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Abstract: Due to the abundant natural resources of the underwater world, autonomous exploration
using underwater robots has become an effective technological tool in recent years. Real-time object
detection is critical when employing robots for independent underwater exploration. However, when
a robot detects underwater, its computing power is usually limited, which makes it challenging to
detect objects effectively. To solve this problem, this study presents a novel algorithm for underwa-
ter object detection based on YOLOv4-tiny to achieve better performance with less computational
cost. First, a symmetrical bottleneck-type structure is introduced into the YOLOv4-tiny’s backbone
network based on dilated convolution and 1 × 1 convolution. It captures contextual information
in feature maps with reasonable computational cost and improves the mAP score by 8.74% com-
pared to YOLOv4-tiny. Second, inspired by the convolutional block attention module, a symmetric
FPN-Attention module is constructed by integrating the channel-attention module and the spatial-
attention module. Features extracted by the backbone network can be fused more efficiently by the
symmetric FPN-Attention module, achieving a performance improvement of 8.75% as measured by
mAP score compared to YOLOv4-tiny. Finally, this work proposed the YOLO-UOD for underwater
object detection through the fusion of the YOLOv4-tiny structure, symmetric FPN-Attention module,
symmetric bottleneck-type dilated convolutional layers, and label smoothing training strategy. It
can efficiently detect underwater objects in an embedded system environment with limited com-
puting power. Experiments show that the proposed YOLO-UOD outperforms the baseline model
on the Brackish underwater dataset, with a detection mAP of 87.88%, 10.5% higher than that of
YOLOv4-tiny’s 77.38%, and the detection result exceeds YOLOv5s’s 83.05% and YOLOv5m’s 84.34%.
YOLO-UOD is deployed on the embedded system Jetson Nano 2 GB with a detection speed of
9.24 FPS, which shows that it can detect effectively in scenarios with limited computing power.

Keywords: underwater object detection; symmetric FPN-Attention module; symmetric dilated
convolutional module; label smoothing; YOLOv4-tiny; YOLO-UOD

1. Introduction

The ocean has a tremendous area and volume, and it is rich in natural resources.
The utilization of marine resources is bound to attract more and more attention as terrestrial
resources are continually exploited and consumed. Underwater robots are commonly
used to investigate underwater biological resources [1]. Underwater robots, instead of
people, could work in risky environments such as the deep sea and are supplied with
cameras or sonar devices for image capture to detect objects [2,3]. Due to its high noise
and long wavelength of sound waves, the hydroacoustic signal is not ideal for close-range
object detection and recognition for underwater object detection algorithms based on
acoustic vision. Light waves, on the other hand, have a tiny wavelength. The images
obtained through the visible light band have more details and scene information, are more
in line with human observation habits, and are more suitable for real-time performance.
Based on this, the focus of this study is on processing underwater photos captured with
optical equipment.
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Traditional object detection techniques based on manually designed features have a
high cost, inability to perform real-time monitoring, and difficulty adapting to complex
and changing environments due to cumbersome processing steps and poor generalization
in underwater object detection. In recent years, object detection algorithms based on deep
learning approaches have been continually attempted and deployed in underwater ob-
ject detection thanks to the rapid development of deep learning technology. Wang et al.
studied deep learning models in underwater object detection and used the you only look
once (YOLO) method to effectively detect and identify fish in an underwater environment,
achieving real-time detection [4]. Yang et al. established the efficiency of the YOLOv3
algorithm in underwater object detection [5]. They also tested the YOLOv3 method against
the faster R-CNN algorithm and discovered that the former performs better. However,
they overlooked the limitations of underwater sensing gear, as well as the complicated and
changing nature of the underwater illumination environment. Chen et al. [6] proposed
a lightweight underwater object detection model based on the principle of YOLOv4-tiny,
which reduces the computational complexity of the model by using depthwise separable
convolutions instead of traditional convolutions. Still, the large number of 1 × 1 convo-
lutions increases the memory access cost, and the inference performance of the model
is only slightly improved. The use of compact convolution kernels to achieve feature
generalization is also insufficient.

Although deep-learning-based object detection algorithms can achieve good results
in many fields, there are the following problems when they are directly used in underwa-
ter robots:

• Insufficient computing power. The human perception limit of video from the camera
is 24 frames per second (FPS), so to meet the real-time requirements to some extent, the
inferencing speed should be around 10 FPS. However, the high performance of deep
neural networks has higher demands on computing resources, which is not well-suited
to an environment with underwater robots that are computationally limited.

• The underwater image quality is poor. Different from terrestrial imaging, under-
water imaging has low-contrast, blurred images, and short visual distance, which
lead to problems such as wrong labeling of datasets and easy loss of small objects
during detection.

YOLOv4-tiny [7] is an excellent object detector and is faster than YOLOv5 in terms
of inference speed, which is more friendly to devices with limited computing power.
For this reason, this study chooses YOLOv4-tiny as the baseline model for underwater
object detection. However, it is difficult for YOLOv4-tiny to achieve satisfactory detection
accuracy. To address the issues above, this study presents a streamlined YOLO structure
for underwater object detection and names it YOLO-UOD for convenience. The proposed
YOLO-UOD can suit the computational restricted embedded systems and has a better
trade-off between speed and accuracy. The following are the primary contributions made
in this study:

• This study designs a symmetric dilated convolutional module with symmetrical
bottlenecks. The proposed symmetric dilated convolutional module is achieved by
combining dilated convolutional layers [8] and 1 × 1 convolutional layers in a suitable
way, which is able to capture more contextual information with lower computational
consumption. The model’s detection mAP score improved by 8.74% by using it to
replace the convolution of the last layer in the backbone network of YOLOv4-tiny.

• This study develops a symmetric FPN-Attention module based on the channel-
attention module and spatial-attention module in YOLOv4-tiny to increase its de-
tection accuracy while keeping it lightweight. By fusing shallow features with the
deeps, the symmetric FPN-Attention module will obtain feature maps with richer
semantic information, and a more efficient feature fusion can be achieved through
the attention module. The mAP score of YOLOv4-tiny can be improved by 8.75%
when the symmetric FPN-Attention module is used. In addition, label smoothing is
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used during training to suppress the potential labeling mistakes to some extent and
improve the model’s generalization for underwater object data.

• Experimental results on the Brackish underwater dataset [9] show that the pro-
posed YOLO-UOD has higher detection performance in underwater object detection
with 87.88% mAP, which surpasses YOLOv4-tiny’s 77.38%, YOLOv5s’s 83.05%, and
YOLOv5m’s 84.34%. Besides, the proposed detector runs at about 9.24 FPS on Jetson
Nana 2 GB, which is faster than YOLOv5s at 8.38 FPS and YOLOv5m at 4.11 FPS.
The results show that YOLO-UOD has a better speed/accuracy trade-off underwater.

The rest of this work is arranged in the following manner: A brief overview of recent
relevant work is presented in Section 2, which focuses on the YOLOv4-tiny architecture
and its benefits and drawbacks. The implementation specifics of the YOLO-UOD algorithm
are detailed in Section 3. Section 4 presents relevant experimental information, including
results, while Section 5 concludes.

2. Related Work

This section provides some background information on the proposed underwater ob-
ject detection algorithm, including the basic framework of object detection, the YOLOv4-tiny
algorithm framework, and the attention module.

2.1. Basic Framework for Object Detection

Object detection is a downstream problem in computer vision that has a wide range
of practical applications [10–13]. Deep-learning-based object detection algorithms can be
divided into two categories based on whether or not a proposal generation stage is present:
two-stage object detection algorithms such as R-CNN (regions with convolutional neural
network features) [14], Fast-RCNN [15], Faster-RCNN [16]; and one-stage object detection
algorithms such as SSD (single shot multibox detector) [17], RetinaNet [18], FCOS (fully
convolutional one-stage object detection) [19], and YOLO [20]. A standard component of
the convolutional neural network (CNN)-based object detector consists of a backbone for
feature extraction, a neck for feature fusion, and a head prediction module. Figure 1 shows
the framework of a CNN-based object detector.
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Figure 1. Basic framework of object detection.

Because of the extra step for the region proposal, the two-stage object detector is better
than the one-stage object detector in terms of detection precision. However, it also adds
to the computation time, which is not favorable for real-time detection of the model. As a
result, the one-stage object detection method YOLO is the topic of this research.

2.2. YOLOv4-Tiny

The YOLO one-stage object detection algorithm eliminates the region proposal branch,
allowing for faster online inference. Although the early YOLO [20,21] algorithms have a
faster detection speed, their detection precision is not adequate. YOLOv3 [22] is the first
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to attain a superior speed/accuracy trade-off. Furthermore, Bochkovskiy et al. proposed
YOLOv4 [23] by designing a new feature extraction network, CSPDarkNet53, based on the
cross-local connectivity structure of CSPNet [24] to generate richer gradient combinations
while reducing the required computing effort. However, YOLOv4 generates a significant
memory footprint, making it difficult to adapt to inference requirements on computationally
restricted systems. Wang et al. scaled YOLOv4 and designed YOLOv4-tiny based on it [7].
Figure 2 depicts the overall structure of the YOLOv4-tiny model.
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Figure 2. Architecture of YOLOv4-tiny network.

As shown in Figure 2, the YOLOv4-tiny backbone uses CSPDarkNet-tiny, which
consists primarily of cross-stage partial connections (CSP) and CBL components, with
CBL being a typical convolution featuring batch normalization (BN) and Leaky ReLU
(rectified linear unit) activation functions. As a significant part of the feature extraction
network, the CSP component uses a cross-local interconnection topology. After a layer of
feature mapping, the input is divided into two channels, one of which leads directly to
the end of the connection stage, and the other branch enters the dense layer after a series
of affine transformations. It is spliced with the previous branch through a cross-regional
connection, as shown in the diagram. In this approach, when updating the weights, it is
feasible to avoid learning a large number of repetitive gradients again, produce a richer mix
of gradients, and lower the computing cost to a degree. Notably, the BN layer following
the standard convolution allows each layer in the CNN to maintain the same distribution
of input, which can speed up the convergence of the model. Suppose that xi is the i− th
sample, and there are m samples in a mini-batch B = {xi...m}. The BN can be represented
by Equation (1).

x̂i =
xi − uB√

σ2
B + ε

, yi = γx̂i + β (1)

where x̂i is the normalized tensor for each input xi, yi is the output obtained after scaling
and offsetting x̂i, and ε is the smoothing term that assures numerical stability by stopping
a division by a zero value that is usually set as 1 × 10−5. uB and σ2

B denote the batch mean
and variance, respectively, as shown in Equation (2). The scaling factor γ and the offset
factor β are trainable parameters.

µB =
1
m

m

∑
i=1

xi, σ2
B =

1
m

m

∑
i=1

(
xi − u2

B

)2
(2)

After the backbone network extracts features, YOLOv4-tiny uses the feature fusion
network (FPN) [25] structure for the multi-scale fusion of the extracted features, resulting in
the classification and regression of feature maps at various scales in the network prediction
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layer. Compared with YOLOv4, on the CSP component, YOLOv4-tiny deletes a large
number of 1 × 1 convolutions to achieve the highest possible parameter utilization. It
utilizes a maximum pooling layer of size 2 × 2 with step size of 2 for down-sampling
to reduce the number of parameters and introduce nonlinearities. However, the CSP
components of the same feature map size are not stacked repeatedly in YOLOv4-tiny,
which reduces the computational complexity of the model and the number of parameters to
some extent. However, the model’s ability to extract features from the data is also reduced,
making it difficult to obtain an adequate representation of the input space or data.

2.3. Attention Module

The attention module was developed as a result of research into human vision and
may also be considered as a resource allocation approach for computational resources. In
computer vision, one important task is to opt for a more robust feature representation
that captures the most critical attributes of the object of interest in a given task, thus
improving the model’s ability to represent the features. Hu et al. proposed the squeeze-
and-excitation (SE) module [26], which computes channel attention scores through global
average pooling and weights the feature maps, eventually achieving state-of-the-art (SOTA)
performance on multiple datasets and tasks. The SE module demonstrated that previous
architectures are unable to adequately model feature dependencies in terms of channels.
The SE module, however, does not make use of spatial data. Woo et al. introduced a
new attention module [27] that combined spatial and channel attention to attain SOTA
performance on PASCAL VOC2007. Intending to capture local cross-channel interactions,
Wang et al. investigated a one-dimensional convolution with adaptive kernel size to replace
the fully connected layer in channel attention based on the SE module and proposed a more
efficient and less computationally complex attention mechanism [28].

The neck feature layer is located after the feature extraction network in the object de-
tector to fuse feature maps of various scales to generate a multi-scale visual representation.
The semantic information in the feature maps is continuously increased during the down-
sampling process in the convolutional neural network, which is necessarily accompanied
by the loss of location information. Feature representations of various scales correlate with
feature maps of various depths. Shallow feature maps have higher resolution and more
location information, but they lack effective feature representation. Deep feature maps have
a lower resolution and a drastic reduction of location information, but they include more
semantic information. As a result, the accuracy of the classifier’s final prediction results
is dependent on how efficiently the fused shallow and deep feature maps are connected
to produce a feature map that contains sufficient semantic and location information. In
this paper, an attention module is added to the feature fusion layer to increase the model
inference effect by enhancing the features extracted by the backbone network.

3. Improved YOLO Algorithm

This section presents the proposed YOLO-UOD method. Figure 3 shows the overall
flow chart of the YOLO-UOD, which consists of three components: backbone network,
neck network, and head network. As shown in Figure 3, YOLO-UOD inherits the backbone
network of YOLOv4-tiny, and the difference is that the proposed method substitutes the
original convolutional layers with a symmetric dilated convolutional module for a broader
receptive field. Following that, the proposed symmetric FPN-Attention module replaces the
original neck of YOLOv4-tiny to improve the detection ability of the model. Finally, label
smoothing is used in the training stage to reduce the detrimental impact of data labeling
mistakes on model performance and keep the YOLOv4-tiny’s head network unchanged.
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3.1. Symmetric Dilated Convolutional Module

An object cannot exist alone in the real world; it must have a relationship with the
surrounding environment or objects, often known as the image’s contextual information. It
is believed that the features of the object will have similarities with the noise underwater to
some extent. Therefore, this work introduces a dilated convolution in the last layer of the
original feature extraction network of YOLOv4-tiny to expand the receptive field, allowing
the object detector to make full use of the contextual information in the image. Let the
size of the convolution kernel be k, and the expansion factor be r. The actual size kd of the
dilated convolution can be expressed as Equation (3).

kd = k + (k− 1)·(r− 1) (3)

It can be found that when r = 1, the dilated convolution is equivalent to the stan-
dard convolution. However, the effect of expanding the receptive field is achieved by
injecting voids into the convolution kernel during the convolution process. This will lead
to inevitable loss, to some extent, in image details and a loss of continuity and integrity
among the data (as shown in Figure 4), especially in the deep feature maps, which will have
disastrous effects. Therefore, multiple layers of the dilated convolution are stacked with
different expansion factors (as shown in Figure 4) and designed in a symmetric structure
that can effectively alleviate the detail loss during the dilated convolution. Figure 4 shows
the dilated convolution field size plots with different expansion factors.
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The receptive field size of the dilated convolution with different expansion coefficients
without stacking grows with the expansion coefficient, as seen in the upper portion of
Figure 4, but the loss of information also increases. It is not difficult to see that after stacking
the dilated convolutions with expansion coefficients of 1, 2, and 3, the size of the receptive
field increases from 3 × 3 to 7 × 7 and finally reaches 13 × 13, successfully using all of the
information in the receptive field.

When stacking the dilated convolution, for the input feature map whose shape is
insize, the output’s shape outsize can be obtained by Equation (4).

outsize =
insize + 2p− k− (k− 1)(r− 1)

s
+ 1 (4)

where p denotes the filling of the feature map, and s represents the step size of the con-
volution. From Expression (4), it can be seen that when s = 1 and k = 3, it is necessary
to have p = r to keep the size of the feature map unchanged during the dilated convolu-
tion. Therefore, this study will use the values 1, 2, and 3 for p. Furthermore, the 1 × 1
convolution is implemented to lower dimensionality first and then raise it, generating a
symmetric bottleneck-type structure that can alleviate overfitting and reduce the number of
parameters in the process of dilated convolution stacking. The structure of the symmetric
dilated convolutional module is shown in Figure 5.
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3.2. Symmetric FPN-Attention Module

The FPN network is used in the neck module of YOLOv4-tiny. The deep feature map
with robust semantic information obtained by multiple down-sampling is first aligned by
1 × 1 convolution, then fused with the shallow feature map with weak semantic information
by up-sampling, resulting in a feature map with richer semantic information. However, as
the down-sampling multiplicity increases steadily, the spatial location information of the
feature map is gradually lost, affecting the object detector’s performance.

Based on this, the model’s neck connection layer is redesigned, as shown in Figure 6.
First, the feature map F5 is obtained in the backbone network after five rounds of down-
sampling and the symmetric dilated convolution module, after which the attention module
is centrally allocated the computational resources. Second, the output of the weighted
feature map is divided into two paths after a standard 3 × 3 convolution. One path is fed
to the head layer for feature classification and regression for the detection of large objects.
The other path is passed to another attention module and aligned with the feature map F4
in the spatial dimension by up-sampling, and then aligned with the channel dimension
by 1 × 1 convolution. Finally, the two are stitched together by channel. Moreover, the
proposed method concatenates the feature maps F3 and F4; these have been down-sampled
three times to improve the model’s ability to detect small objects, and they construct a top
and symmetrical bottom architecture. F3 is down-sampled at first for feature alignment by
3 × 3 convolution with a step size of 2. Then, it is aligned by 1 × 1 convolution for channel
alignment, and the same attention module is used in the process.
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Let DilaConvr(·) denote the dilated convolution with expansion coefficient r, A(·)
denote the attention mechanism, Up(·) denote the up-sampling, and Convk/s represent a
convolution with kernel size of k× k and stride of s. The s is set to 1 by default. P4 and
P5 respectively denote the aggregated feature maps corresponding to different levels of
down-sampling. Then, the process of feature fusion using the above can be represented by
Expressions (5) and (6).

P4 = A[Conv3(F4) + Conv1(Up(P5))]+Conv1[A(Conv3/2(F3))] (5)

P5 = DilaConv1,2,3(F5) (6)

The convolutional block attention module (CBAM) [27], which comprises the channel-
attention module (CAM) and the spatial-attention module (SAM), as shown in Figure 6, is
used as a concrete implementation of the attention module. The input features F obtained
from affine translation will first travel through the average pooling layer and the maximum
pooling layer in the CAM. The average pooling layer is considered to learn the range of
objects effectively. In contrast, the maximum pooling layer can collect salient features of
objects to aggregate spatial information, after which the shared weights obtained from the
multilayer perceptron (MLP) are summed element by element. The final channel attention
score map MC(F) is obtained after sigmoid activation, and FCA represents the feature map
after the channel attention module, which is obtained by multiplying the input feature map
with MC(F) element by element. The expression is shown in Equation (7).

FCA = MC(F)⊗ F
= σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))⊗ F
= σ

(
W1

(
W0

(
FC

avg

))
+ W1

(
W0
(

FC
max
)))
⊗ F

(7)

where ⊗ denotes element-by-element multiplication, W0 ∈ RC/γ×C and W1 ∈ RC×C/γ

are the weight matrix of the MLP, σ(·) denotes the sigmoid function, and γ denotes the
dimensional scaling factor. FC

avg and FC
max represent the mean and maximum value on each

feature map by channel, respectively.



Symmetry 2022, 14, 1669 9 of 16

After obtaining FCA through the channel attention module, it is mapped to the spatial
attention module as the input features. As can be seen from the right bottom of Figure 6,
the feature map is first subjected to maximum pooling and average pooling operations along
the channel axis. Following that, the two channels are combined by a 7 × 7 convolutional
layer. The spatial feature score map MS(F) is obtained through the sigmoid function.
FSA represents the feature map after the spatial attention module, which is obtained by
multiplying the input feature map with MS(F) element by element, and the expression is
shown in Equation (8).

FSA = MS(F)⊗ FCA
= σ(Conv7×7([AvgPool(F); MaxPool(F)]))⊗ FCA

= σ
(

Conv7×7

([
FS

avg; FS
max

]))
⊗ FCA

(8)

where FS
avg and FS

max represent the mean and maximum value of feature map along the
channel, respectively.

3.3. Label Smoothing

When optical image detection is performed underwater, it frequently encounters issues
such as flowing water, light absorption, and scattering, causing low contrast and uneven
color distribution in the acquired optical images. As a result of the inaccuracy of manual
labeling, noise is invariably introduced in supervised learning. Therefore, this research uses
label smoothing [29] to alleviate the labeling error problem in the classification problem.
For the multiclassification problem, let zi denote the predicted probability distribution of
class i, qi denotes the confidence score of the current data corresponding to class i, and K
denotes the number of labels, whose expression is shown in Equation (9).

qi = σ(zi) =
exp(zi)

∑k
j=1 exp

(
zj
) (9)

When utilizing cross-entropy loss to calculate the probability of each category in
multiclassification problems, the category labels are frequently stored in one-hot form,
which causes the model to reward successful classification the most and penalize erroneous
classification the most. When the training data is not guaranteed to be accurate, it also
leads to the problem of overfitting the model. The cross-entropy loss function LCE is shown
in Equation (10).

LCE(p, q) = −∑K
i=1 pi log qi = − log py

= −zy + log (∑K
j=1 exp(zj))

(10)

where pi denotes the true probability distribution of the i − th category expressed as a
one-hot vector, y denotes the actual label of the image, pi = 1 when and only when i = y,
and pi = 0 in the rest of the cases. The result of the cross-entropy loss function is 0 when
the classification is correct and infinity when incorrect. It will cause the model to learn
in the direction of the largest difference between correct and incorrect labels, which may
lead to overfitting in the case of insufficient data or inaccurate data labeling. To solve this
problem, using soft one-hot noise to minimize the weight of the real sample label categories
in the loss function computation can result in constant overfitting. After label smoothing,
p∗i can be expressed as Equation (11).

p∗i = pi(1− α) + α/K =

{
1− α, i = y

α/K, otherwise
(11)

where α is the hyperparameter that controls the introduced noise. The cross-entropy loss
LCE

∗, at this point, can be expressed as Equation (12).

LCE(p, q)∗ = −∑K
i=1 p∗i log qi

= −(1− α + α/K) log qi − α/K ∑
i 6=y

log qi (12)



Symmetry 2022, 14, 1669 10 of 16

At this point, the ideal solution z∗i can be represented as Equation (13).

z∗i =

{
log((k− 1)(1− α))/(α + ε), i = y

ε, otherwise
(13)

where ε can be expressed as any real number. Regularization reduces the output differ-
ence between the correct and incorrect classes, which helps to prevent the network from
overfitting and improves the model’s robustness.

4. Experiments

The proposed YOLO-UOD is quantitatively trained and evaluated on the Brack-
ish underwater dataset in this section, and ablation experiments are undertaken to vali-
date the effectiveness of the proposed improvements, with the experimental details and
results described.

4.1. Experimental Environment and Configuration
4.1.1. Underwater Image Dataset

This work uses the Brackish underwater dataset [9] as the training dataset and test
dataset for the model. The Brackish underwater dataset contains 10,995 original images
of underwater objects and their accompanying annotation files, with a total of six object
types, as shown in Figure 7, namely big fish, small fish, starfish, shrimp, crab, and jellyfish.
The dataset is chosen at random in an 8:1:1 ratio and separated into training, validation, and
test sets, accordingly. The training set has 8905 photos for training the model, the validation
set contains 990 images for evaluating the model during the training process, and the test
set, which contains 1100 images, is used to assess the model’s actual performance.
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An effective training data set is one of the most important ways to increase the
detection accuracy of a deep-convolutional-network-based object detector. When object
detection is done in an underwater environment, the imaging technique is affected by light
absorption and scattering (Figure 7). The underwater image appears blue-green in hue
due to the wavelength dependence of visible light propagation in the water body, while
light scattering by impurity particles in the water generates blurred image details as well
as surface haze. As a response, this work performs operations such as image improvement
(e.g., contrast stretching and color gamut transformation) on the original image before
feeding it into the network for training. Mosaic enhancement is not used throughout the
training procedure because of its volatility during the process.
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4.1.2. Evaluation Metrics

A qualified object detector is able to classify and localize objects of interest in an image
or video with a sufficiently high confidence level [30]. When evaluating object detectors,
precision refers to the model’s capacity to correctly anticipate the object of interest, while
recall refers to the model’s ability to locate all objects of interest. In Equations (14) and (15),
the precision and recall expressions are shown, respectively.

precision =
TP

all detections
=

TP
TP + FP

(14)

recall =
TP

all ground− truths
=

TP
TP + FN

(15)

where TP denotes the number of correctly predicted positive samples, FP denotes the
number of negative samples predicted as positive samples, and FN denotes the number of
positive samples predicted as negative samples. Their relationships can be represented in
Table 1.

Table 1. Classification confusion matrix.

Prediction
Ground Truth Positive Negative

Positive TP FN
Negative FP TN

In practical detection tasks, both accuracy and recall are usually required to maintain
a superior score. However, accuracy × recall is often not monotonic, but shows a sawtooth
shape. Average precision (AP) is a measure of the area under the precision × recall curve,
which summarizes an equilibrium state of precision and recall determined by the confidence
level of the prediction bounding box to represent the accuracy of the model concerning a
certain category. This study uses mean average precision (mAP) to denote the average of
all classes, and N to denote the total number of discovered object classes. The expression
for mAP can be seen in Equation (16).

mAP =
1
N

N

∑
i=1

∫ 1

0
P dR (16)

where P denotes the precision value, and R denotes the recall value.

4.1.3. Experimental Environment

The experimental software environment is Ubuntu 20.04, CUDA version 11.3, cuDNN
version 8.2.0.53, PyTorch 1.8.1 deep learning framework, and the Python 3.8 programming
environment. The Nvidia RTX3090 GPU and the i9-10920X are used as the hardware
environment to train the model. Transfer learning is employed to tackle the problem of
limited sample size and speed up network convergence by using the ImageNet pre-trained
model as the backbone network’s initialization weights and then training the model on the
Brackish underwater dataset. In the experimental process, the stochastic gradient descent
(SGD) optimizer with a momentum of 0.9 is utilized. The batch size is set to 64, the starting
learning rate is 2 × 10−3, and the learning rate decrease strategy is StepLR with 100 epochs
throughout the training. The warm-up is adopted within the first five epochs of the training
to accomplish the initial learning rate, which mitigates the early overfitting phenomena of
the model to the mini-batch in the beginning stage. After that, at the 30th, 60th, and 90th
epochs, the learning rate is reduced to one-fifth of the previous rate.

This work tabulated the testing/training execution times for YOLO-UOD and other
contrast algorithms on the server, as shown in Table 2.
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Table 2. Training/testing execution times of the algorithms on the server.

Model Training Time (Hours) Testing Time (Image/ms)

RetinaNet 3.6 19.70
YOLOv3 3.9 9.56

YOLOv4-tiny 2.1 5.35
YOLOv5s 1.7 8.85
YOLOv5m 2.3 12.35

YOLO-UOD 2.1 6.18

4.2. Comparison and Analysis of Experimental Results

In order to facilitate batch training, the size of the input image is fixed to 416 × 416
when training the model. Following the training, the validation dataset, which uses the
dataset partitioning described in Section 4.1.1, is fed into the trained network.

4.2.1. Ablation Experiments

Several ablation experiments are conducted to show the superiority of the proposed
structure, and the results in mAP are reported in Table 3. The check box in Table 3 indicates
that this module is used. The DilaConv denotes the symmetric dilated convolutional
module. This table shows that the original YOLOv4-tiny has an mAP score of 77.38% on the
Brackish underwater dataset. First, the model achieves 86.12% with the DilaConv module,
which is 8.74% higher than YOLOv4-tiny’s score, indicating that the DilaConv module is
able to capture global information effectively and preserve semantic information. Second,
by combining with the symmetric FPN-Attention module, this model achieves a score of
86.13%, which is 8.75% higher than YOLOv4-tiny’s score, meaning that the symmetric
FPN-Attention module makes the computational resources allocated by the model more
focused on representing valuable features. Following that, the performance of the network
reaches 87.37% by combining the DilaConv module and the symmetric FPN-Attention
module. The final score achieves 87.88% by using the label smoothing training strategy,
which is 10.5% higher than the original score. Figure 8 depicts the present algorithm’s
partial test results on the Brackish dataset.

Table 3. Ablation experiment.

DilaConv Symmetric
FPN-Attention Label Smoothing Brackish

77.38√
86.12√
86.13√ √
87.37√ √ √
87.88
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4.2.2. Comparison of Different Algorithms

In this subsection, the proposed YOLO-UOD is compared with one-stage object de-
tectors, such as RetinaNet [18], YOLOv3 [22], and YOLOv4-tiny [7]; and SOTA detectors,
such as YOLOv5s and YOLOv5m. A detailed comparison of results, in terms of AP and
mAP scores working on a large-scale Brackish underwater dataset, is included in Table 4.
Although YOLOv5 and other detectors may have outstanding performance, their actual
detection results are frequently disappointing due to the lack of attention to practical fea-
tures during feature processing. Compared with them, YOLO-UOD can more effectively
focus on the valuable features of the object thanks to the symmetric FPN-Attention module.
Table 4 shows that the proposed YOLO-UOD achieves the best performance, better than
YOLOv5m (87.88% vs. 84.34%) and YOLOv5s (87.88% vs. 83.05%).

Table 4. Comparison of different detection algorithms in underwater environment.

Model
AP(%)

mAP(%)
Fish Small Fish Crab Shrimp Jellyfish Starfish

RetinaNet 97.69 55.27 59.79 69.13 60.67 88.04 71.77
YOLOv3 87.10 73.00 86.26 61.43 71.78 95.60 79.20

YOLOv4-tiny 87.29 61.11 77.49 63.22 80.76 94.44 77.38
YOLOv5s 96.38 72.73 76.16 73.75 84.34 94.95 83.05
YOLOv5m 95.09 67.72 88.72 71.36 88.20 95.00 84.34

YOLO-UOD 98.44 74.01 84.46 86.37 88.43 95.58 87.88

According to Table 4, one can also see that the performance of object detection for
small fish, shrimp, and jellyfish reaches 74.01%, 86.37%, and 88.43%, respectively, which
shows that this method also achieves the best performance in small object detection.

Table 5 shows the respective test results of YOLOv4-tiny, YOLOv5s, YOLOv5m, and
YOLO-UOD on Jetson Nano 2 GB and uses the FPS as a metric to analyze the model’s
detection performance on a computationally constrained platform. The model sizes and
computational complexity (giga floating-point operations per second, GFLOPs) of the two
are also evaluated. Table 5 shows that YOLOv4-tiny has the fastest inference speed score
among these algorithms, followed by the proposed YOLO-UOD (9.87 FPS vs. 9.24 FPS).
The results indicate that the inference of the YOLO-UOD is faster than that of YOLOv5s
(9.24 FPS vs. 8.38 FPS) and YOLOv5m (9.24 FPS vs. 4.11 FPS), which can be used to achieve
a better speed/accuracy trade-off and fulfill the real-time demands to some extent.

Table 5. Performance comparison of different detection algorithms under limited computing power.

Network Model Size (MB) GFLOPs FPS

YOLOv4-tiny 22.4 3.47 9.87
YOLOv5s 7.3 17.06 8.38
YOLOv5m 81.5 51.43 4.11

YOLO-UOD 24.2 3.84 9.24

4.2.3. Statistical Analysis

To demonstrate whether there is a significant difference in performance between
the proposed YOLO-UOD and YOLOv4-tiny, YOLOv5s, and YOLOv5m, a statistical test
between these algorithms is conducted. In this work, the original divided dataset is
recorded as D1. The dataset is then randomly divided twice and labeled D2 and D3 per
Section 4.1.1’s strategy, and these algorithms are retrained on it. Afterward, the Friedman
test and post hoc Nemenyi test [31] are performed on mAP scores of different algorithms
on each dataset.

The confusion matrix shown in Figure 9 records the p-value matrix returned by the
Friedman test with the post hoc Nemenyi test. The p-value in Figure 9 is a number that
describes statistical significance, and the assumption that two algorithms perform the same
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in accuracy can be rejected when the p-value < 0.05. Figure 9 shows that the p-value between
YOLO-UOD and YOLOv4-tiny is 0.0229597 < 0.05, suggesting that the performance of
these two algorithms is significantly different. Although the p-value between YOLO-UOD
and YOLOv5 does not show a significant difference, the YOLO-UOD has a faster speed in
inference. Through the above statistical analysis, it can be proved that the YOLO-UOD has
a better balance of speed and accuracy.
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5. Conclusions

In view of the disappointing problem of the accuracy and speed of underwater object
detection, this paper proposed a YOLO-UOD optimization algorithm based on the research
of YOLOv4-tiny.

Experimental results on the Brackish underwater dataset show that the proposed
method with the symmetric FPN-Attention module and the symmetric dilated convolu-
tional module can effectively capture valuable features and contextual information and pre-
serve deep features. Its detection mAP score for underwater objects reaches 87.88%, which
is higher than YOLOv4-Tiny’s score of 77.38% and better than YOLOv5s and YOLOv5m.

Through significant non-parametric tests on YOLOv4-tiny, YOLOv5s, YOLOv5m, and
YOLO-UOD, the results show that the proposed YOLO-UOD is significantly different from
YOLOv4-tiny and YOLO-UOD has improved underwater object detection performance.
Further analysis shows that although there is no significant difference in performance
between YOLO-UOD and YOLOv5m, the inference speed of YOLO-UOD is much faster,
suggesting that YOLO-UOD achieves a good balance of speed and accuracy.

However, the proposed YOLO-UOD algorithm still has a certain loss in inference
speed (0.63 FPS slower than YOLOv4-tiny), and its applicability to more underwater scenes
still needs further research. Therefore, we will continue to study the performance of
YOLO-UOD in various underwater scenarios and overcome the disadvantage of inference
speed loss.
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