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Abstract: The study of wear that occurs during operation in the wheel–rail assembly is a difficult
process to analyze. The phenomena that accompany the wear process are extremely complex and
involve many factors, which vary greatly over different periods of time and at different times of
wheel–rail contact. Estimating the behavior of the system and its wear in operation is difficult to
obtain. However, for common engineering applications, for which the determining factors, such as
road profile, load, skid, speed and weather conditions, are known, useful results can be obtained by
laboratory tests or by numerical simulation. The article aims to model the complex phenomena that
take place in the rail wheel system, taking into account the impact that most essential operational
factors have. For this, the Finite Element Method (FEM) is used, thus, trying to explain the wear
mechanisms of the wheel–rail system. The obtained results are verified in the laboratory. The main
observation in the paper refers to the fact that in the areas of maximum stress and deformation,
cracks appear at the micro scale. FEM proved to be a method that can predict the appearance of
these microcracks, the experimental results validating the numerical experiments. The research offers
results that can prove to be of great importance in practice, for the analysis and improvement of
railway safety.

Keywords: wear; microcontact rolling–sliding; FEM; tribological test; microtomography

1. Introduction

The system wheel–rail is a very complex system and the study of wear and the effect of
different factors on this is a difficult process. Constant change and overlapping of various
factors in a very short time represents reasons why the study of wear is hard to conduct [1,2].
However, thanks to the conducted simulation tests in the wheel–rail combination, it was
possible to determine the wear mechanism depending on the limitations existing on the
railroad track, e.g., load, slippage and speed, as well as atmospheric conditions, including
the medium [3–8].

1.1. Influence of the Climate on Rolling–Sliding Contact

In the following, we try to offer a short synthesis on how climate particularities can
influence the proposed phenomena, i.e., the rolling–sliding contact and, consequently, the
wear magnitude.

Water presence in the wheel–rail contact is undoubtedly an important operating factor
in the mechanism of wear. Thus, for the existence of water in the wheel–rail contact in
Poland, according to the Central Statistical Office (GUS), from April to October, there
are as many as 130 days of rainfall, i.e., the annual sum of rainfall is within the limits of
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500–700 mm, which may be calculated as approximately 500–700 L per m2. In most parts of
Europe, the annual precipitation is 500–800 mm (500–800 L per m2). In mountain areas, it is
higher—usually 1000–2000 mm—also in the case of ranges and coasts particularly exposed
to westerly winds from the ocean or seas 3000–4000 mm. About 500 mm and below falls on
the south-eastern and eastern parts of the Balkan Peninsula, Apenian and Iberian Peninsula,
the central and north-eastern parts of the Scandinavian Peninsula, in southern Ukraine and
in the mountain-sheltered basins (in Old Castile even below 250 mm). In the European
part of Russia, in the central belt, precipitation is mostly 400–600 mm and decreases toward
the northeastern extremities to less than 300 mm, and in the Transcaspian Lowland, it
falls even to 100–200 mm. In summer, in southern Europe, when it is overrun by tropical
air masses, there is a dry season; precipitation occurs only in autumn and winter, and its
maximum falls between September and December, only in northern Spain (in May). In the
rest of Europe, precipitation is more evenly distributed over the year. In the west, cyclonic
autumn–winter precipitation is more abundant, with the maximum between October and
December. In Eastern Europe, Central Europe and the Scandinavian Peninsula, separated
from the Atlantic by mountains, the summer convective precipitation is more effective.
Their maximum falls in June (in the south of this part of Europe), in July (in the central belt)
or in August (on the Scandinavian Peninsula) [9–12]. Attention should also be paid to the
presence of water on the rolling surface of the railroad rails in the winter season, which is
formed from standing snow. Thus, the influence of water has an important effect on the
tribological behavior of the wheel–rail association, as it can penetrate into the resulting
cracks and crevices in the surface layer of RCF (Figures 1 and 2) [13–19].
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Figure 1. Delaminative nature of wear: (a) rolling surface of railroad rail, (b) wear model according
to Suh’s flake wear theory.
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Some data give us a picture of the level of precipitation in different parts of the world.
In the USA, the level of precipitation is 767 mm (based on data collected by weather station
provided by NOAA National Climatic Data Center). In Asia, precipitation is 2000 mm in
the South, between 2000 and 3000 mm in the Southeast and between 7600 and 12,700 mm
in the East (Britanica). In South America, the precipitation varies from 610 to 1420 mm per
year and in Africa, less than 1000 mm per year (Britanica).

Of course, depending on the geographical area, connected with its local climate specific
state, the magnitude of the water presence will be changed and, consequently, the wear
process will be influenced. In the following, we will detail this very significant influence
of the water’s presence in the contact area on the wear magnitude, as well as on the
lifetime diminishing.

1.2. Wear Presence Particular Influence on the Contact Area

To analyze the wear of the wheel–rail system, it is necessary to know what is the
impact of the essential operational factors. Knowing these FEM factors becomes a very
suitable method of analysis; within the FEM model, there is the possibility to introduce, as
input data, the factors that influence the wear of the system. It is, thus, possible to obtain
the stress field, which has a major influence on the wear phenomena. Thus, the areas where
micro-cracks appear can be identified.

One of the many processes studied is the wear mechanism is the presence of a lubri-
cating medium. For such a contact, apart from the effect of pitting and other types of wear,
there is a phenomenon of fatigue crack propagation due to the spreading action of the fluid,
which starts from the surface and leads inside to the material [20–27]. The cracking of the
material inside the rail is due to stress propagation. This process is closely related to the
so-called fluid confinement effect, whereby the fluid present in the crack is confined as it
passes through the contact area. The fluid closure occurs as a result of the short-circuiting
of the crack edges forced by the contact load when the walls inside the crack are bifurcated.
It is assumed that at the moment of the crack edge closure (Figure 3), there is fluid between
its bifurcated walls below the edge, which entered the crack interior from the external
contact surface. When the crack is closed, there is a high fluid pressure inside the crack,
which acts on the walls of the crack causing the crack to enlarge [28,29].

Water can penetrate through cracks and pores and, as a result, will increase the length
of the subsurface fracture (Figures 4 and 5).

In Figures 3 and 4, we observed the cross-section perpendicular to the rail surface
using intrusion material.

Rolling/sliding phenomena have long been studied due to the importance of the
phenomenon in engineering applications. Numerous results have been published in older
studies by various researchers [30–39].
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The present study provides an explanation of the wear mechanism using FEM simula-
tion tests.
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2. Materials and Methods

Numerical simulations using a computer microtomograph will allow locating the
places most exposed to wear and damage depending on various operating conditions.

The wear phenomenon is a complex phenomenon; the wear residues have size and
shape determined by the essential factors that intervene in the contact between the rail and
the wheel. They may depend on the condition and properties of the surface layer of the
materials in contact or the type of heat treatment of the material. For a pertinent analysis,
all these factors and their role in the interaction that takes place must be considered [40–42].

One of the tasks undertaken in this paper is an attempt to explain the cause-and-effect
relationship of operating parameters to the wear of the wheel/rail contact zone. To obtain
a faithful reflection of the friction surface, the following procedure was used.

Data imported from a computer microtomograph (Figure 6) were processed using free
software, FIJI. The images obtained under the microtomograph were saved in a lossless
format (*.raw) in (*.stl) format. Using GMSH software, the geometric model allows you to
generate a mesh and export to an MES solver (MSC.Marc). Figure 7 presents the stages of
the procedure.

The subject of numerical simulations is analysis in the field of stresses in the contact
zone for the real contact surface in the following sets of tests:

(a) Analysis of friction surface (deformable);
(b) Analysis of friction surface (deformable) and rigid ideal surface (rigid).

The analyzed model was a section of the friction surface with a width of 1.9 mm
and a height not exceeding 16 µm. The tests were performed for 2D and 3D models. The
MSC.Software/Marc system was used for numerical analysis. Non-linear calculations were
performed. Rail material with the following material coefficients was assumed: Young’s
modulus E = 210,000 MPa and Poisson’s ratio ν = 0.3 and a density ρ = 7900 kg/m3. The
detailed boundary conditions are illustrated in Figure 7. In the research, 453 (tri3) and 1942
(quad4) elements were used to build the model. In order to compare the obtained results, a
model with a real contact surface was used (Figure 8).
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3. Results

From the experiments, we determined the contact area. As a result of the FEM analysis,
the results of simulation tests are presented in Figure 9. Table 1 presents a summary of the
obtained results.
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Table 1. 2D model: reduced Huber–Mises stresses [MPa].

Worn Surface

Rigid/Deformable Deformable/Deformable

3158 2352

In a first stage, tribological tests were performed on the samples. The specimens
were then analyzed microscopically to explain the main causes of the wear mechanism.
Based on the microscopic analysis, discrepancies between dry and wet contact could be
examined. Figure 10 shows the illustrative surfaces after performing the tribological test.
During the tests, it was observed that there are discrepancies in the wear process on the
friction surface. The cracks that are found to appear in the case of wet contact cause ragged
flakes protruding upwards. At dry contact, the phenomenon of wear pitting does not
occur (Figure 10a,b).
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If the friction surface in a wet contact shows roughness and cracks, it leads to further
propagation of cracks. If the water pressure is high, this can lead to the development of
large craters on the surface. Figure 11 shows the wear mechanism in case of rolling/sliding
contact between the wheel–rail.
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Figure 11. The wear mechanism in rolling–sliding contact: 1—railway rail, 2—roughness, 3—liquid
reservoir, 4—railway wheel; (a,b) roughness profile, (c) filling the crater with liquid, (d) appearance
the wear debris or roughness, (e) closing the fluid in the gap, (f) pressing the wheel against the surface.

The mechanism of wear and propagation of fatigue cracks is shown in Figure 8.
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4. Discussion and Conclusions

Numerical analyses allow one to explain the mechanism of wear and determine local
stress values. FEM proved to be a useful tool to identify the areas of special wear hazard.
FEM can be used to explain the mechanism of wear in selected operational conditions.

In the paper, we modeled the real contact area and the relationship between the
analyzed friction surface and its susceptibility to mechanical damage.

The following conclusions can be formulated:

- Destruction of the surface layer in rolling–sliding contact takes the form of the delami-
nation wear mechanism in the form of the flake wear debris,

- Propagation of cracks is on the depth and from the surface, research has proven this,
- Numerical analysis (FEM) allows one to explain the mechanism of wear and determine

the local stress values,
- The obtained results of operational investigations prove that cracks and spallings of

the micro and macro scale appear in areas with maximum stress and deformation,
- FEM is the right tool used to identify the areas of special wear hazard; in addition, this

method also helps to explain the wear mechanisms and determine the characterization
of wear, depending on the selected operational conditions,

- The depth of residual stress can be determined and correlated with the thickness of
the obtained flake wear debris appearing on the surface,

- It is advisable to monitor the execution of the state of the mobile device surface layer
for the diagnostic criteria proposed in this paper.
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