 3.1, and the water-filling algorithm is used to implement the adaptive power allocation,
which is not repeated here.

Finally, the optimal values of all reflection elements of Φ can be searched after M
iterations. The algorithm only needs to calculate 2b × M times. The specific steps are
summarized in Algorithm 2.

Algorithm 2 Multi-start, Stepwise Optimization Algorithm

Input: Hr =
[
hr,1 hr,2 . . . hr,Nr

]H , G, P, σ, b

Initialization: Γ =
{

0, ∆θ, . . . , ∆θ
(

2b − 1
)}

1: Based on the logistic chaos mapping to randomly generate N different starting points
Φ = [θ1, θ2, . . . θM] from Γ, the search process for each starting point is as set out in steps 2–9.
2: for i = 1 : M, do
3: for j = 1 : 2b, do
4: Set θi = Γ(j) and construct [θi+1, θi+2, . . . , θM] as [θi+1, θi+2, . . . , θM] = [θi+1, θi+2, . . . θM]
5: Set Φ(j) = diag(θ1, θ2, . . . , θM)
6: Compute He f f = HrΦ(j)G and perform SVD on it as He f f

H = U1Λ1VH
1

7: Water injection power allocation according to pi
opt = ( 1

µ ln 2 −
Nsσ2

Pλ2
i
)
+

and compute

Fopt = V1(Qopt)
1
2

8: Calculate SE(j), the spectral efficiency according to Equation (3)
9: end for
10: Select the maximum value of SEmax among all SE(j)

11: Set θi = Γ(max)
12: end for
13: Φopt = diag

(
ejθ1 , ejθ2 , . . . , ejθM

)
Output: Φopt

4. Numerical Simulation Analysis

In this section, we simulate and analyze the beamforming optimization algorithm for
the ideal IRS-assisted millimeter-wave MIMO system with a continuous phase shifts setup
and the practical IRS-assisted millimeter-wave MIMO system with a discrete phase shifts
setup, respectively, to verify the effectiveness of the algorithms proposed in this paper. The
assumptions about ideal and practical IRSs are shown in Table 1. The main simulation
parameters are set out in Table 2. MATLAB R2020a is used for simulation, and the results
are based on 1000 random channel samples.

Table 1. The assumptions about ideal and practical IRSs.

Assumption Ideal IRS Practical IRS

Amplitude of IRS reflection element 1 1

Phase of IRS reflection element θm ∈ [0, 2π] θm ∈
{

0, ∆θ, . . . , ∆θ
(

2b − 1
)}

Number of bits quantized (b) none [1, 5]
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Table 2. The main simulation parameters.

Parameter Value

Number of clusters (Ncl) 3

Number of propagation paths per cluster (Nray) 2

Azimuth angles of arrival (AoA)
Azimuth angles of departure (AoD)
Zenith angles of departure (ZoD)

Uniform [0, 2π]

Number of transmitter antennas 16

Number of receiver antennas 4

Number of data streams 4

Spacing of BS antennas 0.5λ

Spacing of reflection elements 4λ

Average noise power 1

Interval of SNR [−10, 10]

4.1. Simulation Results for the Ideal IRS Setup

For the ideal IRS with a continuous phase shifts setup, we compare the MMSE-based
scheme proposed in this paper with the scheme of randomly generated IRS phases, the
scheme of fixed power allocation (FPA), and the scheme of maximizing total channel power
(Ctpm) [11] to verify the superiority of the algorithms proposed in this paper.

Figure 2 shows the SE of different algorithms with the increasing SNR in an IRS-
assisted MIMO system with a continuous phase shifts setup, where Nt = 16, M = 64,
Nr = Ns = 4, and the angle spread is 10◦. It can be seen from Figure 2 that the spectral
efficiency of all four schemes improves as the SNR increases. The spectral efficiency of
the scheme proposed in this paper is improved by about 27% over that of the scheme of
randomly generated IRS phases (random) under the same SNR condition, indicating that
the result of the beamforming optimization affects the spectral efficiency of the system.
Since the water-filling power allocation algorithm is an adaptive allocation of transmit
power based on channel conditions, the proposed scheme is also superior to the FPA
scheme. The Ctpm scheme obtains the local optimal solution by iteratively optimizing one
reflection element and fixing other reflection elements through alternate optimization. The
proposed scheme significantly improves the spectral performance, but at the expense of a
certain complexity when the number of reflection elements, M, is large.
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Figure 3 presents the SE of the different algorithms with the increasing IRS reflection
elements in an IRS-assisted MIMO system with a continuous phase shifts setup, where
Nt = 16, Nr = Ns = 4, SNR = 0 dB, and the angle spread is 10◦. Apparently, as the number
of reflection elements increases, the spectral efficiency of all schemes will improve. When
the reflection element number is larger, the performance superiority of the proposed scheme
will be more significant, and a higher gain can be achieved because each reflection element
is designed to minimize the mean square error to obtain the approximate optimal solution.
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Figure 4 shows the SE of the different algorithms with the increasing angle spread
in an IRS-assisted MIMO system with a continuous phase shifts setup, where Nt = 16,
M = 64, Nr = Ns = 4, and SNR = 0dB. It is well known that millimeter-wave channels are
sparse, and a sufficient ranking of BS–IRS channels can be guaranteed through deterministic
scatterers only when the angle expansion is sufficient. The simulation results show that
with the increase in the angle spread, the spectral efficiency will improve because a small
angle spread and a small number of scatterers will lead to a lack of channel ranking, which
will lead to the degradation of the MIMO system’s performance. Under the same angle
extension condition, the proposed scheme is always optimal.
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4.2. Simulation Results for the Practical IRS Setup

For the practical IRS with a discrete phase shifts setup, we compare the multi-start,
stepwise optimization algorithm proposed in this paper with the scheme of the randomly
generated IRS phases, the MMSE-based continuous phase shift quantization scheme, and
the local search (LS) scheme [22] at different bits to verify the superiority of the algorithms
proposed in this paper.

As shown in Figure 5, we compare the SE of the different algorithms versus the SNR
in an IRS-assisted MIMO system with a discrete phase shifts setup, where Nt = 16, M = 64,
Nr = Ns = 4, the angle spread is 10◦, and the number of bits quantized is 1 or 2. First, it
can be seen that the spectral efficiency of the reflection elements using a 1-bit phase shifter
is significantly higher than that of the random IRS phase scheme, indicating that even
beamforming optimization using a very coarse phase shifter can improve the system’s
performance. Second, the use of a 2-bit phase shifter gives better results than the use
of a 1-bit phase shifter because there is a coarse discrete phase shift and the multipath
signal from the BS cannot be perfectly aligned in phase at the receiver, resulting in power
loss. Finally, the multi-start, stepwise optimization algorithm proposed in this paper
obtains higher gains compared to both the LS algorithm and the MMSE-based continuous
quantization scheme.
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In Figure 6, we compare the SE of the different algorithms versus the IRS reflection
elements in an IRS-assisted MIMO system with a discrete phase shifts setup, where Nt = 16,
Nr = Ns = 4, the angle spread is 10◦, the SNR = 0dB, and the number of bits quantized is
1 or 2. All the schemes show that the SE is improved as the number of reflecting elements,
M, increases, but the rate of increase tends to be slow. When the number of reflecting
elements is large enough, the high accuracy of the finite resolution phase can only be of a
significant advantage.

Figure 7 depicts the SE of the different algorithms with the different number of bits
quantized in an IRS-assisted MIMO system with a continuous phase shifts setup, where
Nt = 16, M = 64, Nr = Ns = 4, and the angle spread is 10◦. As the number of quantization
bits increases, the SE will also improve, but the improvement effect after the accuracy
reaches 3-bit is not obvious, which reveals that we only need to make the resolution to no
more than 3-bit in engineering. If the accuracy is too high, it will sacrifice a certain cost
overhead and the enhancement effect will be insignificant.
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4.3. Computational Complexity Analysis

The computational complexities of the proposed schemes are presented in this sub-
section. For the ideal IRS setup, in the case of M � Nt ≥ Nr, the complexity of some
additions can be negligible, and the complexities of the MMSE-based algorithm can be sim-
ply expressed as O(M2(M + Nt)). The computational complexity of the Ctpm algorithm
is O(NtNr(M + Nr) + NtNr Mγ), where γ represents the number of iterations. It indicates
that when M is large enough, the computational complexity of the MMSE-based algorithm
will be large. For the practical IRS setup, the computational complexity of the classical
traversal search algorithm is O

(
(2b)

M
)

, which grows exponentially with the number of IRS
reflection elements. Compared to classical traversal search algorithm, the computational
complexity of the multi-start, stepwise optimization algorithm and LS algorithm is only
O
(

2b M
)

. However, the performance of the multi-start, stepwise optimization algorithm is
slightly better than that of the LS algorithm.
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5. Conclusions

In this paper, we propose a beamforming optimization algorithm for a symmetry-
based, IRS-assisted millimeter-wave point-to-point MIMO system, with the aim of im-
proving the system’s SE, while both the IRS with a continuous phase shifts setup and the
IRS with a discrete phase shifts setup are investigated. For the IRS with a continuous
phase shifts setup, a simplified approximate spectral efficiency optimization objective
problem was obtained through Jensen’s inequality scaling. The closed-form solution of
the simplified problem was solved based on the MMSE algorithm and the optimal pre-
coding was derived by applying SVD and water-filling power allocation. The simulation
results show that our proposed MMSE-based scheme can achieve a better SE performance
with moderate complexity compared with the random scheme, Ctpm scheme, and FPA
scheme. For the IRS with a discrete phase shifts setup, we propose a multi-start, stepwise
optimization algorithm to iterate the optimal discrete phase of the IRS, step-by-step. The
extensive simulation results show that, compared with the random scheme, continuous
phase-shift quantization scheme, and LS scheme, our beamforming scheme greatly reduces
the complexity while improving the SE. In addition, it is shown that the IRS with a 3-bit
quantizer can achieve a sufficient gain in SE with little performance degradation.
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