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Abstract: In several important scientific fields, the efficient numerical solution of symmetric systems
of ordinary differential equations, which are usually characterized by oscillation and periodicity, has
become an open problem of interest. In this paper, we construct a class of embedded exponentially
fitted Rosenbrock methods with variable coefficients and adaptive step size, which can achieve
third order convergence. This kind of method is developed by performing the exponentially fitted
technique for the two-stage Rosenbrock methods, and combining the embedded methods to estimate
the frequency. By using Richardson extrapolation, we determine the step size control strategy to
make the step size adaptive. Numerical experiments are given to verify the validity and efficiency of
our methods.

Keywords: adaptive exponentially fitted Rosenbrock methods; frequency estimation; variable
coefficients; convergence; stability

1. Introduction

In several important scientific fields such as quantum mechanics, elasticity, and elec-
tronics, many problems can be represented by mathematical models of symmetric systems,
see, e.g., [1–4], which usually lead to ordinary differential equations characterized by
oscillation and periodicity [5,6], i.e.,{

y′(t) = f (t, y(t)), t ∈ [0, T],

y(0) = y0 ∈ Rd.
(1)

In view of the oscillation and periodicity of the equations in symmetric systems, the
exponentially fitted methods, whose theoretical basis was first provided by Gautschi [7]
and Lyche [8], have been considered to solve these equations in many studies. For instance,
The authors of [9,10] investigated exponentially fitted two-step BDF methods and linear
multistep methods. The idea of exponential fitting was first applied to the Runge–Kutta
methods by Simos [11], in 1998. Since then, based on Simos’ research, a few exponentially
fitted Runge–Kutta methods have been constructed [12–14]. Some scholars have also tried
to estimate the frequency of the methods by analyzing the local truncation error, and
control the step size to improve the effects and efficiency [15,16].

However, the exponentially fitted technique has been mostly applied to Runge–Kutta
methods, which have difficulty in solving stiff problems by using the explicit form or cost
large amounts of computation by using the implicit form. For this reason, Rosenbrock
methods, which are based on the idea introduced by Rosenbrock [17] that a single Newton
iteration is enough to preserve the stability properties of the diagonally implicit Runge–
Kutta methods, have been considered to solve ordinary differential equations in symmetric
systems. The general form of Rosenbrock methods for first-order ordinary differential
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equations has been given by Hairer and Wanner [18]; then, many scholars developed this
form and analyzed the implementation, see, e.g., [19,20] and their references. Rosenbrock
methods not only keep the stability of the relative diagonal implicit Runge–Kutta methods,
but also reduce the amount of calculation compared against the implicit methods because
only a linear system of equations needs to be solved per step. At present, there have been
some studies on the exponentially fitted Rosenbrock methods [21–23], but these meth-
ods, which use constant frequency and step size, have difficulty in solving the equations
efficiently and adaptively.

In this paper, we will combine the exponentially fitted Rosenbrock methods with the
embedded Rosenbrock methods to estimate the frequency before each step and control the
step size by using Richardson extrapolation. By the frequency estimation and step size
control, our methods with variable coefficients can solve the equations with oscillation and
periodicity efficiently, and the order of convergence can be improved by one compared
with the methods with constant coefficients.

The outline of this paper is as follows. In Section 2, a class of exponentially fitted
Rosenbrock methods is constructed, and we give the local truncation error, frequency
estimation, and stability analysis of the methods. In Section 3, we combine the exponentially
fitted Rosenbrock methods with the embedded Rosenbrock methods to construct a kind of
embedded variable coefficient exponentially fitted Rosenbrock (3,2) methods, and perform
the frequency estimation and step size control strategy. In Section 4, three numerical tests
are presented to verify the validity of our methods by comparing the number of calculation
steps, the error and the calculating time with other numerical methods. Section 5 gives
some discussion and remarks.

2. A Class of Exponentially Fitted Rosenbrock Methods

In this section, a class of exponentially fitted Rosenbrock methods for the models of
the ordinary differential equations is constructed, and we give the local truncation error,
frequency estimation, and stability analysis of the methods.

Applying the s-stage Rosenbrock method to solve system (1) yields
ki = h f (tn + αih, diyn +

i−1

∑
j=1

αijk j) + γih2 ∂ f
∂t

(tn, yn) + hJ
i

∑
j=1

γijk j, i = 1, 2, · · · , s,

yn+1 = yn +
s

∑
j=1

bjk j,

where h is the step size, yn ≈ y(tn), J = fy(tn, yn), αij, γij, αi, γi and di are real

coefficients which satisfy αi =
i−1
∑

j=1
αij and γi =

i
∑

j=1
γij for i = 1, 2, · · · , s.

We can also change the nonautonomous system (1) to an autonomous system by the
following transformation,(

t
y(t)

)′
=

(
1

f (t, y(t))

)
,
(

t0
y(t0)

)
=

(
0
y0

)
.

Thus, we will focus on the autonomous problems for simplicity of presentation, i.e.,{
y′(t) = f (y(t)), t ∈ [0, T],

y(0) = y0,
(2)

where y(t) : [0, T] → Rd is assumed to be thrice continuously differentiable and f (y) :
Rd → Rd is assumed to be twice continuously differentiable for the subsequent theoretical
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analysis. We consider the following s-stage Rosenbrock methods for the autonomous
system (2), 

ki = h f (diyn +
i−1

∑
j=1

αijk j) + hJ
i

∑
j=1

γijk j, i = 1, 2, · · · , s,

yn+1 = yn +
s

∑
j=1

bjk j,

(3)

or, in tableau form,

0 d1 γ
α2 d2 β21 γ
α3 d3 β31 β32 γ
...

...
...

...
...

. . .
αs ds βs1 βs2 βs3 · · · γ

b1 b2 b3 . . . bs

,

i.e.,

α d A + V
bT , (4)

where α1 = 0, αij + γij = βij, αii = 0, βii = γ for i, j = 1, 2, · · · , s and

A =


0

α21 0
...

. . . . . .
αs1 · · · αss−1 0

, V =


γ

γ21 γ
...

. . . . . .
γs1 · · · γss−1 γ

.

Compared with the classic Rosenbrock methods, the methods (4) in which γii = γ for
i = 1, 2, · · · , s, need only one LU-decomposition per step and their order conditions can
be simplified [18]. Moreover, this kind of method has higher degree of freedom in its
coefficient selection due to the extra coefficients di in each step.

Let this method exactly integrate the function y(t) = e±λt, then, we have

(1∓ λhγ)(±λhe±λ(tn+αih)) =di(±λhe±λtn) + λ2h2
i−1

∑
j=1

αije
±λ(tn+αjh)

+ λ2h2
i−1

∑
j=1

γije
±λ(tn+αjh), i = 1, 2, · · · , s,

e±λ(tn+h) = e±λtn ± λh
s

∑
j=1

bje
±λ(tn+αjh).

Let z = λh, it follows that
(1∓ zγ)e±αiz = di ± z

i−1

∑
j=1

βije
±αjz, i = 1, 2, · · · , s,

e±z = 1± z
s

∑
j=1

bje
±αjz.

(5)



Symmetry 2022, 14, 1708 4 of 15

We now try to construct 1–2 stage Rosenbrock methods by (5). If s = 1, together with
α1 = 0, we have 

1− zγ = d1,

1 + zγ = d1,

ez = 1 + zb1,

e−z = 1− zb1.

Solving the system of equations above with γ 6= 0 derives in d1 = 1, z = 0, b1 = 1,
which yields a class of 1-stage exponentially fitted Rosenbrock methods, i.e.,

0 1 γ

1
.

If s = 2, together with α1 = 0 and d1 = 1, we have
(1− zγ)eα2z = d2 + zβ21,

(1 + zγ)e−α2z = d2 − zβ21,

ez = 1 + zb1 + zb2eα2z,

e−z = 1− zb1 − zb2e−α2z.

(6)

In order to obtain the second order methods, Hairer and Wanner provided the follow-
ing order conditions in [18], i.e., 

b1 + b2 = 1,

b2β21 =
1
2
− γ.

(7)

Combining (6) and (7), and letting the coefficients of the methods satisfy the order
conditions when z → 0, then we have α2 = 1

2 . Therefore, we obtain the following
coefficients of the 2-stage exponentially fitted Rosenbrock methods with order 2,

α1 = 0, α2 =
1
2

, d2 = cosh
z
2
− γz sinh

z
2

,

β21 =
sinh z

2
z
− γ cosh

z
2

, b1 =
sinh z

z
−

(cosh z− 1) cosh z
2

z sinh z
2

= 0, b2 =
cosh z− 1

z sinh z
2

,
(8)

where γ is a free coefficient or, in tableau form,

0 1 γ

1
2 cosh z

2 − γz sinh z
2

sinh z
2

z
− γ cosh z

2 γ

0
cosh z− 1

z sinh z
2

.

We now consider the following 2-stage exponentially fitted Rosenbrock methods of
order 2 and analyze the local truncation error, i.e.,

k1 = (I − γhJ)−1h f (d1yn),

k2 = (I − γhJ)−1[h f (d2yn + α2k1) + hJγ21k1],

yn+1 = yn + b1k1 + b2k2,

(9)

where the coefficients are given by (8). Based on Bui’s idea in [24], we expand (I −
γhJ)−1 in the geometrical series, i.e.,

(I − γhJ)−1 = I + γhJ + γ2h2 J2 + O(h3). (10)
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If we assume that yn in (9) is the exact solution y(tn) at tn and expand the hyperbolic
functions in the coefficients in Taylor series, we can obtain a one-step approximation
ỹn+1 of the solution at tn + h by (9) and (10), i.e.,

ỹn+1 = y(tn) + h f (y(tn)) +
1
2

J f (y(tn))h2 +
1
8

f ′′(y(tn)) f (y(tn))
2h3

+ (γ− γ2)J2 f (y(tn))h3 − 4γ− 1
8

Jλ2h3y(tn) +
λ2

24
f (y(tn))h3 + O(h4).

(11)

Meanwhile, for the exact solution at tn + h, we have

y(tn + h) = y(tn) + h f (y(tn)) +
1
2

J f (y(tn))h2

+
1
6
[ f ′′(y(tn)) f (y(tn))

2 + J2 f (y(tn))]h3 + O(h4).
(12)

Based on (11) and (12), the local truncation error LTEEFRB of exponentially fitted
Rosenbrock methods (9) can be expressed as

LTEEFRB = y(tn + h)− ỹn+1

=
h3

24
[y′′′ − (24γ− 24γ2 − 3) f ′y′′ − D(y′ − (12γ− 3) f ′y)] + O(h4)

= h3(ψ1(t, y, f ) + ψ2(t, y, f , λ)) + O(h4),

(13)

where h3ψ1(t, y, f ) = h3

24 [y
′′′ − (24γ − 24γ2 − 3) f ′y′′], h3ψ2(t, y, f , λ) = h3Dψ3(t, y, f ) +

O(h4), h3ψ3(t, y, f ) = − h3

24 [y
′ − (12γ − 3) f ′y], λ = diag(λ1, λ2, · · · , λd) ∈ Rd×d, D =

λ2 and all functions in (13) are evaluated at t = tn and y = y(tn).
If we let the principle local truncation error in (13) be zero, we can approximate and re-

new the frequency λ in each step to make the coefficients variable by the following equation,
h3ψ11
h3ψ12

...
h3ψ1d

+


λ2

1
λ2

2
. . .

λ2
d




h3ψ31
h3ψ32

...
h3ψ3d

 =


0
0
...
0

, (14)

where h3ψ1i and h3ψ3i for i = 1, 2, · · · , d are respectively the ith-component of
h3ψ1(t, y, f ) and h3ψ3(t, y, f ), then the order of the methods can be improved by one.

On the other hand, we consider the stability of (9). Let z→ 0, then we get a class of
constant coefficient exponentially fitted Rosenbrock methods, i.e.,

0 1 γ
1
2 1 1

2 − γ γ

0 1
. (15)

By analogy with the definition of the stability function of Runge–Kutta methods in [25],
the definition of the stability function of Rosenbrock methods is as follows.

Definition 1. Applying the Rosenbrock methods (3) to the following linear test equations{
y′ = λy, λ ∈ C,

y(0) = y0

yields yn+1 = R(z)yn with

R(z) = 1 + zbT(I − z(A + V))−1d,
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then R(z) is called the stability function of Rosenbrock methods (3).

It is obvious that

R(z) =
det(I − z(A + V) + zdbT)

det(I − z(A + V))
, (16)

where the numerator and denominator of R(z) are polynomials of degree no more than s.
It means that R(z) can be expressed as

R(z) =
P(z)
Q(z)

,

where P(z) = ∑l
k=0 akzk, Q(z) = ∑m

k=0 bkzk are two polynomials with real coefficients,
l, m ≤ s, al , bm 6= 0, a0 = b0 = 1, and P(z) and Q(z) contain no common factors.
Li pointed out in [25] that the A-stability of single-step methods was equivalent to the
A-acceptability of the rational approximations to the function ez. The following lemma
gives the necessary and sufficient condition for the A-acceptability of R(z).

Lemma 1 ([25]). Assume that p ≥ 2m− 3, then R(z) is A-acceptable iff the three inequalities hold

(i) |R(∞)| ≤ 1;
(ii) Q(z) > 0 when z ≤ 0;
(iii) b2

m−1 − a2
m−1 + 2(amam−2 − bmbm−2) ≥ 0,

where m ≥ 2, and we add the definitions that al+1 = al+2 = · · · = am = 0 if l < m.

Based on Lemma 1, we can give the following theorem for the A-stability of method (15).

Theorem 1. If γ ≥ 1
4 , the 2-stage Rosenbrock method (15) with single coefficient γ is A-stable.

Proof. According to (16), the stability function of the method (15) is

R(z) =
1 + (1− 2γ)z + (γ2 − 2γ + 1

2 )z
2

1− 2γz + γ2z2 . (17)

Let z → ∞, then we have |R(∞)| = | γ
2−2γ+ 1

2
γ2 |. When γ ≥ 1

4 , we have |R(∞)| ≤ 1,

which means that the condition (i) in Lemma 1 holds if γ ≥ 1
4 .

According to (17), we have Q(z) = (1− γz)2. For ∀z ≤ 0, we have Q(z) > 0, which
means that the condition (ii) in Lemma 1 holds.

Consider the condition (iii) in Lemma 1 when l = m = 2, it is easy to find in (17) that
b0 = 1, b1 = −2γ, b2 = γ2 and a0 = 1, a1 = 1− 2γ, a2 = γ2− 2γ + 1

2 . If γ ≥ 1
4 , we have

b2
m−1 − a2

m−1 + 2(amam−2 − bmbm−2) = 2γ(2γ− 1) ≥ 0,

which means that the condition (iii) in Lemma 1 holds.
To sum up, if γ ≥ 1

4 , R(z) is A-acceptable as the rational approximation to the
function ez, which means that the 2-stage Rosenbrock method (15) with single coefficient
γ is A-stable.

3. Frequency Estimation and Step Size Control

This section will combine the exponentially fitted Rosenbrock methods with the
embedded Rosenbrock methods to construct a kind of embedded variable coefficient
exponentially fitted Rosenbrock (3,2) methods, and perform the frequency estimation and
step size control strategy.
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We consider the embedded Rosenbrock methods for system (2). This kind of method
combines two Rosenbrock methods with different orders, which have the same coefficients
of the lower stage part. The tableau form of the methods is as follows,

0 d1 γ
α2 d2 β21 γ
α3 d3 β31 β32 γ
...

...
...

...
...

. . .
αs ds βs1 βs2 βs3 · · · γ

b1 b2 b3 . . . bs

b̂1 b̂2 b̂3 . . . b̂s

,

and we define y1 = y0 +
s
∑

j=1
bjk j and ŷ1 = y0 +

s
∑

j=1
b̂jk j. To estimate the local truncation

error of the embedded methods, we give the following lemma referred to in [26].

Lemma 2 ([26]). Whenever a starting step h has been chosen, the Rosenbrock methods with order
p and q respectively compute two approximations to the solution, y1 and ŷ1, where p < q, then
the error of y1 is estimated by ŷ1 − y1, i.e.,

y(t0 + h)− y1 = ŷ1 − y1 + O(hp+2).

Now, we construct a class of embedded Rosenbrock methods by using the coefficients
of the 2-stage Rosenbrock methods (8). It can be expressed in the following tableau form

0 1 γ
1
2 cosh z

2 − γz sinh z
2

sinh z
2

z − γ cosh z
2 γ

α3 1 β31 β32 γ

0 cosh z−1
z sinh z

2

b̂1 b̂2 b̂3

, (18)

where γ is a free coefficient. Together with the order conditions for order 3 in [18]

b1 + b2 + b3 = 1,

b̂2(
1
2
− γ) + b̂3β31 + b̂3β32 =

1
2
− γ,

b̂2 ×
1
4
+ b̂3α2

3 =
1
3

,

b̂3β32 =
1
3 − 2γ + 2γ2

1− 2γ
,

(19)

when we let b̂2 = 0 and α3 =
2
3

, the coefficients of method (18) are determined by (19), i.e.,

α1 = 0, α2 =
1
2

, α3 =
2
3

, d2 = cosh
z
2
− γz sinh

z
2

, d3 = 1,

β21 =
sinh z

2
z
− γ cosh

z
2

, β31 =
2

9(1− 2γ)
, β32 =

4(6γ2 − 6γ + 1)
9(1− 2γ)

,

b1 = 0, b2 =
cosh z− 1

z sinh z
2

, b̂1 =
1
4

, b̂2 = 0, b̂3 =
3
4

,
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where γ 6= 1
2

or, in tableau form,

0 1 γ
1
2 cosh z

2 − γz sinh z
2

sinh z
2

z − γ cosh z
2 γ

2
3 1 2

9(1−2γ)
4(6γ2−6γ+1)

9(1−2γ)
γ

0 cosh z−1
z sinh z

2
1
4 0 3

4

. (20)

We now choose one of the methods above to introduce the frequency estimation and
step size control strategy. We record the exponentially fitted Rosenbrock (3,2) method (20)
as EFRB(3,2) when γ = 1

4 , i.e.,

0 1 1
4

1
2 cosh z

2 −
z
4 sinh z

2
sinh z

2
z − 1

4 cosh z
2

1
4

2
3 1 4

9 − 1
9

1
4

0 cosh z−1
z sinh z

2
1
4 0 3

4

. (21)

We also record the Rosenbrock (3,2) method (21) as RB(3,2) when z→ 0, i.e.,

0 1 1
4

1
2 1 1

4
1
4

2
3 1 4

9 − 1
9

1
4

0 1
1
4 0 3

4

. (22)

Suppose that yclass
n+1 and LTEclass are the numerical solution and the local truncation

error for the second-order component of RB(3,2), and yEFRB
n+1 and LTEEFRB are the

numerical solution and the local truncation error for the second-order component of
EFRB(3,2), then we have

LTEclass = y(tn + h)− yclass
n+1 = h3ψ1(t, y, f ) + O(h4), (23)

LTEEFRB = y(tn + h)− yEFRB
n+1 = h3(ψ1(t, y, f ) + ψ2(t, y, f , λ)) + O(h4), (24)

where h3ψ1(t, y, f ) = h3(
1

24
y′′′ − 1

16
f ′y′′), h3ψ2(t, y, f , λ) = h3Dψ3(t, y, f ) + O(h4),

h3ψ3(t, y, f ) = − h3

24
y′ and all functions in (23) and (24) are evaluated at t = tn and

y = y(tn). Together with (23) and (24), we have

h3ψ2(t, y, f , λ) ≈ LTEEFRB − LTEclass = yclass
n+1 − yEFRB

n+1 .

For each integration step, we can estimate h3ψ3(t, y, f ) by the following equation,
h3ψ31
h3ψ32

...
h3ψ3d

 ≈


λ2
1

λ2
2

. . .
λ2

d


−1

h3ψ21
h3ψ22

...
h3ψ2d

, (25)

where h3ψ2i and h3ψ3i for i = 1, 2, · · · , d are respectively the ith-component of
h3ψ2(t, y, f , λ) and h3ψ3(t, y, f ). For the first integration step, λ is set as a suitable
starting frequency λ(0).
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On the other hand, if we suppose that the numerical solution for the third-order
component of RB(3,2) is ŷclass

n+1 , we can estimate h3ψ1(t, y, f ) based on lemma 2 by

LTEclass = h3ψ1(t, y, f ) + O(h4) ≈ ŷclass
n+1 − yclass

n+1 . (26)

After obtaining the approximations of h3ψ1(t, y, f ) and h3ψ3(t, y, f ) by (25) and (26),
we substitute them into (14) to estimate and renew the frequency λ. In addition, if the
estimate of h3ψ1i is close to zero, the estimate of λi is zero, which means that the
coefficients of the EFRB(3,2) method (21) are equal to the coefficients of the RB(3,2) method
(22). If the estimate of h3ψ3i is close to zero, it means that the principle local truncation
error is not related to λi. In this case, we do not renew the frequency. If we estimate the
frequency before each step of the method, we will get a variable coefficient method and its
order will be increased by one.

Now, we try to control its step size by Richadson extrapolation. We first give the
following lemma referred to in [26].

Lemma 3 ([26]). Assume that yn+1 is the numerical solution of one step with step size h of a
Rosenbrock method of order p from (tn, yn), and ωn+1 is the numerical solution of two steps with
step size h

2 , then the error of ωn+1 can be expressed as

y(xn+1)−ωn+1 =
ωn+1 − yn+1

2p − 1
+ O(hp+2).

Based on Lemma 3, we give the following step size control strategy. Let error =
ωn+1 − yn+1

2p − 1
, we compare error with the tolerance tol which is given by user. If |error| ≤

tol, then we accept the step and progress with the ωn+1 value; if |error| > tol, then we
reject the step and repeat the whole procedure with a new step size. In both cases, referred
to in [18], the new step size is given by

hnew = hold min( f acmax, max( f acmin, f ac(tol/error)
1

p+1 )),

where f acmax and f acmin are the maximum and minimum acceptable factors, respec-
tively, and f ac is the safety factor. In this paper, we let f acmax = 2, f acmin = 0.5 and
f ac = 0.8.

4. Numerical Experiments

In this section, we present three numerical experiments to test the performance of
our methods and compare the error and computational efficiency with other numerical
methods. All the numerical experiments were executed by using MATLAB® on a Windows
11 PC with an Intel® CoreTM i5-10210U CPU.

Example 1. Consider the following ODE system in [27],{
y′′(t) = −ωy(t) + (ω2 − 1) sin t, t ≥ 0,

y(0) = 1, y′(0) = ω + 1,
(27)

with exact solution y(t) = cos ωt + sin ωt + sint. Let y′(t) = x(t), Y(t) = (x(t), y(t))T , then
we get a new ODE system

Y′(t) =
(

0 −ω2

1 0

)
Y(t) +

(
(ω2 − 1) sin t

0

)
, t ≥ 0,

Y(0) =
(

ω + 1
1

)
.

(28)
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Problem (28) has been solved in the interval 0 ≤ t ≤ 10 with λ
(0)
i = 10 for each component of

the solution when ω = 10.

Example 2. Consider the following ODE system in [28],

y′(t) =

 −21 19 −20
19 −21 20
40 −40 −40

y(t), 0 ≤ t ≤ 100,

y(0) =

 1
0
−1

,

(29)

with the following solution:

y(t) =
1
2

 1 1 1
1 −1 −1
0 −2 2

 e−2t

e−40t cos 40t
e−40t sin 40t

.

Problem (29) has been solved in the interval 0 ≤ t ≤ 100 with λ
(0)
i = −40 for each

component of the solution.

Example 3. Consider the following PDE system in [29],
∂u
∂t

=
∂2u
∂x2 − u + 2e−t, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, t > 0,

u(x, 0) = x(1− x), 0 < x < 1,

(30)

with exact solution u(x, t) = x(1− x)e−t. The PDE system (30) can be transformed into an ODE
system by spatial discretization with central finite difference of second order, which results inu′i(t) =

1
∆x2 [ui−1(t)−2ui(t)+ui+1(t)]−ui(t)+2e−t, i = 1, 2, · · · , M− 1, t > 0,

ui(0) = i∆x(1− i∆x), i = 1, 2, · · · , M− 1,
(31)

where ∆x = 1/M, xi = i∆x, ui(t) is meant to approximate the solution of (30) at the point
(t, xi) and we define u0(t) = uM(t) = 0. Then, problem (31) has been solved in the interval
0 ≤ t ≤ 10 with λ

(0)
i = −2 for each component of the solution when M = 10.

We first solve Example 1 by the EFRB(3,2) method with constant step size to test the
order of our method. We use the following formula to estimate the order of our method,

p ≈ log2[
error(h)

error(h/2)
],

where error(h) = max
1≤n≤N

||ε(h)||, ε(h) = y(tn)− yn represents the error of yn when h is

the step size and tN = 10. Let h = 1/2k, k = 4, 5, · · · , 9, then the error and the order of
convergence of our method are shown in Table 1. The results in Table 1 imply that the
EFRB(3,2) method can achieve third order convergence.
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Table 1. The error and the order of convergence of the EFRB(3,2) method for problem (27).

h 1/16 1/32 1/64 1/128 1/256 1/512

error(h) 3.9592× 10−1 3.0439× 10−2 2.8673× 10−3 3.5307× 10−4 4.3312× 10−5 5.4082× 10−6

p - 3.7012 3.4082 3.0217 3.0271 3.0016

We now compare the EFRB(3,2) method with the stiff ODE solvers in MATLAB® such
as ode23s, ode23t, and ode23tb, which have the same stage as our method. For each stiff
ODE solver in MATLAB®, the relative tolerance RelTol is set as tol and the absolute
tolerance AbsTol is set as 10−3tol. The error for each component of the solution was
calculated as the maximum of the absolute value of the difference between the numerical
and exact solutions, and we use the largest error across all components as the error of the
problems. Figures 1–3 show the relationship between the error and the average calculating
time for each method when tol = 10−k, k = 2, 3, · · · , 10. Tables 2–4 show the calculating
steps, the error, and the calculating time for each method when tol = 10−5, 10−7 and
10−9. From the figures and tables, we conclude that the EFRB(3,2) method achieves better
performance than all the stiff ODE solvers for ODE Examples 1 and 2. For the PDE
Example 3, the EFRB(3,2) method achieves similar performance with ode23tb and better
performance than other stiff ODE solvers. Furthermore, our method performs better than
ode23tb in the small-tolerance range for Example 3. The performance of the EFRB(3,2)
method in these three examples verifies the effectiveness and efficiency of our method,
making it possible to be applied to the stiff ODE systems and PDE systems.
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Figure 1. CPUtime−error of each method for Example 1.
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Figure 2. CPUtime−error of each method for Example 2.
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Figure 3. CPUtime−error of each method for Example 3.
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Table 2. The accepted steps, rejected steps, error, and calculating time of each method for Example 1.

Method Tol Accepted
Steps

Rejected
Steps Error Time(s)

10−5 622 44 3.9582× 10−4 0.0387
EFRB(3,2) 10−7 1915 23 1.4846× 10−5 0.0965

10−9 6038 70 4.9237× 10−7 0.3006

10−5 3009 68 8.5624× 10−3 0.1937
ode23s 10−7 14404 71 3.8814× 10−4 0.9061

10−9 67396 42 1.7927× 10−5 4.2465

10−5 4444 44 8.2055× 10−3 0.2010
ode23t 10−7 21148 40 3.7150× 10−4 0.8442

10−9 98805 19 1.7141× 10−5 3.7756

10−5 3477 55 6.4195× 10−3 0.0708
ode23tb 10−7 16583 38 2.9314× 10−4 0.2978

10−9 77627 26 1.3478× 10−5 1.3235

Table 3. The accepted steps, rejected steps, error, and calculating time of each method for Example 2.

Method Tol Accepted
Steps

Rejected
Steps Error Time(s)

10−5 49 4 6.3863× 10−5 0.0176
EFRB(3,2) 10−7 150 25 1.0545× 10−6 0.0246

10−9 372 20 2.9298× 10−8 0.0423

10−5 529 18 2.4912× 10−5 0.0446
ode23s 10−7 2478 115 1.1568× 10−6 0.2064

10−9 11540 521 5.3705× 10−8 0.8153

10−5 783 5 1.9925× 10−5 0.0544
ode23t 10−7 3546 3 9.7763× 10−7 0.1946

10−9 16431 3 4.5192× 10−8 0.6497

10−5 608 5 1.6531× 10−5 0.0198
ode23tb 10−7 2788 3 7.7115× 10−7 0.6134

10−9 13251 3 3.5798× 10−8 0.2668

Table 4. The accepted steps, rejected steps, error, and calculating time of each method for Example 3.

Method Tol Accepted
Steps

Rejected
Steps Error Time(s)

10−5 58 4 2.3242× 10−5 0.0079
EFRB(3,2) 10−7 139 4 9.9917× 10−8 0.0299

10−9 543 4 1.4384× 10−8 0.0703

10−5 471 1 3.6454× 10−6 0.0570
ode23s 10−7 2293 1 1.4693× 10−7 0.2551

10−9 10792 1 6.5482× 10−9 1.1690

10−5 256 0 1.4514× 10−6 0.0164
ode23t 10−7 1156 0 7.1862× 10−8 0.0567

10−9 5341 0 3.3804× 10−9 0.2405

10−5 178 0 1.5574× 10−6 0.0083
ode23tb 10−7 846 0 6.8615× 10−8 0.0314

10−9 3948 0 3.1499× 10−9 0.0848
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5. Conclusions

In this paper, a class of variable coefficient exponentially fitted embedded Rosenbrock
methods with adaptive step size has been developed. By the frequency estimation and step
size control strategy, the order of convergence will be increased by one and the methods
can renew the step size adaptively. The numerical experiments show that compared with
other methods such as ode23s, ode23t, and ode23tb in MATLAB®, our methods can achieve
lower error with fewer calculating steps and shorter time, and these advantages will be
much more significant if the tolerance is lower. We believe that this kind of methods can be
applied to more complex symmetric systems, and the Rosenbrock methods of higher order
can be constructed by our frequency estimation and step size control strategy.
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