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Abstract: We revisit our earlier paper, with two of the coauthors, in which we proposed an unbiased
and consistent estimator µ̂n for an unknown mutation rate µ of microorganisms. Previously, we
proved that the associated sequence of estimators {µ̂n} converges to µ almost surely pointwise on
a nonextinct set Ω0. Here, we show that this sequence converges also in the mean square with
respect to conditional probability measure P0(·) = P(· ∩Ω0)/P(Ω0) and that, with respect to P0, the
estimator is asymptotically unbiased. We further assume that a microorganism can mutate or turn to
a different variant of one of the two types. In particular, it can mean that bacteria under attack by
a virus or chemical agent are either perishing or surviving, turning them to stronger variant. We
propose estimators for their respective types and show that they are a.s. pointwise and L2-consistent
and asymptotically unbiased with respect to measure P0.

Keywords: Luria-Delbrück; mutation rate; bacterial mutation; stochastic estimator; mutagenesis;
spontaneous mutation; bacterial genetic variations; symmetric and asymmetric mutation types

1. Introduction

In numerous biological applications related to the proliferation of microorganisms,
such as bacteria, viruses, and even cancer cells, at some point of their division, they
start mutating. New mutants are typically stronger and more virulent. In most common
situations, bacteria divide in two forming a deterministic branching process. If a colony
starts from a single organism, in the nth generation, its population size is 2n (unless some
progenies perish). Suppose at some point that one of its offspring mutates, say, with
probability µ (which is typically small). Then, a new mutant divides like a nonmutant and
it engenders a deterministic branching process. As the rate of reverse mutation on the same
phenotype, called revertant, is extremely small [1,2], we do not consider this option in our
paper. The mutation probability µ is called the mutation rate.

1.1. Our Approach Compared to Other Methods

The mutation rate is a common target in biomedical research and its applications.
Ever since the seminal paper by Luria and Delbrück [3] in 1943, numerous works on
determination of mutation rate have emerged (cf., [4–14]). They all have dealt with various
estimates for µ.

The deterministic branching process (a rooted tree) contained a branching subpro-
cess (random subtree) of non mutants that turned out to be a Galton–Watson process,
although the target process was that of new mutants. The new mutants and pre-existing
mutants form non-Markov processes.

Why do we deem the branching processes approach more rigorous? In Luria and
Delbrück [3], the authors assumed that the number of mutations M(τ) that occur in interval
(t, t + τ) equals µτNt, where Nt is the total number of bacteria at time t. This assumption
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is inaccurate, because to determine the mutation rate µ, they had to exclude from Nt the
number of pre-existing mutants, even if this number is small. We actually prove that even
if the mutation rate µ is small, the number of pre-existing mutants can converge to infinity
and thus cannot be neglected. Moreover, M(τ) would be better off to equal some µτ2Xt,
where Xt is the number of nonmutants at time t, which doubles in interval (t, t + τ) unless
τ is too small. Stewart [15] also states that the Luria and Delbrück method is inaccurate.

Furthermore, if that would not be the case and Nt would be approximately equal to the
number of nonmutants at time t, then the Luria and Delbrück method is still problematic.
Here is why: suppose Xn is the number of nonmutants in generation n and suppose that
each nonmutant can turn to a mutant with equal probability µ. Thus, each nonmutant is
a Bernoulli r.v. with parameter µ. The number of newly born mutants NMn in generation
n is thus binomial with parameters (Xn, µ), that is, NMn ∈ [B(Xn, µ)]. Because Xn is large
and µ is small, the number NMn is approximately Poisson, with parameter λn = NMnµ,
which carries unknown NMn and µ. The probability that there is no mutant at generation n
would have been p0 = e−λn , which the authors claimed could be determined experimentally
and is fairly simple. However, there is still a problem of finding NMn, which is not equal to
the total number cells Nn, nor does it equal the number of all mutants Mn at generation n.
This is the reason why we think this method is unpredictably inaccurate (although Zheng
in [16,17] claims that the Luria/Delbrück method is the best). Precisely, µ ≈ NMn/2Xn−1
( 6=Mn/Nn = Mn/2n as the authors allude), provided that the latter is consistent in some
sense and that n is sufficiently large. None of these requirements has ever been met in their
work, nor in the work of their followers. This problem was also pointed out by Stewart [15].

Another problem in the statistical evaluation of the popular p0-method is that in order
to maintain a “nonmutant” plate (which is required to reasonably estimate p0), it applies
to counts rendered at early times or for cultures with extremely low mutation rates to
warrant at least one plate with no mutants. However, this carries an adverse effect on
statistical significance.

In various other alternatives, many formulas contain the ratio Mn/Nn as a major
component in their estimators (rather Mn+k/Nn+k −Mn/Nn) which has a similar short-
coming and it cannot be salvaged by logarithmic or other multipliers often occurring in
the literature. We noticed that no work offers a general formula for the determination of µ
(whether practical or not). All heuristic methods may work in some special cases, but none
are claimed to be general. In the literature on mutation rates, we see that some methods
claimed to be efficient when following certain heuristic instructions imposed on µ (which
was to be determined) and the mean number of mutants. It is not clear how the results
obtained for µ were validated. We compared several tables of the results produced from
different methods and they all vary.

In Niccum et al. [18], we offered the first rigorous method of determining µ by a point-
wise rapidly convergent sequence {µ̂n} of estimators. At first, the original formula for µ̂n
we operated on looked impractical because it contained newly formed mutants that are dif-
ficult to tell from pre-existing mutants, but it was modified by replacing it with an identical
formula requiring just the knowledge of the mutants in any two consecutive generations
that turned out to be practical in real labs. That “it was still difficult to observe” as stated in
Zheng [17] was not the situation with a series of our lab experiments [18] performed by
us and our students (who coauthored the paper) and beyond. It also needs to be noted
that the proposed estimator had a rapid speed of convergence that has been validated in
numerous subsequent simulations rendered by our students in senior undergraduate and
graduate projects with no single exception.

1.2. Synchronized Cultures

In our original mathematical model [18], we assumed that bacteria replicate syn-
chronously. We retain this mathematical assumption in the present work as well. As ex-
plained in [18], the real count in the lab is a little different. This method has been rendered
for decades and the count of mutants (that is compatible with our theoretical assump-
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tion) agrees with quite a few experiments made by different researchers, which obviously
renders coincidences (and thus inaccuracies) probabilistically impossible.

Yet for the skeptics of our mathematical methodology, we would like to mention
the common practice of synchronization of bacterial cultures known in the biological
literature. First, a synchronized culture is a culture that contains cells in the same growth
stage when they replicate, as opposed to asynchronous growth when the replication cycles
are random. Most known cell divisions in a population are asynchronous. It is an observed,
although unproven, assumption that random deviations of the cycle lengths are symmetric
around the mean time of division. However, that needs to be rigorously validated. If this
holds true, it is easy to deduce that a mere observations of a bacterial culture would give
a pretty accurate identification of an underlying generation.

Alternatively, there are widely used synchronization approaches from 1957 (cf. Camp-
bell [19]) and earlier and these continue to be described to the present time (cf. Chang et al. [20]
of 2019). A popular technique, known as Helmstetter–Cummings [21,22] of 1968 and
2015 deals with an unsynchronized culture filtered through cellulose nitrate membrane
filter. There are numerous other synchronization techniques by Anderson and Petti-
john [23], Kepes and Kepes [24,25], Kubitcheck [26], Ling and Chang [27], Noack, Klöden,
and Bley [28], Shehata and Marr [29], and Wallden et al. [30], to name a few. A rigorous
description of all those methods lies outside the scope of this paper.

Note that experimentally cells may not remain synchronized during growth compli-
cating analysis. As mentioned above, it would be interesting to conduct lab experiments
and learn about the statistical impact of unsynchronized replication. It seems that even if
we assume the replication to be synchronous while in facts it is not, the deviations will be
symmetric and not large, and as the result, the incorrect assumption will not corrupt the
counts, because so far, the observed numbers were not conflicting with our experiments,
and they agreed with experiments conducted in other labs. This conjecture is by no means
intended to replace a rigorous investigation, which we plan to render.

1.3. Mutation or No Mutation?

There are many anecdotal stories about antibiotics causing antibiotic resistance and
breeding new forms of virulent bacteria, in quite a few cases offering little to no remedy.
One such notorious form is called MRSA, which stands for methicillin-resistant Staphylococcus
aureus (S. aureus), a type of bacteria that has become resistant to potent antibiotics used to
treat ordinary staph infections. It thus means that it is tougher to treat compared to other
strains of Staphylococcus.

MRSA most commonly causes skin infections and can sometimes trigger pneumonia
and other conditions. The symptoms largely depend on which part of the body is affected.
Untreated, MRSA can become severe, leading to sepsis. MRSA infections are usually
seen in individuals who were previously or currently in hospitals or other health care
facilities such as dialysis centers or nursing homes. Many professionals are alarmed by the
spread of MRSA as due to its resistance to many types of drugs; it is becoming known as
a “super bug”.

On the other hand, there is a general consensus that while bacteria mutate, this process
is neither impacted nor exacerbated by the use of antibiotics or other chemical agents.
They claim that mutations occur periodically without any external force. However, that
natural selection allows these to thrive over other bugs that do not have resistance. (It
must be noted that antibiotics are natural products of other organisms that also try to keep
bacteria away.)

Before we elaborate it, we wonder what a mutation is referred to in cellular/molecular
biology. A mutation is formally defined as an alteration to the gene sequence of an organ-
ism. A “natural mutation” occurs spontaneously and can happen during bacterial DNA
replication where enzymes choose a wrong base to pair with the original DNA, or due
to the environmental UV light, modifying the structure of the original DNA strand that
allows it to pair with bases that are not normally compatible.
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While the entire bacterial genome is susceptible to mutation, certain mutations are
more easily detected than others because of selection. An example is the trpE gene in the
Escherichia coli (E. coli) WP2 strain [31]. This high mutation region allows researchers to
detect mutation on the strain using the so-called reverse mutation assay, in which the bacteria
are grown in an amino-acid-deficient culture to test if the mutation occurred (trp+) or not
(trp−) [32].

The natural mutation rate for E. coli in a rich medium mutation rate is 10−3 per
genome per generation [33]. The mutation rate of methicillin-resistant Staphylococcus aureus
(S. aureus)—MRSA strain is similar to the reported mutation rate of wild-type E. coli [34].
The elevated mutation rate is suspected to cause the increased rate of bacteria vancomycin-
resistant genes, especially for the vancomycin-intermediate-resistant S. aureus strains—
VRSA [35].

1.4. Other Means of Genetic Change

Other means of genetic change exist, in addition to classical spontaneous or genotoxicant-
induced mutation, and, in some cases, these resulting genetic changes may also be covered
by our model in as much as they may represent stochastic events. While the mechanisms
responsible for these changes are well understood and these processes are not considered as
classical mutations, they do result in genetic change in the affected organism. In some cases,
the probabilities of these events are rare and, as such, the resulting genetic change may be
described by probabilistic models. For the purposes of a more comprehensive discussion of
other modes genetic changes, these alternative modes of change will be briefly described.

Transformation. Transformation is a process in which a bacteria takes up exogenous
(free) DNA from its surrounding environment. This DNA can come from dead (lysed)
bacteria. Transformation can happen artificially (such as a heat shock/electroporation),
or naturally. A natural transformation occurs when there is a cooperative expression of
multiple genes under specific conditions called competence [36]. This state is induced
by a limited nutrition (usually amino-acid-deficient environment), associated with the
stationary phase. For some other bacteria, transformation occurs most efficiently at the end
of exponential growth approaching the stationary phase.

Transformation is one process that can lead to Horizontal Gene Transfer (HGT). There
is a hypothesis about the HGT facilitated by the transformation of antibiotic-induced cell-
wall-deficient bacteria [37]. This hypothesis states that before the bacteria die, they generate
a cell-wall-deficient form and increase the uptake rate of exogenous DNA, because the
DNA from dying bacteria release DNA. They are not doing the uptake as they are dead
and could not then restore life to propagate this. Combining with the fact that patients who
were treated with diverse antibiotics are more prone to get infected with MRSA makes this
hypothesis more credible.

In this process, two bacterial cells attach, and plasmids and free intracellular DNA
fragments travel from the donor cell to the target cell. In the target cell, plasmids can begin
to replicate, whereas DNA fragments may become incorporated in the target cell’s genome.
A study on MRSA conjugation stated that this mechanism could be one of the pathways by
which methicillin resistance is transmitted among S. aureus strains [38].

Transduction. Another mechanism for bacteria genome variation is called transduction.
When bacteria are infected with a virus (usually a bacteriophage), the virus uses the cell’s
materials to produce new viruses and kill the bacteria when it reaches some threshold.
During the production of new viruses, some fragments of the original bacteria’s DNA are
taken up into the virus’ DNA. When this virus infects other cells, it also introduces the
DNA to the new cell. If the infection goes to the latent phase and the fragments contain
antibiotic genes, the bacteria become antibiotic-resistant [39]. Virus latency (or viral latency)
is the ability of a pathogenic virus to lie dormant (latent) within a cell, denoted as the
lysogenic part of the viral life cycle. If virus becomes latent, it neither reproduces nor kills
the host cell.
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So, as we see it, there is a variety of genetic alterations to the bacteria that are technically
not mutations, but they often produce virulent species. While it is a common conjecture
that bacteria do not mutate under chemical agents such as antibiotics, the latter does cause
formidable DNA changes turning some strains to dangerous forms that can be even life-
threatening. Most of these transformations are detectable and they can be observed and
analyzed mathematically to determine the odds of their changes whether or not we call
them mutations. Therefore, it stands to reason to consider those phenomena and place them
in the same category as mutations and apply the same mathematical tools to establish
rigorous estimators of their genetic transformations. It is also possible that an epigenetic
change can occur that may be detectable by selection.

1.5. The Results

In the present paper, we show that the estimator proposed in [18] is not only al-
most surely pointwise consistent but also consistent in the L2-norm giving us yet another
mathematical confirmation of the goodness of the proposed estimator. We also prove the
convergence with respect to other probability measures. We further assume that a microor-
ganism can mutate in one of the two types, which in particular, can model the spread of
virulent antibiotics-resistant bacteria (referred to in the media as “superbugs”) that evolve
under attacks by chemical agents so that they either die or mutate to survive the attacks.
Consequently, mutated or altered bacteria’s variants that survive are referred to as type
1 mutants and other mutants are called type 2 mutants. We also propose estimators for
either type of mutants. These estimators turn out to be unbiased and consistent in every
common sense, that is, almost surely pointwise and in the L2-norm. (Some other forms of
consistency are discussed throughout the forthcoming sections.)

We note that while death of bacteria is present in most bacterial cultures, it is rarely
used in mathematical modeling. We address this matter in the present article and even
generalize our model allowing replicated offspring to turn to one of the two mutant types
with probabilities p and 1− p, respectively. It makes sense to call such division symmetric
when p = 1

2 . In the event that this represents bacterial death, that, as mentioned, takes
place under the use of a chemical agent (such as antibiotic) or bacteriophage attack.

2. Types of Stochastic Convergence

To make our paper self-contained, we present a short background on types of con-
vergence of random variables (r.v.’s) related to the consistency of our estimators. (Cf.
Dshalalow [40].)

Definition 1 (Types of convergence for a sequence of r.v.’s). Let Z, Z1, Z2, . . . be a sequence of
r.v. on a probability space (Ω,F ,P). We say that the sequence {Zn} converges to r.v. Z

(i) in probability
(

in notation Zn
P−→ Z

)
if

lim
n→∞

P{|Zn − Z| > ε} = 0, for each ε > 0,

(ii) in the p-norm (or in the Lp-norm or in the p-th mean)
(

in notation Zn
Lp
−→ Z

)
if

lim
n→∞

E[(Zn − Z)p] = 0, p ≥ 1,

(iii) in the mean (or in the L1-norm)
(

in notation Zn
L1
−→ Z

)
if

lim
n→∞

E[Zn − Z] = 0,
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(iv) almost surely (a.s.) (or P-almost surely)
(

in notation Zn
a.s.−→ Z

)
if

P
{

ω ∈ Ω : lim
n→∞
|Zn(ω)− Z(ω)| = 0

}
= 1.

The latter means that Zn converges to Z pointwise for almost all ω ∈ Ω.

Theorem 1. The following relations hold true:

Zn
a.s.−→ Z ⇒ Zn

P−→ Z and Zn
L2
−→ Z ⇒ Zn

L1
−→ Z ⇒ Zn

P−→ Z

Definition 2. If θ̂n is an estimator of some parameter θ, then θ̂n is a statistic (Borel measurable
function) of a random sample X1, . . . , Xn ∈ [X]. In general, suppose X1, X2, . . . is a sequence
of r.v.’s on a filtered probability space (Ω,F , (Fn),P) adapted to (Fn). Notice that the r.v.’s
X1, X2, . . . need not be independent nor identically distributed. Let

θ̂n := δ(X1, . . . , Xn)

be a statistic of the sample of the first n r.v.’s. Then,
{

θ̂n
}

is a sequence of estimators associated
with {Xn} and induced by a Borel measurable function δ. Let θ be a real number referred to as a
parameter of {Xn}.
(i) The sequence

{
θ̂n
}

is unbiased if Eθ̂n = θ holds for all n.
(ii) The sequence

{
θ̂n
}

is asymptotically unbiased if limn→∞ Eθ̂n = θ

(iii) The sequence
{

θ̂n
}

is consistent

(a) in probability if θ̂n
P−→ θ

(b) in the pth mean (or in the Lp-norm) if θ̂n
Lp
−→ θ for some p ≥ 1

(c) almost surely if θ̂n
a.s.−→ θ

We say that θ̂n is a consistent estimator in probability, pth mean, or almost surely, respectively,
if so is the sequence

{
θ̂n
}

.

3. A Background on Stochastic Estimators of Mutation Rate

Consider a population of microorganisms, such as bacteria, stemming from a single
parent. Assume that the bacteria replicate by the division in exactly two progeny. At gener-
ation n, there are exactly 2n bacteria in the population forming a deterministic branching
process, provided that the bacteria do not die. Suppose that a generation began with a sin-
gle parent bacterium (at generation zero) and beginning from generation 1, each bacteria,
independently of the others, mutates with probability µ ∈

(
0, 1

2

)
. The parent bacterium of

the generation is thus assumed to be a nonmutant organism. Let Xn be the total number
of nonmutants at generation n, NMn be the total number of new mutants at generation
n, and Mn be the total number of all (preexisting and new) mutants at generation n. We
assume that µ (referred to as the mutation rate) is constant at every generation. To determine
µ experimentally, we proposed in [18] the estimator

µ̂n+1 = NMn+1/2Xn = (2Xn − Xn+1)/2Xn = 1− Xn+1

2Xn
(1)

which turned out to be unbiased and consistent a.s. on the non extinction set Ω0 (defined
below) such that P(Ω0) = 1− µ2/ν2, where ν = 1− µ. (For various bacteria, such as E. coli,
this probability is extremely close to 1.)

Denote

Cn = {ω : Xn(ω) > 0} and Ω0 =
∞⋂

n=1

Cn. (2)



Symmetry 2022, 14, 1701 7 of 22

Since the sequence {Cn} is monotone decreasing, the notation Ω0 in (2) makes sense

and Ω0 is referred to as the nonextinction set. As mentioned above, P(Ω0) = 1− µ2

ν2 = 1− φ.
In light of our next applications, it is more convenient to turn to the confined space

(Ω0,F0 = F ∩Ω0,P0), where

P0(·) = P(· ∩Ω0)/P(Ω0) = P(·|Ω0). (3)

If X : Ω0 → R is a r.v. on the confined space (Ω0,F ∩Ω0,P0), then (cf., Dsha-
lalow [41]), the expected value E0 (with respect to measure P0) is

E0X =
∫

XdP0 =
1

P(Ω0)

∫
Ω0

XdP =
1

P(Ω0)
E
[
1Ω0 X

]
. (4)

4. Preliminaries

Let Wn = Xn
(2ν)n , n = 0, 1, . . ., be the normalized sequence of the respective nonmutants

populations. This sequence is a martingale that almost surely on Ω0 converges to a r.v. W∞
(cf. [42]). Furthermore, Theorem 2 [Section 6, Chapter I] of [42] reveals the nature of this
r.v., also stating that the convergence of Wn to W∞ is also in the mean square.

Note that Theorem 2 below is borrowed from [42] originally formulated and proved
as Theorem 2 . It could be more rigorously crafted under the specification of the confined
probability space (Ω0,F0 = F ∩Ω0,P0) introduced in (3) and (4). We proceed with those
key assumptions throughout the rest of the paper.

Theorem 2 ([42]). If ν > 1
2 , then

(i) ‖Wn −W∞‖L2 → 0.

(ii) EW∞ = 1, VarW∞ = 1
2ν ·

σ2

2ν−1 = µ
ν−µ .

(iii) P{W∞ = 0} = φ = 1− P(Ω0).

From Theorem 2 (iii), we have that P0{W∞ > 0} = 1.
Assume that ν > 1

2 . Since Wn → W∞ : Ω→ {0} ∪ (0, ∞] with the distribution φ and
1− φ, respectively, the sequence {Xn} converges to

X∞ = lim
n→∞

Wn(2ν)n

where X∞ is defined on Ω and valued in {0} ∪ {∞}, with the distribution φ and 1− φ =
P(Ω0), respectively. Therefore, on the confined probability space, (Ω0,F ∩Ω0,P0), X∞
equals ∞ P0-a.s. Hence, the r.v. 1

X∞
on (Ω0,F ∩Ω0,P0) equals 0,P0-a.s., which implies that

E0

[
1

X∞

]
= 0 (5)

Now, because Xn ≥ 1 on Cn = {Xn > 0}, 1
Xn
≤ 1 on Cn. Therefore,

1
Xn

1Cn ≤ 1Cn .

Because 1Cn is L1(P)-integrable, using the Lebesgue dominated convergence theorem
(LDCT),

lim
n→∞

E
[

1
Xn

1Cn

]
= E

[
limn→∞

1
Xn

1Cn

]
= E

[
limn→∞

1
Xn
· limn→∞1Cn

]
= E

[
1

X∞
1Ω0

]
= 0 (6)
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Thus, we proved the following lemma,

Lemma 1. E0

[
1

X∞

]
= E

[
1

X∞
1Ω0

]
= 0, where E0 and E are the integrals on respective spaces

(Ω0,F0 = F ∩Ω0,P0) and (Ω,F ,P).

Next, recall [18] that NMn+1 is the number of new mutants at generation n+ 1 equal to

NMn+1 = 2Xn − Xn+1.

Thus,
NMn+1

(2ν)n+1 =
1
ν

Wn −Wn+1 →
µ

ν
W∞ a.s. pointwise.

Similarly, because NMn+1 ≥ 1 a.s. on An+1 = {NMn+1 > 0}, it follows that 1
NMn+1

≤ 1
on An+1 that implies

1
NMn+1

1An+1 ≤ 1An+1 .

By the LDCT and because An+1 ⊆ Cn,

lim
n→∞

E
[

1
NMn+1

1An+1

]
= E

[
limn→∞

1
NMn+1

1An+1

]
≤ E

[
limn→∞

1
NMn+1

1Cn

]
= E

[
1

NM∞
1Ω0

]
= 0. (7)

Using the same arguments as in the proof of Lemma 1, we easily conclude that

E0

[
1

NM∞

]
= 0.

In a nutshell,

Lemma 2. E0

[
1

NM∞

]
= E

[
1

NM∞
1Ω0

]
= 0, where E0 and E are the integrals on respective spaces

(Ω0,F0 = F ∩Ω0,P0) and (Ω,F ,P).

5. The L2(P0)-Convergence of µ̂n+1

Theorem 3. Let (Ω0,F0 = F ∩Ω0,P0) be the confined space introduced in Section 3 and
(Ω,F ,P) be the original space. The estimator µ̂n+1 is P0-asymptotically unbiased and it con-
verges to µ in the L2(P0)-norm.

Proof. We use the formula

Var0µ̂n+1 = E0µ̂2
n+1 − [E0µ̂n+1]

2 =
1

P(Ω0)
E
[
µ̂2

n+11Ω0

]
−
{

1
P(Ω0)

E
[
µ̂n+11Ω0

]}2
. (8)

(i) µ̂n+11Ω0 ≤ µ̂n+1 (dominating sequence that is P-integrable with
∫

µ̂n+1dP =
Eµ̂n+1 = µ). Thus, by the LDCT,

lim
n→∞

E
[
µ̂n+11Ω0

]
= E

[
lim

n→∞
µ̂n+11Ω0

]
= µP(Ω0).

implying that
E0µ̂n+1 → µ (9)

which means that the estimator µ̂n+1 is P0-asymptotically unbiased.
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(ii) Next, we show that µ̂n+1 is L2(P0)-integrable. First, from (1),

E
[

µ̂2
n+1

∣∣∣Xn

]
= E

[(
NMn+1

2Xn

)2
∣∣∣∣∣Xn

]
=

1
4X2

n
E
[

NM2
n+1

∣∣∣Xn

]
.

Given the σ-algebra σ(Xn), the r.v. NMn+1 ∈ [B(2Xn, µ)], i.e., NMn+1 is condition-
ally binomial with parameters 2Xn and µ. Thus,

E
[

µ̂2
n+1

∣∣∣Xn

]
=

1
4X2

n

[
2Xnµν + 4X2

nµ2
]
=

1
Xn

1
2

µν + µ2

implying that

E
[
µ̂2

n+1 1Cn |Xn

]
=

1
Xn

1
2

µν1Cn + µ21Cn . (10)

and that

E
[
µ̂2

n+11Cn

]
=

1
2

µνE
[

1
Xn

1Cn

]
+ µ2P(Cn).

From (6) and (10), we have

E
[
µ̂2

n+11Cn

]
→ µ2P(Ω0).

Since µ̂2
n+11Ω0 ≤ µ̂2

n+11Cn and since µ̂2
n+11Cn is P-integrable, so is µ̂2

n+11Ω0 . Fur-
thermore, because µ̂2

n+1 ≤ 1 and because µ̂2
n+11Ω0 → µ21Ω0 a.s., by the LDCT,

E
[
µ̂2

n+11Ω0

]
→ µ2P(Ω0)

implying that

E0 µ̂2
n+1 =

1
P(Ω0)

E
[
µ̂2

n+11Ω0

]
→ µ2. (11)

(iii) Using (9) and (11),

lim
n→∞
‖µ̂n+1 −E0µ̂n+1‖2

L2(P0)
= lim

n→∞
Var0µ̂n+1

= lim
n→∞

{
E0

[
µ̂2

n+1

]
− (E0µ̂n+1)

2
}
= µ2 − µ2 = 0 (12)

or

=
1

P(Ω0)
µ2P(Ω0)−

1
P2(Ω0)

µ2P2(Ω0) = 0.

(iv) Notice that while µ̂n+1 is an unbiased estimator of µ with respect to measure P,
it need not be unbiased with respect to measure P0. As mentioned, however,
µ̂n+1 is asymptotically unbiased with respect measure P0. To establish the L2(P0)-
convergence of µ̂n+1 to µ we use (9) and (12):

‖µ̂n+1 − µ‖L2(P0)
≤ ‖µ̂n+1 −E0µ̂n+1‖L2(P0)

+ ‖E0µ̂n+1 − µ‖L2(P0)

=
√

Var0µ̂n+1 + |E0µ̂n+1 − µ| → 0 as n→ ∞.

Therefore, we proved that µ̂n+1
L2(P0)−−−→ µ.

6. The Speed of Convergence

In [18], we validated the pointwise convergence of estimator µ̂n+1 to µ by simulation
and most importantly noticed that the speed of convergence was fast. Considering the
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replication time of various bacteria (20–40 min), it generally takes not more than 12 to
15 h of lab experiments (or 25 to 30 generations) to attain to a high accuracy approxima-
tion of µ. We wondered if similar qualities of µ̂n+1 apply to the L2-convergence (mean
square) in some form. The considerations below are carried out in the confined space
(Ω0,F0 = F ∩Ω0,P0).

Let

ξ
[n]
i =

{
1, ith non mutant in generation n does not mutate
0, otherwise.

(13)

Then, η
[n]
i = 1− ξ

[n]
i is 1 if the ith nonmutant mutates and 0 otherwise.

We drop the superscript n in ξ ′s, and η′s assuming that they are iid Bernoulli r.v.’s
with parameters ν and µ, respectively. Then,

Xn+1 =
2Xn

∑
i=1

ξi, n = 0, 1, . . . , X0 = 1

and

NMn+1 = 2Xn − Xn+1 = 2Xn −
2Xn

∑
i=1

ξi =
2Xn

∑
i=1

ηi

implying that

µ̂n+1 =

2Xn
∑

i=1
ηi·

2Xn
, where ηi ∈ B[1, µ].

Setting Xn = X (constant), µ̂n+1 is the sample mean of 2X Bernoulli r.v.’s and thus
with X large, by the CLT (central limit theorem), µ̂n+1 has a Gaussian distribution with
parameters µ (mean) and µν/2X (variance). Now, with n being just 10 or larger and µ small,
Xn = X must be a large number. Thus, with simulation, because Xn is obtained empirically
it is a constant and as noticed µ̂n+1 ∈ N[µ, µν/2X], good for all n ≥ 10. The variance µν/X
of µ̂n+1 is small and must approach 0.

Suppose we “observe” bacterial replication on M plates where each colony starts with
a single parent. Denote µ̂

[k]
n+1 the estimator associated with kth plate, k = 1, . . . , M. For no-

tational brevity, we will use the same symbol µ̂
[k]
n+1 for its estimate (i.e., observed value).

Denote by µn+1 the sample mean of M estimators (estimates) µ̂
[k]
n+1, k = 1, . . . , M. Thus,

σ̂2
n+1 =

1
M− 1

M

∑
k=1

(
µ̂
[k]
n+1 − µ̄n+1

)2

is the unbiased sample variance that is known to be consistent and weakly convergent
to µν/2X as M → ∞. However, we expectthat σ̂n+1 rapidly converges to 0 with just
reasonable n and M. This would be a heuristic feel of the true convergence speed of the
variance of µ̂n+1 (cf. Equation (12)).

Example 1. To validate the results above, we will simulate the process for several fixed values of µ
and compute the sample estimates of the mean and variance of µ, i.e., µ̂n and σ̂2

n , for generations
n = 1, 2, . . . , 25 for different numbers of plates ranging from M = 1 to M = 20. The goals are
twofold: (1) to validate the accuracy of the estimators empirically and (2) to experimentally examine
the convergence of the estimators for various choices of generations n and plates M. The estimators
are more promising for practical use if convergence occurs for relatively small n and M.

To compute estimates, we must simulate M paths of the process for each experiment.
For each sample path, we start with X0 = 1 nonmutant at the 0th generation and, for each
generation n ≥ 1, we assume the number of nonmutants is a binomial random variable
Xn ∈ B(2Xn−1, 1− µ) for a preselected mutation rate µ. We generated M paths from n = 1
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to n = 30. The estimated mutation rate is computed at each generation n = 0 to n = 29
as µ̂n+1 = NMn+1/2Xn (rewritten as 1− Xn+1/2Xn for convenience) and the mean µn is
taken for each experiment with M plates. The sample variance will also computed. Ideally,
the estimate µ̂n will be near µ and the estimate σ̂2

n will approach 0 quickly for relatively
small M.

We follow this approach in several examples. In Figure 1, we let µ = 0.01 and
simulated the experiment for 25 generations for each selection of plates M ∈ {2, 5, 10, 20}
(We did not use M = 1 as we evaluate sample variance with degree of freedom of 1). There
are several intuitive occurrences here.

Figure 1. The mean mutation rate estimates of µ = 0.01 for M = 2, 5, 10, 20 plates for generations
n = 1 to 25.

Since µ̂n+1 = NMn+1/2Xn, the estimate is 0 if there are no new mutants in generation
n + 1. As we see in Figure 1, the estimates are indeed 0 before the first mutant appears
in each experiment. An interesting pattern emerges here: for M = 20 and M = 10 plates,
the first mutant appears in generation 1 and 2, respectively; for M = 5 plates, the first
mutant appears at generation 3; and for M = 2, the first mutant appears at generation 4.
The time of the first mutation is inversely related to the number of plates, which makes
sense because there are more opportunities for mutations with more plates and, therefore,
the estimate is nonzero sooner with more plates.

Second, the estimates behave erratically between the initial escape from 0 until roughly
generation 7–8. During the early generations, there are smaller nonmutant populations
in the plates, meaning intuitively that the random mutations have larger impacts on
the estimates.

As such, variance is higher when the prior generation’s nonmutant population is
smaller, and this nonmutant population grows over time in expectation since the muta-
tion rate µ � 0.05, so we should expect to high variances in early generations. After 7
or 8 generations, the variance seems to dissipate enough to allow the estimates start to
approach the true mutation rate µ = 0.01.

Continuing beyond generation 8, estimates in all experiments approach µ = 0.01,
with the experiments with fewer plates, especially M = 2, taking a longer time to converge—
again, this is expected as the conditional variance of µn+1 is inversely proportional to M2,
and a shrinking variance should result in convergence of the unbiased estimator.
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Clearly, and unsurprisingly, the estimates have higher quality for larger generation n
and larger number of plates M, but more interestingly, what does this mean for experimen-
tal use of the estimator? First, we define a modified relative error for the estimate

e0.01 = max
(∣∣∣∣µn − µ

µ

∣∣∣∣, 0.01
)

,

which is the relative error or 0.01, whichever is larger. Figure 2 is a heatmap of this modified
relative error for each pair n and M from our simulations.

Figure 2. Heatmap of modified relative errors e0.01 of mean mutation rate estimates.

Thresholding the relative error as e0.01 allows us to see clearly in Figure 2 that relative
errors of less than 0.01 occurred for all generations n ≥ 20 regardless of the number of plates,
but for more plates, near M = 20, these small errors occur reliably earlier, at generations
n < 15. Thus, even low numbers of plates can be used if the experiment can continue for
more generations. This is a promising finding for biology lab protocol, as growing more
than 20–25 dishes per experiment is highly infeasible. After 15–20 generations (starting
with 1 starting cells), we have the mean converged.

Beyond the behavior of the mean mutation rate themselves, we can consider the
estimated variance of the mutation rate, σ̂2

n+1. Figure 3 shows the estimated sample
variance for several experiments with M = 2, 5, 10, and 20 plates.
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Figure 3. The estimated variance of mutation rate for µ = 0.01, M = 2, 5, 10, 20 plates for generations
n = 1 to 25.

As we see in Figure 3, the variance converges to 0 within 10–12 generations regardless
of the number of plates, as prior analysis suggested should happen.

7. Estimator p̂n

We now assume that once a cell or microbe mutates, it turns into one of the two
mutant types, with probabilities p and q = 1− p, respectively. The type i mutant then
divides in accordance with a deterministic branching process throughout the generations
and it does not mutate any further, nor does it alter its type. In particular, we can also
interpret mutation types as a continual existence upon mutation (type 1) with probability
p or the death (type 2) with probability q = 1− p. Note that our analysis in this section
is interchangeably carried out in the original and confined probability spaces (Ω,F ,P)
and (Ω0,F0 = F ∩Ω0,P0), respectively. In all cases, the underlying functionals can be
distinguished by the absence or presence of subscript 0.

Denote by

p̂n =
NM[1]

n
NMn

and q̂n =
NM[2]

n
NMn

(14)

the proportions of type 1 and 2 new mutants at the nth generation from among the NMn
new mutants, respectively. We will show that the estimator p̂n is unbiased and consistent
(and so is q̂n).

Recall that An = {NMn > 0}. Denote gn(z) = EzXn . Below, we observe an interesting
and unexpected result concerning the sequence {An}. Whereas it obviously is not mono-
tone, as the following two assertions show, the sequence {P(An)} of their measures under
a weak and natural assumption, is strictly monotone increasing (we recollect that the se-
quence {P(Cn)} with respect to nonmutants is monotone nonincreasing) and furthermore,
like {P(Cn)}, {P(An)} converges to P(Ω0) = 1− φ.

Theorem 4. The following two assertions are valid.

(i) P(Ac
n) = gn−1

(
ν2).

(ii) If µ < ν2 < 1, the sequence {P(An)} is strictly monotone increasing.
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Proof.

(i) Let hn(z) = EzNMn . Then, because NMn+1 ∈ [B(2Xn, µ)] given σ(Xn),

hn+1(z) = E
[
E
[
zNMn+1 Xn

]]
= E

[
(µz + ν)2Xn

]
= gn

[
(µz + ν)2

]
.

⇒ P
(

Ac
n+1
)
= hn+1(0) = gn

(
ν2
)

.

(ii) We show that
{

gn
(
ν2)} is strictly monotone decreasing.

First off, p(z) = (νz + µ)2 is strictly monotone increasing for z ∈ [0, 1]. Now since
ν2 < 1 and p(1) = max{p(z) : z ∈ [0, 1]} = 1,

p
(

ν2
)
= g1

(
ν2
)
=
(

ν3 + µ
)2

< 1.

Now, we show that
gn+1

(
ν2
)
< gn

(
ν2
)

or that
gn+1(ν

2) = p
[

gn

(
ν2
)]

< gn

(
ν2
)

.

Let gn
(
ν2) = z. Consider p(z) � z, where � stands for one of the three relations,

<,>, or =. We have
(νz + µ)2 − z � 0

or
ν2z2 − (1− 2νµ)z + µ2 � 0

The discriminant of the equation ν2z2 − (1− 2νµ)z + µ2 = 0 is

D = (1− 2νµ)2 − 4ν2µ2 = 1− 4µν = 1 + ν2 − 4ν = (2ν− 1)2

=

{
= 0, µ = ν = 1

2
> 0, ν 6= 1

2
.

Furthermore, after some algebra,

ν2z2 − (1− 2νµ)z + µ2 = ν2(z− z1)(z− z2),

where z1 = µ2

ν2 (is the extinction probability φ) and z2 = 1. Therefore, ν2z2 −
(1− 2νµ)z + µ2 < 0 (and � is <) for all z ∈

(
µ2

ν2 , 1
)

. In conclusion,

if z = ν2, then ν2 >
µ2

ν2 whenever ν2 > µ.

Therefore, if ν2 > µ, p
(
ν2) = g1

(
ν2) = (ν3 + µ

)2
< g0

(
ν2) = ν2. Next, since p(z)

is strictly monotone increasing in z ∈ [0, 1] and because p
(
ν2) < ν2, it follows that

g2

(
ν2
)
= p

[
p
(

ν2
)]

< g1

(
ν2
)
= p

(
ν2
)

.

Finally, since p(z) is strictly monotone increasing, by the principle of mathemati-
cal induction,

gn+1

(
ν2
)
= p

(
p
(

p . . .
(

ν2
)))

︸ ︷︷ ︸
n + 1 p’s

< gn

(
ν2
)
= p

(
p . . .

(
ν2
))

︸ ︷︷ ︸
n p’s
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that proves the assertion that
{

gn
(
ν2)} is a strictly monotone decreasing sequence

and so is the sequence {P{NMn = 0} = P(Ac
n)}.

Corollary 1. limn→∞ P(An) = limn→∞ P{NMn > 0} = 1− φ = P(Ω0) = 1− µ2

ν2 .

Proof. Let αn = gn
(
ν2). Then, from the equation

gn+1

(
ν2
)
= p

[
gn

(
ν2
)]

holding for n = 0, 1, . . . ,

we have
αn+1 = p(αn), n = 0, 1, . . . (15)

Furthermore, since {αn} is monotone decreasing, α := limn→∞ αn exists and it is
unique. Because p(z) is continuous, this limit from (15) can be found from the equation

α = p(α).

From the theory of branching processes, we know (cf. Kimmel and Axelrod [43]) that
the extinction probability φ is the smallest positive root of the equation z = p(z). In our
case, p(z) = (νz + µ)2 and the extinction probability φ < 1 if the mean 2ν > 1 which is
routinely met when µ < 1

2 . The equation z = (νz + µ)2 has two roots: 1 and the other one

φ = µ2

ν2 which is the smallest of two. Consequently,

α = lim
n→∞

P{NMn = 0} = φ =
µ2

ν2

ends up being equal to the extinction probability. Therefore,

lim
n→∞

P{NMn > 0} = P(Ω0) = 1− µ2

ν2 .

Since p̂n = NM[1]
n

NMn
, given NMn, NM[1]

n ∈ [B(NMn, p)] and therefore,

E[ p̂n|NMn] =
1

NMn
E
[

NM[1]
n

∣∣∣NMn

]
=

1
NMn

NMn p = p ⇒ Ep̂n = p.

Furthermore,

E[ p̂n1An NMn] = p1An ⇒ Ep̂n1An = pP(An)

⇒ En p̂n = p.

Consequently, p̂n is P- and Pn-unbiased, where Pn(·) = P(· ∩ An)/P(An).

Theorem 5. If ν > 1
2 , p̂n converges to p in the L2(Pn)-norm, L2(P0)-norm, and a.s. pointwise.

Furthermore, p̂n is asymptotically P0-unbiased.

Proof.

(i) We start off with

E
[

p̂2
n1An

∣∣∣NMn

]
=

1
NM2

n
1An

[
NMn pq + NM2

n p2
]
=

[
p2 +

1
NMn

pq
]

1An (16)

implying

E
[

p̂2
n1An

]
= pqE

[
1

NMn
1An

]
+ p2P(An). (17)
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Because 1
NMn

1An ≤ 1, p̂2
n1An is P-integrable. By Lemma 2 (cf. Equation (7)),

Varn p̂n = pq
1

P(An)
E
[

1
NMn

1An

]
+ p2 − p2 = pq

1
P(An)

E
[

1
NMn

1An

]
→ 0

Thus, because p̂n is Pn-unbiased,

‖ p̂n − p‖L2(Pn)
= ‖ p̂n −En p̂n‖L2(Pn)

=
√

Varn p̂n → 0.

(ii) Now we show that

µ̂
[1]
n+1 = NM[1]

n+1/2Xn → µp a.s.

The latter is true due to the following: As per our assumption, every new mutation
takes place with a constant probability µ. The new mutants form process {NMn}.
The estimator µ̂n of µ is consistent in the sense that µ̂n → µ a.s. pointwise. If a new
mutant is formed from a nonmutant, in our present model, it becomes a type 1
new mutant with a constant probability p, i.e., a type 1 new mutant emerges from
a nonmutant with probability pµ. We then focus on Xn and NM[1]

n+1 of nonmutants
in generation n and type 1 new mutants in generation n + 1, respectively. We can
then reduce this model to the original one with pµ being a new mutation rate. Thus,
we define the estimator µ̂

[1]
n+1 of pµ as NM[1]

n+1/2Xn, and the latter must converge
to pµ a.s. pointwise [18].
Consequently, from Theorem 3, µ̂

[1]
n+1 converges to pµ in the L2(P0)-norm.

(iii) Now, we turn to p̂n+1 defined as NM[1]
n+1/NMn+1. Dividing the numerator and

denominator by 2Xn, we get

p̂n+1 =
NM[1]

n+1/2Xn

NMn+1/2Xn
=

µ̂
[1]
n+1

µ̂n+1
→ pµ

µ
= p, a.s. on Ω0.

More specifically, if the numerator converges to pµ pointwise on Ω1 and the denom-
inator converges pointwise to µ on Ω2 such that P(Ω1) = P(Ω2) = P(Ω0),then
p̂n+1 → p pointwise on set Ω1 ∩Ω2 and clearly P(Ω1 ∩Ω2) = P(Ω0). Thus, the
convergence of p̂n to p is a.s. pointwise on Ω0.
Consequently,

p̂2
n → p2 a.s. pointwise on Ω0 (18)

and
p̂2

n1Ω0 → p21Ω0 a.s.

Because p̂2
n ≤ 1 for all ω’s, by the LDCT and Equation (18) ,

lim
n→∞

Ep̂2
n1Ω0 = E

[
limn→∞ p̂2

n1Ω0

]
= p2P(Ω0).

(iv) Var0 p̂n = E0 p̂2
n − [E0 p̂n]

2 = 1
P(Ω0)

E
[
p̂2

n1Ω0

]
− 1

P2(Ω0)
E2[ p̂n1Ω0

]
p̂n1Ω0 ≤ p̂n and p̂n is P-integrable (

∫
p̂ndP = p)

Thus by the LDCT,
lim

n→∞
Ep̂n1Ω0 = pP(Ω0)

and
E0 p̂n → p,

so that p̂n is asymptotically P0-unbiased. Consequently,

Var0 p̂n → p2 − p2 = 0.
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(v) ‖ p̂n − p‖L2(P0)
≤ ‖ p̂n −E0 p̂n‖L2(P0)

+ ‖E0 p̂n − p‖L2(P0)

=
√

Varp̂n + |E0 p̂n − p| → 0.

Remark 1.

(i) If the second mutation type of bacteria are dead, the formula p̂n+1 =
NM[1]

n+1
NMn+1

is impractical
for a lab utility, since the dead cells are not counted. Here is a way out.
First, notice that in this case, NM[1]

n+1 = Mn+1 − 2Mn (i.e., the same formula as for
NMn+1 with only one mutation type). This is exactly because the dead bacteria cannot be
counted. Next, we have

2Xn = Xn+1 + NM[1]
n+1 + NM[2]

n+1, (19)

so that the “deficit” of the count is

NM[2]
n+1 = 2Xn − Xn+1 − NM[1]

n+1 = 2Xn − Xn+1 −Mn+1 + 2Mn. (20)

Therefore,

p̂n+1 =
NM[1]

n+1
NMn+1

=
NM[1]

n+1

NM[1]
n+1 + NM[2]

n+1

=
Mn+1 − 2Mn

2Xn − Xn+1
. (21)

(ii) If the second mutation type are not dead bacteria, then NM[1]
n+1 6= Mn+1 − 2Mn, but

NM[1]
n+1 = M[1]

n+1 − 2M[1]
n . (22)

However, Equation (19) still applies, whereas Equation (20) can be modified as

NM[2]
n+1 = 2Xn − Xn+1 − NM[1]

n+1 = 2Xn − Xn+1 −M[1]
n+1 + 2M[1]

n . (23)

Obviously, Equation (21) can be modified as follows

p̂n+1 =
M[1]

n+1 − 2M[1]
n

2Xn − Xn+1
, (24)

where superscripts [1] and [2] stand for the first and second type mutants, respectively.
In a nutshell, if type one bacteria die upon mutation, the formula for the estimator p̂n of p
is simple and it does not require one to distinguish the bacteria types. This is not the case
with two surviving types, as per Equation (24).

8. Simulation of Estimators for Types 1 and 2

To validate the convergence and its speed, we render simulation analogous to that
in Section 6. After generation of nonmutant paths similar to Section 6, we evaluate new
mutant (all types) at each generation using NMn+1 = 2Xn − Xn+1. For each new mutant
generation, we run a binomial random number generator with distribution B(NMn+1, p)
for mutation type 1, assuming type 2 is the rest of the mutation population with distribution
B(NMn+1, q = 1− p), because NMn+1 = NM[1]

n+1 + NM[2]
n+1. This new mutant type i

generation is added to the current population of type i mutant (previous generation mutant
doubled): M[i]

n+1 = NM[i]
n+1 + 2 ·M[i]

n , with the assumption that M[i]
0 = 0 (initially, we have

0 mutants). The algorithm is looped for n generations and we store the result in a new
(n + 1)×M matrix with first row being zero row. Type 1 mutation rate is estimated by

Equation (21): p̂n+1 =
M[1]

n+1−2M[1]
n

2Xn−Xn+1
and the output was an n×M matrix. Mean mutation
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and variance of the mutation rate were evaluated using the sample variance equation in
Section 6, knowing the convergence is established with Theorem 5.

For this simulation, we let the probability that a newly mutated bacterium is of type 1
be p = 0.25. Figure 4 is the simulation results—specifically, the mean of the type 1 mutation
rate estimate.

Figure 4. The mean of type 1 mutation rate estimates of p = 0.25 for M = 2, 5, 10, 20 plates for
generations n = 1 to 25.

Similar to simulation in Section 6, we see a pattern here: the estimate is 0 if there
are no new mutants. In this simulation, first mutation does not occur until generation
3 for M = 20, generation 4 for both M = 10 and M = 5, and generation 7 for M = 2.
The time of the first type 1 mutant is also inversely related to the number of plates, due to
the appearance of type 1 mutation depends on the time of first mutation, which is because
of, as discussed previously, more opportunities for mutations to occur with more plates.

The estimates stabilize after 9–10 generations, which is a couple of generations lag after
first mutation occurs, as established above. This can be explained due to the probability
of getting type 2 mutation is larger than type 1 and, due to this type 1 mutation, take
more generation to appear. The following modified relative error heatmap (Figure 5) also
describes this phenomenon.

Figure 5 shows the similar pattern as Figure 2: for all generations n ≥ 20, regardless
of the number of plates, the relative error is less than 0.01; the more plates there are,
the less occurrence of large relative errors in earlier generations. For all number of plates,
the threshold for small relative error is n ≥ 16; which is 1 to 2 generation behind the
observed threshold from Figure 2 (n ≥ 14). Similar to Section 6, this result is a promising
finding for biology researchers as the number of dishes is feasibly small to be made in
laboratory settings.
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Figure 5. Heatmap of modified relative errors e0.01 of mean type 1 mutation rate estimates.

As described in Figure 6, similar to simulation in Section 6, the estimated variance of p̂n
quickly converges to 0 after 13–17 generations (which is also a couple of generations behind
the convergence of variance discussed in Section 6), regardless of the number of plates.

Figure 6. The estimated variance of type 1 mutation rate for p = 0.25, M = 2, 5, 10, 20 plates for
generations n = 1 to 25.

9. Summary

In 2012, Niccum et al. [18] offered a simple stochastic estimator µ̂n of µ in a most
rigorous fashion proving that it was unbiased and consistent. The latter meant that the
sequence {µ̂n} was almost surely pointwise convergent to µ on a non extinct set. Best of all,
the pointwise convergence proved to be fast, as it was validated by countless simulation
runs for various values of µ.

In this paper, we studied the stochastic process describing bacterial mutation that
begins at some point of their division. In our earlier paper [18] (by two of the present
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coauthors), we proposed a stochastic estimator µ̂n (n = 1, 2, . . .) of the mutation rate µ (or
more precisely, mutation probability) and showed that the sequence {µ̂n} converges to µ a.s.
pointwise on the non extinct set Ω0 ⊆ Ω, where (Ω,F ,P) is the probability space on which

all processes were considered. P(Ω0) = 1− µ2

ν2 , where ν = 1− µ, and thus, P(Ω0) ≈ 1 if µ
is small which is the case in many practical situations. The stochastic estimator µ̂n obeys
Equation (1),

µ̂n+1 =
NMn+1

2Xn
,

where Xn is the number of nonmutants in generation n and NMn+1 is the number of newly
formed mutants in generation n + 1.

One of the subjects of interest was to establish a different type of convergence, namely
L2. We formed the confined space (Ω0,F0 = F ∩Ω0,P0 = P/P(Ω0)) and established the
following results.

1. The sequence of estimators {µ̂n} is P0-asymptotically unbiased (that is, E0µ̂n+1 → µ)
and it converges to µ in the L2(P0)-norm.

2. In our earlier paper [18], even though we did not rigorously established the speed
of pointwise convergence of {µ̂n} to µ, we conducted simulation as well as numer-
ous times thereafter, showing that the convergence was rapid. With the assumed
µ = 7.6× 10−6 (the number produced in our lab results), a good accuracy was ob-
served in the 30th generation. We also wanted to test the L2-speed of convergence in
the context of our paper. We used µ̂n+1 in the form

µ̂n+1 =

2Xn
∑

i=1
ηi·

2Xn
, where ηi ∈ B[1, µ]

setting Xn as a constant, due to the step-by-step simulation procedures. With genera-
tion n relatively small, like 10 or greater, because Xn was large, µ̂n+1 ∈ N[µ, µ(1− µ)/2Xn]
(Gaussian) using the CLT argument. The variance of µ̂n+1 is thus µ(1− µ)/2Xn being
virtually zero. Yet, we formed the unbiased sample variance

σ̂2
n+1 =

1
M− 1

M

∑
k=1

(
µ̂
[k]
n+1 − µn+1

)2

where M is the number of plates, with bacterial colonies on each and with µn+1 being

the sample mean of M estimators (estimates) µ̂
[k]
n+1, k = 1, . . . , M. The conclusion thus

was that σ̂2
n+1 will converge to zero with M not very large. Indeed, in Example 1,

we fully validated it with µ = 0.01, M = 2, 5, 10, 20 and with n ≥ 10. Granted,
the convergence would be slower for a smaller µ, but the pointwise convergence of
µ̂n to µ ≈ 7.6× 10−6 was around n = 30 and with M = 10 or 20.

3. We further generalized our model by allowing bacteria mutate into one of the two
mutant types, with constant probabilities p and q. One of the interpretation of this
model is when the second type could be a dead bacterium (that could be attacked by
viruses or chemical agent). As mentioned in the introduction, it can depose its DNA
to be picked up by other bacteria. We proposed two respective estimators

p̂n =
NM[1]

n
NMn

and q̂n =
NM[2]

n
NMn

and proved that they were unbiased and consistent. Here NM[i] is the number of
newly formed type 1 mutants. Namely, we proved in Theorem 5 that p̂n converged to
p in the L2(Pn)-norm, L2(P0)-norm, and a.s. pointwise, and p̂n was asymptotically P0-
unbiased. To prove this result, we had to show that the sequence {P(An)} was strictly
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monotone increasing and converged to P(Ω0) = 1− µ2

(1−µ)2 . As in the above case,

to test the speed of the L2 convergence, we ran simulation with µ = 0.01, p = 0.25,
and the number of plates M = 2, 5, 10, 20 showing a good speed for the mean and
variance for n ≈ 20 and 15, respectively.
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