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Abstract: Ongoing efforts have been made to improve the photoresponsivity of plasmonic photodetec-
tors. In this work, the photodetectors based on transparent conductive oxide (TCO)/Semiconductor/
Metal configuration especially with a roughened interface were investigated numerically, and the
effect of the roughness on the injection efficiency of hot electrons was analyzed. The simulated results
indicate that a roughened structure alleviates effectively the momentum mismatch of hot electrons at
the metal/semiconductor interface due to asymmetry factor, and greatly improves the injection effi-
ciency as well as photoresponsivity. At the incidence wavelength of 1550 nm, the photoresponsivity
increased by about 8 times. Meanwhile, the influence on the resonant wavelength shift is negligible
where the roughness is nano-scale. Our work provides a valuable guidance for the theoretical and
experimental research of plasmonic photodetectors.

Keywords: plasmonic photodetector; hot electrons injection; roughened interface

1. Introduction

The plasmonic photodetectors based on hot electrons generated by plasmon resonance
non-radiative recombination in metal/semiconductor structures have been extensively stud-
ied [1–7]. To improve the photoresponsivity, especially in the communication wavelength
band of ~1550 nm, many works have mainly focused on two approaches: (a) enhancing the
coupling between incident light and metal by using plasmonic structure to increase the exci-
tation efficiency of hot electrons [8–10]; (b) and optimizing the distribution of the excitation
space of hot electrons as well as the metal/semiconductor interface to enhance the injection
efficiency [11–13]. In general, there are two main factors that affect the injection efficiency of
hot electrons: first, the probability that no inelastic-scattering occurs during the transport of
the hot electron from the excitation position to the metal/semiconductor interface; second,
the probability that the hot electron passes across the potential barrier, where it satisfies the
match of energy and momentum on both sides of the interface [14,15]. The five-step model
was developed by Chalabi et al. to describe the excitation-transport-injection process of hot
electrons [5], and it is proposed for the first time that a roughened interface is beneficial for
enhancing the external quantum efficiency (EQE) of the photodetector. Recently, the role
of surface roughness on the enhancement of injection efficiency during the process of hot
electrons crossing the metal/semiconductor interface was analyzed by using perturbation
theory [15]. It was found that the additional momentum parallel to the interface direction
is introduced by a roughened interface due to the asymmetry factor, which moderates
the momentum mismatch of hot electrons on both sides of the interface. In this work, we
investigate the enhancement characteristics of the roughened interface on the injection
efficiency of hot electrons in plasmonic photodetectors with transparent conductive oxide
(TCO)/Semiconductor/Metal configuration. Based on the Chalabi’s theoretical model
and the consideration of the momentum matching at the interface, the simulations of the
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excitation-transport-injection process in the photodetectors were performed, and then the
influence of the device parameters as well as the roughness on the EQE was analyzed. The
specific simulation process includes: the period parameter of metal grating is designed
and adjusted to achieve absorption enhancement in the communication band, and the
double-sided absorption structure is configured to fully collect the hot electrons. More
importantly, the tunable roughness is introduced to optimize device performance. By using
the finite-difference time-domain method (FDTD) and the electrical model proposed by
Chalabi et al., the response wavelength of incident light and the distribution of photogen-
erated hot electrons under different roughness structures were studied. Particularly, the
influences of the roughened interface on the injection efficiency of hot electrons, as well as
the optimization guidance, are discussed. Furthermore, the resonant modes of this kind of
plasmonic photodetectors under various grating parameters and incidence wavelengths
were analyzed, and the correlation between the absorption distribution of incident light
and the features of roughened interface is revealed.

2. Device Structure and Model

The plasmonic photodetector based on the TCO/Semiconductor/Metal configuration
with grating is schematically shown in Figure 1a. The grating part of the top working area
is composed of ITO/TiO2/Ag sandwich-like layers (red dotted box); where the outermost
layer is covered with SiO2 as an anti-reflection layer to increase the absorption of incident
light. The thicknesses of the ITO; TiO2; Ag; and anti-reflection layer are 20; 5; 25; and
268 nm; respectively. The period of the grating is 1030 nm and the Ag strip width is 950 nm.
A perfectly matched layer (PEC) is used at the bottom as a light reflection layer to further
enhance the interaction between the incident light and the metal grating; and the spacer
layer is SiO2 with a thickness of 200 nm. Here, both sides of the metal layer are in contact
with semiconductors; and hot electrons in the upper and lower directions can transfer
to the metal/semiconductor interface; which increases the collection of hot electrons. It
is emphasized that the roughened structure is introduced at the metal/semiconductor
interface. As the hot electron reaches the interface and passes across the potential barrier
(Figure 1b); momentum and energy conservation must be satisfied at the same time.

The deduction process of photogenerated hot electrons in a plasmonic photodetector
can generally be divided into three processes: excitation, transport, and injection. When
irradiated by incident light, the free electrons in the metal layer resonate and excite surface
plasmons under the action of an external electric field, and then transfer the absorbed
photon energy to electrons and excite them above the Fermi level. The photogenerated
hot electrons can transfer to the metal/semiconductor interface without losing energy as
the distance from the excitation position to the interface is shorter than the mean free path
(MFP). If the hot electrons reaching the interface have sufficient energy and satisfy the
condition of momentum conservation, they can overcome the potential barrier to pass
across the metal/semiconductor interface, and then inject into the TCO electrode layer to
form a photocurrent.

Therefore, the key to quantifying the transport process is to calculate the MFP, which
is related to the energy of hot electron and can be expressed as [14]:

λe−e =
24a0
√

αers/π(3EF/E2
el + 2/Eel)

tan−1
√

π
αers

+
√

αers/π
1+αers/π

(1)

where the Bohr radius a0= 0.0529 nm, αe = (4/(9π))1/2, EF is the Fermi level, and rs is the
radius of the sphere and equals to the volume of conduction electrons in Bohr radius. At
low energy, λe−e is inversely proportional to the square of Eel around 100 nm at 1.0 eV and
150 nm at 0.8 eV.
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Figure 1. (a) Schematic diagram of the device structure. The red dotted box is the effective hot
electron collection area. (b) Schematic diagram of the energy band.

In order to clearly analyze the momentum characteristics of the hot electrons at the
interface. Figure 2 provides the interrelationship of this process in momentum space. Here,
the outer circle represents the momentum space of a hot electron on the metal side, and the
inner circle represents the momentum space after the hot electron overcomes the potential
barrier and enters the semiconductor side. When the hot electron passes across the interface,
the wavevector is continuous in the direction parallel to the interface (km,x = kol,x ≡ kx),
and the components in the metal and semiconductor sides along the direction perpendicular
to the interface are denoted as km,y and kol,y, respectively. It is seen that hot electrons can
be injected into the semiconductor layer only when kx ≤ kol,xmax is satisfied. The energy
of the photogenerated hot electron is EF + Eel (Eel: the kinetic energy of the hot electron
above the Fermi level, 0 < Eel < hν− EF). The maximum escape angle θmax is obtained
through Equation (6), where the electron is completely reflected if the angle between the
moving direction of the hot electron and the normal direction the interface is greater than
this angle θmax [5]:

cos θmax ≈

√
EF + ΦB
EF + Eel

(2)

Approximately, it is assumed that each incident photon excites a hot electron, and that
the hot electron excitation energy is equal to the photon energy. The energy distribution of
hot electrons after excitation is:

P0(Eel)dE =

√
EF + Eel

√
EF + Eel − hν∫ EF+hν

EF

√
E′
√

E′ − hνdE′
(3)

The probability that the photogenerated hot electrons transfer to the metal/semiconductor
interface without losing energy is:
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P1(Eel) = exp(− d
λe−e(Eel)

) (4)

where d is the distance of the hot electron from the excitation site to the interface, and λe−e
is the MFP in the metal.
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Figure 2. (a) Surface parameters of a grating. (b) Momentum space of a hot electron, in the metal
(outer), the semiconductor layer (inner).

While the injection process of hot electrons passes across the metal/semiconductor
interface, the height of the potential barrier is related to the metal work function and the
electron affinity of the semiconductor. Therefore, choosing different material systems can
achieve photoresponse in different wavelengths. Here, the difference between the work
function of Ag (4.26 eV) and the electron affinity of TiO2 (3.9 eV) is the height of 0.36 eV [16].
In this step of calculation, both the escape angle and the reflection of electrons at different
materials are taken into account. In the communication band of 1550 nm, the maximum
escape angle is quite small. According to the Equation (2), the calculated escape angle with
smooth interface is 12◦. Obviously, only a small fraction of the hot electrons, which reach
the interface and whose energies are higher than the potential barrier, can be injected across
the potential barrier. Unfortunately, most of the hot electrons are scattered at the interface,
and the energy would finally convert into Joule heat. This is one of the main reasons
for the low photoresponsivity of plasmonic photodetectors in the infrared band [2,17–19].
With the blue shift of the wavelength, the escape angle become larger, so that the injection
proportion of hot electrons increases. Owing to introducing a roughened interface, the
extra momentum alleviates effectively the momentum mismatch the hot electrons on both
sides of the interface.

When the orientation angle is within the maximum escape angle θmax, the transmit-
tance (the ratio that can pass across the interface) can be calculated as:

P2(r) = P(θi ≤ θmax)× TX (5)

TX = 4α[ln(
α + 1

α
) +

α

α + 1
− 1] (6)

where θi is the angle between the direction of motion and the normal direction of the
interface when the hot electrons reach the interface; and TX is the transfer coefficient of
M/S interface [20], α =

k′m,xm∗e
ksme

.
In addition, the energy loss of the hot electrons can be ignored during the transport

process in the semiconductor layer (oxide layer), because the MFP is much larger than the
thickness of the oxide layer at 0.8 eV. The contribution of the very small fraction of the
hot electrons with energies below the barrier through tunneling into the TCO layer is also
negligible here.
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The injection probability of the hot electron arriving and passing across the interface
can be approximated as follows:

Pi(Eel,r) =
∫

P1(Eel,r, θ)P2(Eel , r, θ)dθ (7)

Based on the above analysis, finally, the external quantum efficiency (EQE) of the
photodetector is calculated by the following formula:

EQE =
∫ hν

ΦB

dEel

∫ 2π

0
dθ

y
P0(Eel)Pi(Eel,r, θ)ηabs(Eel , r)dr (8)

where ηabs(r, Eel) is the generation efficiency of hot electrons.

3. Results and Discussion

Here, the cosine curve is employed to simulate the roughness of the metal/semiconduc-
tor interface; therefore, the features of the roughened interface are described by the value
of period Λ and cosine peak–valley height ∆. Meanwhile, in order to find the role of
the roughened interface, the relative gain compared with the smooth interface device
is calculated.

The injection probability of photogenerated hot electrons depends on the excitation site,
motion direction, and kinetic energy during the process of the excitation-transport-injection.
Manjavacas reported that the enhancement of hot electron injection probability in nano-
elliptical spheroid particles, where both spheroid size and shape affect the efficiency [4].
With this interest in mind, similarly, the influence of the size and shape of the roughened
interface on the injection efficiency of the plasmonic photodetectors is considered. The
initial energy distribution of the electrons in the metal grating follows the free electron
model g(E) ∝

√
E [20,21]. The spatial distributions of the injection probability of the hot

electrons excited at a certain position in the metal layer at Eel = 0.8 eV are provided in
Figure 3. For a smooth interface device, the closer the excitation site of hot electron is
to the interface, the less inelastic scattering is experienced, and the easier it is to collect.
With a roughened interface, evidently, the highest conversion efficiency can reach 63% at
∆ = 3 nm, and the injection probability is ~6 (estimated) times higher than that of a smooth
interface device.
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Figure 3. Spatial distribution of injection probability with different heights of roughened interface.
Eel = 0.8 eV, from left to right as smooth, roughened interface, period Λ = 5 nm, height ∆ from 2 to
5 nm.

Furthermore, the excitation position of hot electrons in the metal grating is assumed to
be uniform, the average injection probability in the entire metal grating is calculated relative
to smooth interface device. As shown in Figure 4, the injection probability of hot electrons
varies approximately twofold when the Λ varies from 2 to 20 nm, and the ∆ from 1 to 10 nm.
Compared with the smooth interface device, the probability can be increased 7–8 times,



Symmetry 2022, 14, 1628 6 of 8

breaking through the limitation brought by the maximum escape angle. It can be seen from
Figure 4 that the average injection probability is optimal when the feature of the roughened
interface is in the range of Λ/∆ ≈ 4/3, which matches the theoretical prediction.
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The simulation results show that there is a positive correlation between the incident
photon energy and the injection efficiency of hot electrons. The height of the potential
barrier decreases gradually. As the hot electron energy decreases, the escape angle become
smaller and the injection efficiency reduces, as shown in Figure 5. The introduction of the
roughened structure effectively reduces the interface reflection caused by the momentum
mismatch. For hot electrons with low Eel (~0.5 eV), the relative gain can reach 8 times
compared with the smooth interface device.
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different ∆ = 4, 6, and 8 nm (from top to bottom), and Λ = 10 nm.

The higher the incident photon energy is, the higher the energy of the photogenerated
hot electrons, and the greater the injection probability of passing across the potential barrier.
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As a result, the injection efficiency of hot electrons is also improved. Especially, in the
case of the thickness of the grating being much smaller than the MFP, the roughness for
moderating the momentum mismatch at the interface performs a more significant role in
improving the quantum efficiency of the device. The injection efficiency of hot electrons as a
function of distance to the top interface along the axis is shown in Figure 6a, which increases
with closing to the interface, that is, with decreasing the thickness of the metal layer. For hot
electrons with higher energies, the MFP is shorter, and the probability of inelastic scattering
rises. Consequently, the attenuation of efficiency is greater than that of hot electrons with
lower energies. In the case of the incident light with a single wavelength, the energy
distribution of the photogenerated hot electrons can be described by the product of the
densities of electronic states in initial and excited states. Figure 6b,c show the EQE of the
photodetectors with various feature of roughened interface at incident light wavelengths
1550 and 2000 nm, respectively. The EQE at 2000 nm is only 50% of that at 1550 nm. The
higher kinetic energy means that the proportion of hot electrons with energy higher than
the M/S barrier increases, meanwhile the escape angle increases.

Symmetry 2022, 14, 1628 8 of 9 
 

 

 
Figure 6. (a) Injection probability as a function of distance to the top interface along the axis (b), and 
(c) distribution of EQE with different periods and heights of roughened interface at incident light 
wavelengths 1550 and 2000 nm, respectively. 

4. Conclusions 
The plasmonic photodetectors based on the TCO/Semiconductor/Metal configura-

tion with roughened interface were investigated numerically in order to improve photo 
responsivity. The simulated results using the FDTD method exhibit that the roughened 
structure effectively alleviates the momentum mismatch of hot electrons at the metal/sem-
iconductor interface owing to asymmetry factor, thus breaking the limitation of the max-
imum escape angle and enhancing the injection efficiency of hot electrons. Moreover, it is 
noted that the injection efficiency is related to the features of roughened interface includ-
ing the shape, period Λ and height Δ. In the case of cosine curve model, the optimal value 
is in the range of Λ/Δ ≈ 4/3. Combining with the double-sided injection structure, the hot 
electrons generated in almost all directions are well-utilized. The collection of hot elec-
trons is further increased considering the fact that some hot electrons can be collected 
again after being reflected at another interface. Through optimized design of the device 
structure aiming at the incidence wavelength of 1550 nm, the injection efficiency of hot 
electrons is about 8 times higher than that of the smooth structure, which greatly increases 
photoresponsivity. Our work exhibits the approach and method to enhance the injection 
efficiency of hot electrons, which is of significance for the optimization of plasmonic pho-
todetection devices. 

Author Contributions: Conceptualization, L.X. and Y.S.; Methodology, L.X. and T.C.; Simulation, 
L.X.; Writing—Manuscript Preparation, L.X.; Writing—Review and Editing, S.Y., J.W. and Y.S. All 
authors have read and agreed to the published version of the manuscript. 

Funding: This work was funded by the National Basic Research Program of China (Nos. 
2018YFA0209100 and 2018YFA0307300), and the National Natural Science Foundation of China 
(Nos. 61991431, 61974064, 61921005 and 62005119), and the Excellent Youth Foundation of Jiangsu 
Scientific Committee (Grant BK20211538). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Figure 6. (a) Injection probability as a function of distance to the top interface along the axis (b), and
(c) distribution of EQE with different periods and heights of roughened interface at incident light
wavelengths 1550 and 2000 nm, respectively.

4. Conclusions

The plasmonic photodetectors based on the TCO/Semiconductor/Metal configuration
with roughened interface were investigated numerically in order to improve photo respon-
sivity. The simulated results using the FDTD method exhibit that the roughened structure
effectively alleviates the momentum mismatch of hot electrons at the metal/semiconductor
interface owing to asymmetry factor, thus breaking the limitation of the maximum escape
angle and enhancing the injection efficiency of hot electrons. Moreover, it is noted that the
injection efficiency is related to the features of roughened interface including the shape,
period Λ and height ∆. In the case of cosine curve model, the optimal value is in the range
of Λ/∆ ≈ 4/3. Combining with the double-sided injection structure, the hot electrons
generated in almost all directions are well-utilized. The collection of hot electrons is further
increased considering the fact that some hot electrons can be collected again after being
reflected at another interface. Through optimized design of the device structure aiming
at the incidence wavelength of 1550 nm, the injection efficiency of hot electrons is about
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8 times higher than that of the smooth structure, which greatly increases photoresponsivity.
Our work exhibits the approach and method to enhance the injection efficiency of hot
electrons, which is of significance for the optimization of plasmonic photodetection devices.
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