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Abstract: In this paper, a class of controllable nonlinear stationary systems of ordinary differential
equations with an account of external perturbations is studied. The control satisfies given restrictions,
and there is a fixed delay in it. An algorithm to construct a control transferring a system from a
certain initial state to an arbitrary neighborhood of the origin is proposed. The algorithm has both
numerical and analytical stages and is easy to implement. A constructive sufficient Kalman-type
condition of possibility of the transfer is derived. The algorithm efficiency is demonstrated by solving
a robot manipulator controlling problem.
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1. Introduction

The mathematical theory of control considers, among others, the problems of con-
structing control functions of different classes, which provide the finite-time transfer of
a control object from a given initial state to a desired final state. Mathematically, the
object behavior is described with a controlled system of differential equations for which
a boundary value problem (BVP) is formulated. Particularly important are problems of
stabilization, which can be considered as BVPs for controlled systems over an infinite time
interval. A significant amount of articles have researched BVPs with continuous, piecewise
differentiable, piecewise continuous, pulse, or just measurable controls for both linear and
nonlinear ordinary differential equation (ODE) systems.

It should be noticed that when computers and navigation systems are used to form
a control signal, certain delays arise, since it takes some time for the information about
the object state and the control action to arrive and to be processed. Consequently, more
complicated BVPs with time delays in the right-hand side of an ODE system describing the
behavior of the control object have attracted the attention of researchers. Many engineering
solutions have been proposed taking various delays into account (e.g., [1–7] and many
others). Since the late 1960s, many researchers have studied BVPs for linear stationary,
nonstationary linear, bilinear, semilinear, and nonlinear systems of ordinary differential
equations with delayed control and/or system state. In recent years, the problem of con-
trollability has been considered for impulsive [8], stochastic [8–10], integro-differential [11],
and fractional [12,13] dynamic systems with delays.

The study of BVPs over finite time intervals for such types of systems includes finding
necessary and sufficient conditions of complete, local, constrained, relative, or approximate
controllability for linear [14–22], bilinear [23], semilinear [24–26], and nonlinear [27–45] sys-
tems of differential equations; studying and estimating the attainability domain (see [20,46,47]);
and developing methods to construct controls under which the trajectory connects the
given points in the phase space (see [20,45]). For linear stationary systems, there exist
criteria of complete controllability in terms of the matrices of the right-hand side, which
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take into account a time delay in control [14,15] or several delays in the system state [31].
Necessary and sufficient conditions of controllability and relative controllability in the
class of linear nonstationary systems with single and multiple delays in the control and
phase state in terms of the matrices of the system right-hand side and the transition matrix
were presented in references [17–21]. Sufficient conditions of controllability, and as well
relative and constrained controllability of bilinear and semilinear systems with delay in
controls were derived in [20,22–26,35]. In [24], the sufficient condition of controllability for
semilinear system with lumped (also called discrete) and distributed delays in the state
variables was given. References [27–30,32–34,36–44,46,48,49] considered the conditions of
controllability, zero controllability, and relative and approximate controllability of nonlinear
systems of ODEs with constant and variable delays taking into account control constraints
and external perturbations.

Proofs of the relevant theorems are based on the perturbation theory methods [29,30,36,37,39,43]
and the Schauder and Darboux fixed points theorems [27,28,32–35,38,40–42,44]. In [46],
a nonlinear system of differential equations with delayed control was considered, and
the condition of a local BVP solution existence in the class of synthesizing controls was
obtained. In [48], the condition of approximate controllability was obtained with the use of
spectral analysis. In the book [20], BVPs for a semilinear ODE system with delayed control
were considered, and reference [45] dealt with a similar problem for a difference system.
Both problems were solved using iterative methods.

Today, researchers extensively study BVPs for linear and some particular types of
nonlinear controllable systems. However, for general nonlinear controllable systems the
theory of solving boundary value problems with delayed control functions is not yet
sufficiently developed, and this task encounters many difficulties. It should be mentioned
that among the numerous publications concerning BVPs for controlled systems of delay
differential systems, there are only few papers devoted to the algorithms for constructing
the control functions.

The present paper aims to develop an algorithm to construct a norm-bounded control
function that, in the presence of external perturbations and a delay in the control, transfers
nonlinear stationary ODE systems from a sufficiently wide class into an arbitrary small
neighborhood of the original coordinates from a given point in its vicinity. We achieve
this by reducing the original problem to the stabilization problem of linear nonstationary
systems of a special kind and finding the solution of an initial value problem for an
additionally constructed auxiliary ODE system. We present a constructive easily verifiable
local controllability condition of Kalman type suitable for a much wider class of nonlinear
systems controlled in the presence of perturbations and delays in the control. Furthermore,
we develop an easily implementable and numerically stable algorithm to construct the
required control and the phase coordinate function corresponding to it. In addition, we
provide the boundaries on the initial state, the perturbation, and the maximal delay, for
which the solution existence is guaranteed for the given control restrictions. The algorithm
can be easily implemented since its most time-consuming procedures (stabilization problem
solution, auxiliary system construction, and return to the original variables) are made
analytically with a computer algebra package. We demonstrate the work of the presented
algorithm solving an example problem of a single-link robotic manipulator control.

In the present paper, the method developed and applied in [50–53] to various systems
is modified for systems with a delayed control.

2. Problem Formulation

Consider a nonlinear stationary controlled ODE system

ẋ(t) = f (x(t), u(t− h)) + g, (1)



Symmetry 2022, 14, 1595 3 of 15

where x = (x1, . . . , xn)T ∈ Rn, and the control function u = (u1, . . . , ur)T ∈ Rr such that
r ≤ n. Time t is scaled to belong to [0, 1], the right-hand side

f ∈ C4n(Rn ×Rr;Rn), f = ( f1, . . . , fn)
T , (2)

and satisfies
f (0, 0) = 0. (3)

g = (g1, . . . , gn)T ∈ Rn is the constant vector of perturbations. The delay in the control is
h > 0.

Let the matrix S = (B, AB, . . . , An−1B) with

A =

{
∂ f
∂x

(0, 0)
}

, B =

{
∂ f
∂u

(0, 0)
}

,

satisfy
rank S = n. (4)

The control norm is considered to be bounded by some constant U > 0:

‖u‖ < U. (5)

Problem 1. Find u(t) ∈ C1([0, 1]) and x(t) ∈ C1([0, 1]) satisfying (1) and the following conditions:

• Initial condition:
x(0) = x0, x0 = (x0

1, . . . , x0
n)

T , (6)

• Stabilization condition: for any small ε > 0 there exists some moment tε satisfying 1− tε < ε
such that

‖x(tε)‖ ≤ ε, (7)

• The control starts at the initial time:

u(t) ≡ 0, t ∈ [−h, 0]. (8)

Let us formulate the main theorem of the paper.

Theorem 1. Let the function f in (1) satisfy (2)–(4). Then, for any ε > 0, there exist constants
εx > 0, εg > 0 and εh > 0, such that for any initial point x0 ∈ Rn: ‖x0‖ < εx, any perturbation
g ∈ Rn: ‖g‖ < εg, and any delay h ∈ (0, εh), there exists a solution of Problem 1, and it can be
found by, first, stabilizing a linear nonstationary system with exponential coefficients and, second,
solving an initial value problem for an auxiliary ODE system. Both systems are of dimension n + r.

3. Auxiliary System

We change time t to τ such that

t = 1− e−ατ , τ ∈ [0,+∞), (9)

with α > 0 being a constant to define. Correspondingly, (1) obtains the form

dξ

dτ
= αe−ατ f (ξ, υ) + αe−ατ g, (10)

where the auxiliary variable ξ(τ) = (ξ1, . . . , ξn)T = x(t(τ)), and the control υ(τ) =
(υ1, . . . , υr)T = u(t(τ)).

Consider a control function ῡ(τ) = u(t(τ) − h), τ ∈ [0,+∞). Obviously, ῡ(τ) ∈
C1([0,+∞)).
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Problem 2. Find a control vector ῡ(τ) ∈ C1([0,+∞)) and a vector function ξ(τ) ∈ C1([0,+∞))
satisfying (10) and the conditions

• ξ(0) = x0,
• For any ε > 0, there exists τε > 0, e−ατε ≤ ε, such that ‖ξ(τε)‖ ≤ ε,

• ῡ(τ) ≡ 0 for τ ∈
[
0,− 1

α ln(1− h)
]
.

Remark 1. Having a solution to Problem 2, one easily can obtain the corresponding solution of
Problem 1 with tε = 1− eατε .

Let us introduce new denotations

|l| = ∑n
i=1 li, l! = l1! · . . . · ln!,

|m| = ∑r
i=1 mi, m! = m1! · . . . ·mr!,

D|l|+|m| =
∂|l|+|m|

∂xl1
1 . . . ∂xln

n ∂um1
1 ∂um2

2 . . . ∂umr
r

,

f |0 = f (0, 0).

(11)

Taylor expansion of f about (0, 0) gives, with use of (2) and (3), the following form of (10):

dξi
dτ

= αe−ατ

[
gi +

n

∑
j=1

∂ fi
∂xj

∣∣∣∣∣
0

ξ j +
r

∑
j=1

∂ fi
∂uj

∣∣∣∣∣
0

υj +
1
2

(
n

∑
j,k=1

∂2 fi
∂xj∂xk

∣∣∣∣∣
0

ξ jξk

+
r

∑
j,k=1

∂2 fi
∂uj∂uk

∣∣∣∣∣
0

υjυk + 2
n

∑
j=1

r

∑
k=1

∂2 fi
∂xj∂uk

∣∣∣∣∣
0

ξ jυk

)
+ · · ·

+ ∑
|l|+|m|
=4n−1

D|l|+|m| fi|0
ξ l1

1 . . . ξ ln
n υm1

1 . . . υmr
r

l!m!

+ ∑
|l|+|m|
=4n

D|l|+|m| fi(θiξ, θiυ)
ξ l1

1 . . . ξ ln
n υm1

1 . . . υmr
r

l!m!

,

(12)

θi ∈ [0, 1] for i = 1, . . . , n. We consider the system under the boundary Cξ > 0:

‖ξ(τ)‖ < Cξ , τ ∈ [0,+∞). (13)

Now, we make several shifts of functions ξi(τ): from ξ
(0)
i = ξi to ξ

(1)
i to ξ

(2)
i and so

on to ηi = ξ
(4n)
i , i = 1, . . . , n. Our goal is to make the norms of those terms in (12), which

do not explicitly contain the components of ξ and υ, become of order O(e−4nατ‖g‖) as
τ → ∞ and ‖g‖ → 0. It should be said, that 4n shifts is a sufficient but not a necessary
amount. Depending on the nonlinearity, fewer transformations may be enough. The test
from Section 6 gives such an example.

First, transformation is made according to

ξi(τ) = ξ
(1)
i − e−ατ gi, i = 1, . . . , n. (14)
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After substitution of (14), the system (12) takes the form

dξ
(1)
i

dτ
= − αe−2ατ

n

∑
j=1

∂ fi
∂xj

∣∣∣∣∣
0

gj +
1
2

αe−3ατ
n

∑
j=1

n

∑
k=1

∂2 fi
∂xj∂xk

∣∣∣∣∣
0

gjgk

+ αe−ατ
n

∑
j=1

∂ fi
∂xj

∣∣∣∣∣
0

ξ
(1)
j − αe−2ατ

n

∑
j=1

n

∑
k=1

∂2 fi
∂xj∂xk

∣∣∣∣∣
0

gkξ
(1)
j

+ αe−ατ
r

∑
k=1

∂ fi
∂uk

∣∣∣∣
0
υk − αe−2ατ

n

∑
j=1

r

∑
k=1

∂2 fi
∂uk∂xj

∣∣∣∣∣
0

gjυk

+
1
2

αe−ατ

(
n

∑
j=1

n

∑
k=1

∂2 fi
∂xj∂xk

∣∣∣∣∣
0

ξ
(1)
j ξ

(1)
k

+ 2
n

∑
j=1

r

∑
k=1

∂2 fi
∂xj∂uk

∣∣∣∣∣
0

υkξ
(1)
j +

r

∑
j=1

r

∑
k=1

∂2 fi
∂uj∂uk

∣∣∣∣∣
0

υjυk

)
+ . . .

+ αe−ατ ∑
|l|+|m|=4n−1

D|l|+|m| fi|0
l!m!

υm1
1 . . . υmr

r ×
n

∏
j=1

(ξ
(1)
j − e−ατ gj)

lj

+ αe−ατ ∑
|l|+|m|=4n

D|l|+|m| fi(θiξ, θiυ)

l!m!
υm1

1 . . . υmr
r ×

n

∏
j=1

(ξ
(1)
j − e−ατ gj)

lj

(15)

for i = 1, . . . , n. From Problem 2 and (14), it follows that

ξ
(1)
i (0) = x0

i + gi, i = 1, . . . , n. (16)

Notice that the terms in (15), which do not explicitly contain ξ(1) and υ components,
decay as O(e−2ατ‖g‖) when τ → ∞ and ‖g‖ → 0 in the area (5), (13).

A second shift is made according to

ξ
(1)
i (τ) = ξ

(2)
i + e−2ατ ϕ

(2)
i (g), i = 1, . . . , n,

ϕ
(2)
i (g) =

1
2

n

∑
j=1

∂ fi
∂xj

∣∣∣∣∣
0

gj, ϕ
(2)
i (0) = 0.

(17)

We leave the long algebra outside the scope of this paper. The complete details of the
transformations can be found in [50–53], where the same idea is applied to different control
problems. However, for the sake of completeness, we briefly present some derivations from
the mentioned papers here.

The initial conditions after the second shift take the form

ξ
(2)
i (0) = x0

i + gi − ϕ
(2)
i (g), ϕ

(2)
i (0) = 0, i = 1, . . . , n. (18)

Compared to (15), after the second shift, the norms of the terms, which do not include the
components of ξ(2) and υ explicitly, decay as O(e−3ατ‖g‖) when τ → ∞ and ‖g‖ → 0 in
(5), (13).

By induction, at the k-th step we need to apply a transformation according to

ξ
(k−1)
i (τ) = ξ

(k)
i (τ) + e−kατ ϕ

(k)
i (g), ϕ

(k)
i (0) = 0, (19)

with some suitable ϕ
(k)
i for i = 1, . . . , n.

After 4n transformations of the form (19), the system is written in terms of η = ξ(4n),
υ. In its right-hand side we now collect all the terms to six groups:

• Pη and Qυ have linear terms in η and υ, respectively, with coefficients e−kατ , k = 1, . . . , n;
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• Rη = (Rη
1 , . . . , Rη

n)
T has linear terms in η with coefficients e−kατ , k ≥ n + 1; addition-

ally, it contains similar terms to the last sum regardless of whether their coefficients
are nonlinear;

• Rυ = (Rυ
1 , . . . , Rυ

n)
T has linear terms in υ with coefficients e−kατ , k ≥ n+ 1; additionally,

it contains similar terms to the last sum regardless of whether their coefficients are
nonlinear;

• Rnl = (Rnl
1 , . . . , Rnl

n )T has all nonlinear terms in η and/or υ;
• R0 = (R0

1, . . . , R0
n)

T has all terms free of η and υ.

The system takes the form

dη

dτ
= Pη + Qυ + Rη(η, υ, τ) + Rυ(η, υ, τ) + Rnl(η, υ, τ) + R0(η, υ, τ), (20)

where
P = αe−ατ(A + e−ατ P2(g) + · · ·+ e−(n−1)ατ Pn−1(g)),

Q = αe−ατ(B + e−ατQ2(g) + · · ·+ e−(n−1)ατQn−1(g)).

The initial data are

η(0) = x0 + g− ϕ(2)(g)− ϕ(3)(g)− · · · − ϕ(4n)(g), (21)

with ϕ(i) = (ϕ
(i)
1 , . . . , ϕ

(i)
n )T , ϕ(i)(0) = 0, i = 1, . . . , 4n.

We introduce an auxiliary control function ω(τ) referred to υ(τ) as

dυ(τ)

dτ
= ω(τ), ω = (ω1, . . . , ωr)

T . (22)

Choosing
υ(0) = 0 (23)

we write (20) and (22) and the initial values (21) and (23) as

dη̄

dτ
= P̄η̄ + Q̄ω + R̄η(η, υ, τ) + R̄υ(η, υ, τ) + R̄nl(η, υ, τ) + R̄0(η, υ, τ), (24)

η̄(0) = (η(0), 0, . . . , 0)T , (25)

with η̄ = (η, υ)T
n+r×1, where with O being a zero matrix, and I being an identity matrix,

P̄ =

(
P Q

Or×n Or×r

)
, Q̄ =

(
On×r
Ir×r

)
,

R̄η = (Rη
1 , . . . , Rη

n, 0, . . . , 0)T
n+r×1, R̄υ = (Rυ

1 , . . . , Rυ
n, 0, . . . , 0)T

n+r×1,

R̄nl = (Rnl
1 , . . . , Rnl

n , 0, . . . , 0)T
n+r×1, R̄0 = (R0

1, . . . , R0
n, 0, . . . , 0)T

n+r×1.

It follows from (19), (17), and (14) that we can bound ‖η‖ and ‖g‖with some constants
Cη > 0 and Cg > 0:

‖η‖ < Cη , ‖g‖ < Cg, (26)

for τ ∈ [0,+∞), making the original ξ(τ) satisfy (13).

4. Auxiliary System Right-Hand Side Estimation and Lemma Formulation

From the construction of (20) and the definition of Rη , Rυ, Rnl, and R0 it follows that
in the domain (5), (26):

‖Pi(g)‖ → 0 and ‖Qi(g)‖ → 0 as ‖g‖ → 0, (27)
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for i = 2, . . . , n− 1. Moreover, for some constants Lη , Lυ, Lnl, L0(g) > 0

‖Rη(η, υ, τ)‖ ≤ e−(n+1)ατ Lη ‖η‖,

‖Rυ(η, υ, τ)‖ ≤ e−(n+1)ατ Lυ ‖υ‖,

‖Rnl(η, υ, τ)‖ ≤ e−ατ Lnl

(
‖η‖2 + ‖υ‖2

)
,

‖R0(η, υ, g, τ)‖ ≤ e−(4n+1)ατ L0(g).

(28)

Notice that from the definition of R0, it follows that L0(g)→ 0 as ‖g‖ → 0.
For the main linear part of (24),

dη̄

dτ
= P̄η̄ + Q̄ω (29)

Lemma 1. If (4) is satisfied for (1), then there exists ε′g ∈ (0, Cg), such that ∀g ∈ Rn: ‖g‖ < ε′g,
there exists a control ω(τ):

ω(τ) = M(τ)η̄, ‖M(τ)‖ = O(enατ), τ → ∞, (30)

which for the fundamental matrix of the system (29), (30) denoted as Φ(τ), Φ(0) = In+r×n+r, the
following estimation with some K > 0 is true:

‖Φ(τ)‖ ≤ Ke−λτ , ‖Φ(τ)Φ−1(t)‖ ≤ Ke−λ(τ−t)e(n−1)αt, (31)

where λ > 0, τ ∈ [0, ∞).

The algorithm of M(τ) construction is presented in [53].

5. Proof of Theorem 1

In [53], it is shown that the solution of the auxiliary system (24), closed with the
auxiliary stabilizing control (30) in the domain (26), satisfies the estimate:

‖η̄(τ)‖ ≤ Kηe−3nατ , τ ∈ [0, ∞), Kη > 0. (32)

Here the constant Kη depends on the domain (5), (26).
We substitute ῡ(τ), introduced in the statement of Problem 2, into the right-hand sides

of the first n equations of (24) and close it by the auxiliary control ω(τ). Using E = P̄+ Q̄M,
the system takes the form

dη̄

dτ
= Eη̄ + F(ῡ− υ) + R̄η(η, ῡ, τ) + R̄υ(η, ῡ, τ)− R̄υ(η, υ, τ) + R̄υ(η, υ, τ)

+ R̄nl(η, ῡ, τ)− R̄nl(η, υ, τ) + R̄nl(η, υ, τ) + R̄0(η, ῡ, τ)
(33)

for τ ∈ [0,+∞), with F =

(
Q

Or×r

)
.

Using the mean value theorem, we have (〈·, ·〉meaning the scalar product)

Rυ
i (η,ῡ, τ)− Rυ

i (η, υ, τ)

=

〈(
∂Rυ

i
∂υ

(η, υ̃, τ)

)T
, (ῡ− υ)

〉
=

〈(
∂Rυ

i
∂υ

(η, υ̃, τ)

)T
, ω(τ̃)h

〉
,

Rnl
i (η,ῡ, τ)− Rnl

i (η, υ, τ)

=

〈(
∂Rnl

i
∂υ

(η, υ̃, τ)

)T

, (ῡ− υ)

〉
=

〈(
∂Rnl

i
∂υ

(η, υ̃, τ)

)T

, ω(τ̃)h

〉
,

(34)
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where υ̃ = (υ̃1, . . . , υ̃r), υ̃i = υi + θ̃i(ῡi − υi) with some θ̃i ∈ [0, 1], i = 1, . . . , n; the
mean point τ̃ = (τ̃1, . . . , τ̃r), τ̃j ∈

(
− 1

α ln(1− t + h),− 1
α ln(1− t)

)
, j = 1, . . . , r. That

is true for any t ∈ [0, t̄] with some t̄ ∈ (0, 1) to be determined such that 1 − t̄ < ε.
Here, when we substitute a vector argument τ̃ to a vector function of a scalar argument
ω(τ) = (ω1(τ), . . . , ωr(τ))T , we apply the substitution componentwise, i.e., ω(τ̃) =
(ω1(τ̃1), . . . , ωr(τ̃r))T .

From (22), (30), and (32) in the domain (5), (26), it follows that

|ωj(τ̃j)| =
∣∣∣∣dυj(τ̃j)

dτ

∣∣∣∣ ≤ ‖M(τ̃j)‖‖η̄(τ̃j)‖ ≤ Kωj e
−2nατ̃j

= Kωj e
−2nατe2nα(τ−τ̃j), j = 1, . . . , r,

so, we can choose h̄ such that

‖ω(τ̃)‖ ≤ K̄ωe−2nατe2nαh̄ = Kω(h̄)e−2nατ , (35)

with K̄ω > 0 depending on the chosen vector norm, and Kω(h̄) = K̄ωe2nαh̄ > 0. It is also
true that

h̄(t̄, h) =
1
α
(ln(1− t̄ + h)− ln(1− t̄)),

h̄(t̄, h)→ 0 as h→ 0 ∀t̄ ∈ [0, 1).
(36)

In (35), the constant Kω depends on t̄ but does not depend on the point t ∈ [0, t̄].
From the conditions (34) and (35) for some Ku, Kυ, Knl > 0 with K′ω = Kω(h̄)e−2nατh,

we obtain
‖u(t(τ)− h)− u(t(τ))‖ = ‖ῡ(τ)− υ(τ)‖ ≤ KuK′ω,

‖Rυ(η, ῡ, τ)− Rυ(η, υ, τ)‖ ≤ KυK′ω,

‖Rnl(η, ῡ, τ)− Rnl(η, υ, τ)‖ ≤ KnlK′ω,

(37)

for τ ∈ [0,− 1
α ln(1− t̄)]. In (37), the constants Ku, Kυ and Knl depend on the domain (5),

and (26) but do not depend on τ.
Let us assume that h satisfies the inequality

0 < h < 1. (38)

Consider the system (33) over the finite interval [0, τ̄], τ̄ = − 1
α ln(1− t̄). In the following,

the value of τ̄ will be increased if necessary, so that

e−ατ̄ < ε. (39)

Let us show that all the solutions of (33), which begin in a sufficiently small neighbor-
hood of the origin, for sufficiently small h > 0, g > 0 satisfy the condition

‖η(τ̄)‖ < ε

2
. (40)

In (33), we replace the variable η̄ with z according to

η̄ = ze−nατ , η̄(0) = z(0),

z = (zη , zυ)T , η = zηe−nατ , υ = zυe−nατ .
(41)
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We obtain

dz
dτ

= Hz + enατ

[
F(ῡ− υ) + R̄η(e−nατzη , ῡ, τ)

+ R̄υ(e−nατzη , ῡ, τ)− R̄υ(e−nατzη , υ, τ) + R̄υ(e−nατzη , e−nατzυ, τ)

+ R̄nl(e−nατzη , ῡ, τ)− R̄nl(e−nατzη , υ, τ) + R̄nl(e−nατzη , e−nατzυ, τ)

+ R̄0(e−nατzη , ῡ, τ)

]
,

(42)

where H = E + nαI.
Denote Φ1(τ) the fundamental matrix of (42)’s linear part. The estimate (31) implies that

‖Φ1(τ)‖ ≤ Ke−βτ , β = λ− nα,

‖Φ1(τ)Φ−1
1 (t)‖ ≤ Ke−β(τ−t)e(n−1)αt, τ ≥ t.

(43)

Here, we restrict α to have β > 0.
In [53], it is shown that ε′′g ∈ (0, ε′g) can be chosen so that any x0 and g satisfying ‖x0‖ ≤

ε′′g, ‖g‖ ≤ ε′′g provides that z(τ) belongs to the domain (5), (26) and decays exponentially.
Split the interval [0, τ̄] with a point τ1. The solution of (42) with the initial data (21),

(25), and (41) for ‖x0‖ ≤ ε′′g, ‖g‖ ≤ ε′′g can be written as

z(τ) = Φ1(τ)η̄(0) +
τ∫

0

Φ1(τ)Φ−1
1 (s)enαs

[
g(ῡ− υ) + R̄η(e−nαtzη , ῡ, s)

+ R̄υ(e−nαszη , ῡ, s)− R̄υ(e−nαszη , υ, s) + R̄υ(e−nαszη , e−nαtzυ, s)

+ R̄nl(e−nαszη , ῡ, s)− R̄nl(e−nαszη , υ, s) + R̄nl(e−nαszη , e−nαszυ, s)

+ R̄0(e−nαszη , ῡ, s)
]

ds if τ ∈ [0, τ1],

(44)

and

z(τ) = Φ1(τ)Φ−1
1 (τ1)z(τ1) +

τ∫
τ1

Φ1(τ)Φ−1
1 (s)enαs

[
g(ῡ− υ) + R̄η(e−nαszη , ῡ, s)

+ R̄υ(e−nαszη , ῡ, s)− R̄υ(e−nαszη , υ, s) + R̄υ(e−nαszη , e−nαtzυ, s)

+ R̄nl(e−nαszη , ῡ, s)− R̄nl(e−nαszη , υ, s) + R̄nl(e−nαszη , e−nαtzυ, s)

+ R̄0(e−nαszη , ῡ, s)
]

ds if τ ∈ [τ1, τ̄].

(45)

Suppose that the solution of the system (42) defined by formulas (44) and (45) belongs
to the domain (5), (26). From (44) and (45) taking into account (28), (32), (34), (35), (37), and
(43) analogous to the result in [53], we obtain the estimations

‖z(τ)‖ ≤ Ke−βτ‖η(0)‖+ K
τ∫

0

e−β(τ−s)
(

Lz‖z‖+ L0(g) + Lh(h̄)h
)

e−αsds (46)

if τ ∈ [0, τ1], and

‖z(τ)‖ ≤ K′e−β(τ−τ1)‖z(τ1)‖+ K
τ∫

τ1

e−β(τ−s)
(

Lz‖z‖+ L0(g) + Lh(h̄)h
)

e−αsds (47)
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if τ ∈ [τ1, τ̄], where K′ = Ke(n−1)ατ1 , Lz > 0 is a constant value depending on the domain
(5), (26), and Lh > 0 depends on the domain (5), (26), (38) and t̄. Using (46), (47), and the
known result from [54], we obtain

‖z(τ)‖ ≤ Ke−µτ‖η(0)‖+ K
τ∫

0

e−µ(τ−s)
(

L0(g) + Lh(h̄)h
)

e−αsds (48)

with µ = β− KLz for τ ∈ [0, τ1], and

‖z(τ)‖ ≤ K′e−µ′(τ−τ1)‖z(τ1)‖+ K
τ∫

τ1

e−µ′(τ−s)
(

L0(g) + Lh(h̄)h
)

e−αsds, (49)

where µ′ = β− KLze−ατ1 , and τ ∈ [τ1, τ̄].
Increasing τ̄ in the domain (39) if necessary, we choose τ1 ∈ (0, τ̄) such that the

inequality µ′ > 0 is satisfied.
From (48) and (49), we obtain the inequalities

‖z(τ)‖ ≤ K‖η(0)‖+ K0L0(g) + Kh(τ̄, h̄)h, τ ∈ [0, τ1], (50)

and

‖z(τ)‖ ≤ K′e−µ′(τ−τ1)‖z(τ1)‖+ e−ατ
(

K′0L0(g) + K′h(τ̄, h̄)h
)

, τ ∈ [τ1, τ̄]. (51)

In (50) and (51), the constants K0, Kh, K′0 and K′h depend on the domain (5), (26), (38) and τ̄.
It follows from (51) and (50), that if the function z(τ) belongs to the domain (5), (26)

over the interval [0, τ̄]; then, it exponentially decreases over the interval τ ∈ [τ1, τ̄]. Let us
fix τ̄, τ̄ > τ1 > 0 in the domain (39), so that

‖z(τ̄)‖ < ε

2
. (52)

Using (21), (25), (36), (50), (51), the properties of the function L0(g), and the fact that
Kh(τ̄, h̄)h → 0 and K′h(τ̄, h̄)h → 0 as h → 0, one can chose ε̄x ∈ (0, ε′′g), ε̄g ∈ (0, ε′′g) and
ε̄h ∈ (0, 1), so that for any x0, g, and h such that ‖x0‖ ≤ ε̄x, ‖g‖ ≤ ε̄g, 0 < h < ε̄h, the
function z(τ) satisfies the estimation (52) and belongs to the domain (5), (26). Using (41),
one can obtain functions η̄(τ), ω(τ), and τ ∈ [0, τ̄], satisfying the system (33), (24), (20) (in
its first n equations υ = ῡ), the initial data (25), and the estimation (40).

We obtain the functions ξ(τ), υ(τ), and ω(τ) returning to the original variable ξ by
expressions (19), (17), and (14). It follows from them that one can choose ¯̄εg ∈ (0, ε̄g) such
that for any x0, g, and h such that ‖x0‖ ≤ ε̄x, ‖g‖ ≤ ¯̄εg, 0 < h < ε̄h,

‖ξ(τ̄)‖ < ε. (53)

If τε = τ̄, then from (53) and the derivation of the systems (20) and (24), the corre-
sponding functions ξ(τ) and ῡ(τ) solve Problem 2.

Going back to the original time t by (9), we restore x(t), u(t), and u(t− h) and obtain
w(t) from ξ(τ), υ(τ), ῡ(τ), and ω(τ) using

w(t) = ω(τ(t)), τ = − 1
α

ln(1− t). (54)

These functions solve the problem

ẋ = f (x, u(t− h)) + g, u̇ =
1
α
(1− t)−1w(t) (55)
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under the conditions (6)–(8). Consequently, x(t), u(t− h), t ∈ [0, tε], and tε = 1− e−ατε ,
due to Remark 1 and the structure of the system (55), form the solution to Problem 1. The
choice εx = ε̄x, εg = ¯̄εg, and εh = ε̄h finishes the proof of Theorem 1.

To summarize, we solved Problem 1 according to the following Algorithm:

1. Construct the auxiliary system (24) (it is performed analytically by means of computer
algebra systems).

2. Stabilize the system (29) (it is performed analytically by means of computer algebra
systems).

3. Solve the initial value problem for (24), closed by the stabilizing control ω(τ) = M(τ)η̄
known after Step 2, with the initial data (25) (it is performed numerically). Obtain
ω(τ) as a result.

4. In ω(τ), switch back to the original time t by (54) and obtain w(t) = ω(τ(t)) (it
is performed analytically if we obtain some explicit form of ω(τ) or numerically
otherwise).

5. Solve the initial value problem (55), (6) over [0, tε], tε = 1 − e−ατε (it is performed
numerically).

Finally, we obtain x(t) and u(t), which solve Problem 1.

6. Test Example

To demonstrate the algorithm, we considered a problem of controlling a single-link
manipulator when transporting a load to a required position. According to [55], the
manipulator motion in the presence of perturbations is described with the system{

ẋ1 = x2,

ẋ2 = −a2 sin x1 − a1x2 + u(t− h) + g,
(56)

where x1 is the angle of the manipulator deviation from the vertical, x2 is the change rate
of its deflection angle, a1 = ᾱL−2m−1

1 , a2 = GL−1
(

m0 +
M
2

)
m−1

1 , m1 = m0 +
M
3 , M is

the manipulator’s mass, L is its length, G is the gravity constant, ᾱ is the coefficient of
viscous friction, m0 is the mass of the load, and g as above is the perturbation. The vector
of unknowns x = (x1, x2)

T , and the control function u is applied only to ẋ2. The boundary
conditions are

x(0) = x0, u(t) ≡ 0 for t ∈ [−h, 0],

‖x(tε)‖ ≤ ε, 1− tε ≤ ε.
(57)

The system (10) and the conditions of Problem 2 read as

dξ1

dτ
= αe−ατξ2, (58)

dξ2

dτ
= −αe−ατa2 sin ξ1 − αe−ατa1ξ2 + αe−ατυ + αe−ατ g,

ξ1(0) = x0
1, ξ2(0) = x0

2, ῡ(τ) ≡ 0 for τ ∈
[

0,− 1
α

ln(1− h)
]

,

‖ξ1(τε)‖ ≤ ε, ‖ξ2(τε)‖ ≤ ε, e−ατε ≤ ε, τε > 0.
(59)

when applied to Problem (56), (57).
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To solve Problem (58), (59) we make shifts (fewer than 4n = 8 suffice):

ξ2(τ) = ξ
(1)
2 (τ)− e−ατ g,

ξ1(τ) = ξ
(1)
1 (τ) +

1
2

ge−2ατ ,

ξ
(1)
2 (τ) = ξ

(2)
2 (τ) +

1
2

ga1e−2ατ ,

ξ
(1)
1 (τ) = ξ

(2)
1 (τ) +

1
6

ga1e−3ατ ,

ξ
(2)
2 (τ) = ξ

(3)
2 (τ)− 1

6
ga1e−3ατ .

Thus, with η = (ξ
(2)
1 , ξ

(3)
2 ), the systems (20), (22) takes the form

dη1

dτ
= αe−ατη2 −

1
6

αa1ge−4ατ ,

dη2

dτ
= − αe−ατa1η2 + αe−ατd +

1
6

αe−4ατa2
1g

− αe−ατa2 sin
(

η1 +
1
6

ga1e−3ατ +
1
2

ge−2ατ

)
,

dυ(τ)

dτ
= ω.

(60)

The linear part of system (60) is

dη̄

dτ
= P̄η̄ + Q̄υ, η̄ = (ξ

(2)
1 , ξ

(3)
2 , υ)T , (61)

P̄ =

 0 αe−ατ 0
−αe−ατa2 −αe−ατa1 αe−ατ

0 0 0

, Q̄ =

0
0
1

.

According to [53], we obtain ω(τ) = M(τ)η̄, with M(τ) = (m1, m2, m3),

m1 = − e−ατa1a2α + 3a2α + 6a2 −
1
α2 e2ατ(8α3 + 24α2 + 22α + 6),

m2 = − a2
1α + e−ατa2α + 3a1α + 6a1 −

1
α

eατ(7α2 + 18α + 11),

m3 = αe−ατa1 − 3α− 6,

which stabilizes (61).
Now, we solve (60), closed by ω(τ), with the initial values η1(0) = x0

1 −
1
2 g− 1

6 ga1,
η2(0) = x0

2 + g − 1
3 ga1, υ(0) = 0. As a result, we obtain the way to compute ω(τ),

τ ∈ [0,+∞). Substitution of (9) gives w(t) = ω(τ(t)), t ∈ [0, tε].
Finally, we solve the initial value problem

ẋ1 = x2,

ẋ2 = −a2 sin x1 − a1x2 + u(t− h) + g,

u̇ = α−1(1− t)−1w(t)

x1(0) = x0
1, x2(0) = x0

2, u(t) ≡ 0 for t ∈ [−h, 0]

over the interval [0, tε]. The found functions x1(t), x2(t), and u(t− h) solve Problem (56), (57).
We used Maplesoft Maple software for the experiment. It performed all the algebra,

and we also solved the initial value problem using its default numerical ODE solver dsolve,
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which implemented a Runge–Kutta–Fehlberg pair of orders 5 and 4 with adaptive time-step,
with default options, which were 10−7 for the absolute and 10−6 for the relative errors.

Figure 1 shows the solution for x0
1 = −0.5 rad, x0

2 = −0.8 rad/s, ᾱ = 0.1, L = 10 m,
M = 20 kg, m0 = 1 kg, ε = 0.05, tε = 0.9 s, g = 0.1, and h = 0.01 s. The value α = 0.25 was
chosen to be quite large to provide a small τε and still satisfy the constraint β > 0 in (43).

0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10

15

20

 t

x
1

( t )

x
2

( t )

u ( t )

Figure 1. The solution to Problem (56), (57).

7. Conclusions

We studied a class of nonlinear stationary controlled systems, which consider external
perturbations and control delay.

The proposed method reduced the original problem to stabilizing an auxiliary system.
Thus, it was possible to solve the original BVP problem taking into account errors in the
initial values or other parameters and computational errors as well. The numerical test
results demonstrated that the proposed method was applicable to the construction of
control systems for different technical objects described by complex systems of differential
equations. One of the main advantages of the presented approach is that the finite-time
stabilization can be achieved even if the infinite-time stabilization is impossible.

Unfortunately, we were able to find other approaches to construct control functions
only for linear or quasilinear systems with delays. There were no other algorithms for
nonlinear systems with delays and perturbations. With the approach presented in the
paper, we were able to construct Kalman-type stabilization criterion for systems without
delays [56], so we will aim to apply it to delayed controls as well.

One of the problems with the suggested algorithm is that it uses analytic algebra,
which makes it applicable only with special software and in case of a known right-hand
side of (1). In addition, the presented results are local in the sense that the control may be
found for sufficiently small initial points, delays, and perturbations.

One of the main future goals is to find less restrictive bounds for the initial values,
perturbations, and delay that determine the attainability domain for the same Kalman-type
condition (4). Furthermore, it is important to study if (4) is not only sufficient but also
necessary. Another direction of research is to obtain the results for the stabilization problem
with the stabilization condition (7) changed for x(1) = 0.
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