
Citation: Rather, B.A.; Ali, F.; Ullah,

A.; Fatima, N.; Dad, R. Aγ

Eigenvalues of Zero Divisor Graph of

Integer Modulo and Von Neumann

Regular Rings. Symmetry 2022, 14,

1710. https://doi.org/10.3390/

sym14081710

Academic Editor: Serge Lawrencenko

Received: 22 July 2022

Accepted: 11 August 2022

Published: 17 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Aγ Eigenvalues of Zero Divisor Graph of Integer Modulo and
Von Neumann Regular Rings
Bilal Ahmad Rather 1 , Fawad Ali 2,* , Asad Ullah 3,* , Nahid Fatima 4 and Rahim Dad 5

1 Mathematical Sciences Department, College of Science, United Arab Emirate University,
Al Ain 15551, Abu Dhabi, United Arab Emirates

2 Institute of Numerical Sciences, Kohat University of Science & Technology,
Kohat 26000, Khyber Pakhtunkhwa, Pakistan

3 Department of Mathematical Sciences, University of Lakki Marwat,
Lakki Marwat 28420, Khyber Pakhtunkhwa, Pakistan

4 Department of Math & Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
5 Department of Mathematics, University of Science and Technology Bannu,

Bannu 28100, Khyber Pakhtunkhwa, Pakistan
* Correspondence: fawad_ali@kust.edu.pk (F.A.); asad@ulm.edu.pk (A.U.)

Abstract: The Aγ matrix of a graph G is determined by Aγ(G) = (1− γ)A(G) + γD(G), where
0 ≤ γ ≤ 1, A(G) and D(G) are the adjacency and the diagonal matrices of node degrees, respectively.
In this case, the Aγ matrix brings together the spectral theories of the adjacency, the Laplacian, and
the signless Laplacian matrices, and many more γ adjacency-type matrices. In this paper, we obtain
the Aγ eigenvalues of zero divisor graphs of the integer modulo rings and the von Neumann rings.
These results generalize the earlier published spectral theories of the adjacency, the Laplacian and the
signless Laplacian matrices of zero divisor graphs.

Keywords: zero divisor graphs; adjacency matrix; Laplacian (signless) eigenvalues; Aγ matrix; von
Neumann rings

1. Introduction

Throughout this study, we discuss only undirected, connected, finite, and simple
graphs. A graph G is represented by the pair G(V(G), E(G)), whereas V(G) and E(G)
represent the node and the edge sets of G, respectively. The size and order of G are,
respectively, the cardinalities of E(G) and V(G). The degree of w ∈ V(G) is indicated by
dG(w) (or simply by dw) and is equal to the number of edges incident on w. The neighborhood
N(w) of w ∈ V(G) is the collection of nodes of G connected to w, so dw is the same as
|N(w)|. If each node is of same degree, then G is said to be regular.

Consider the diagonal matrix D(G) = diag(dv1 , dv2 , . . . , dvn) of node degrees dvi of
G, when i = 1, 2, . . . , n. The adjacency matrix A(G) = (ajk)n×n is a real symmetric ma-
trix, where (jk)-th entry is 1, if vj is connected to vk and 0 otherwise. The matrices
Q(G) = D(G) + A(G) and L(G) = D(G) − A(G) are, respectively, the signless Lapla-
cian as well as the Laplacian matrices of G. Their multiset of eigenvalues is the signless
Laplacian and the Laplacian spectrums of G, respectively. The Laplacian and the signless
Laplacian are positive real semi-definite matrices, so their spectrum is real, and they are
ordered as λn(G) ≤ λn−1(G) ≤ · · · ≤ λ1(G) and µn(G) ≤ µn−1(G) ≤ · · · ≤ µ1(G),
respectively. Further details about these matrices can be seen in [1,2].

Nikiforov [3] suggested to investigate the symmetrical configurations Aγ(G) of D(G)
and A(G), and it is specified as Aγ(G) = γD(G) + (1− γ)A(G), whereas 1 ≥ γ ≥ 0.
Certainly, A(G) = A0(G), D(G) = A1(G) and Q(G) = A(G) + D(G) = 2A 1

2
(G). Thus,

Aγ(G) is a generalization of A(G) as well as Q(G) of G. Due to the fact that Aγ(G) is
symmetric and real, so its eigenvalues are ordered as λ1(Aγ(G)) ≥ λ2(Aγ(G)) ≥ · · · ≥
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λn(Aγ(G)), whenever λ1(Aγ(G)) is referred to as the generalized adjacency spectral radius of
G. Moreover, Aγ(G) (γ 6= 1) is irreducible and non-negative for connected graph G. As a
result, λ1(Aγ(G)) is a simple eigenvalue (Perron–Frobenius theorem), and its associated
eigenvector Y with positive entries is the generalized adjacency Perron vector of G. The
spectral properties of Aγ(G) are described in [3–7] and the references listed therein.

Consider a commutative ring R, with multiplicative identity 1 6= 0. If there exists
x2 ∈ R (x2 6= 0) such that x1x2 = 0, then x1 ∈ R (x1 6= 0) is referred to as a zero divisor
of R. The collection of zero divisors is symbolized by Z(R), while Z(R) \ {0} = Z∗(R) is
the collection of non-zero zero divisors of R. The zero divisor graph Γ(R) of R is a graph,
where Z∗(R) is its node set and two different nodes y, z ∈ Z∗(R) are connected whenever
yz = zy = 0. Beck [8] established such graphs over commutative rings; in his concept, he
incorporated the identity and was primarily concerned with the coloring of commutative
rings. Following that, the authors of [9] updated the concept of Γ(R) by omitting the
identity of R. The finite field of order n is represented by Fn and a ring of integers modulo
n by Zn. The order of Γ(Zn) is n− 1− φ(n), whereas φ is Euler’s phi function. The graph
theoretic characteristics of Γ(Zn) are widely investigated [10,11].

In [12], the authors showed that Γ(Zn) is a Laplacian integral, where n is some prime
power. According to [13], whenever a connected graph is bipartite, its lowest signless
Laplacian eigenvalue equals 0, and the multiplicity of the eigenvalue 0 equals the number
of bipartite components. Afkhami et al. [14] defined the normalized Laplacian as well as the
signless Laplacian spectrums of Γ(Zn) and evaluated such spectra over a range of n values.
In addition, they have identified certain bounds for various eigenvalues of the normalized
and signless Laplacian matrices of Γ(Zn). In [15], the authors examined the adjacency
spectrum of Γ(Zn). Furthermore, the normalized (signless) Laplacian eigenvalues were
discussed in [14,16–24] carried out the Laplacian and the adjacency spectral analysis. We
apply the standard, symbol Kn for the complete graph, Kn as its complement, and Ka,b for
the complete bipartite graph. Additional unexplained terminologies and notations may be
found in [25].

We have investigated many articles for the spectral graph theory to learn in depth the
applications and use of chemical substances. From the applications point of view, the use
of the eigenvalues and especially in the Laplacian matrix plays a vital role in the computer
algorithms, where they play a foundational role in machine learning. In addition, it can
also be used for load balancing in in these algorithms. In computers, nowadays, the image
processing is very important for the security point as well as other archaeological points of
view. In these processes, the adjacency matrix plays a key role in the visualization and other
zooming purposes. In addition, there is a build up of a strong inter-network connection for
certain topologies that the algebraic graph theory can play in such a circumstances. The
connections inside the super computers are based on certain topologies, and its working
rule is based on famous Cayley graphs that use the concept of symmetry.

There are still significant gaps in the existing work about the identification of certain
Aγ eigenvalues of zero divisor graphs for commutative and von Neumann rings. The
apparent reason for this is that neither the construction of zero divisor graphs over rings is
well specified nor it is feasible to derive convenient formulas of graph characteristics for
wide classes of rings. We make an attempt in this article to examine one of these problems.

The remaining article is organized as follows: Section 2 begins with some fundamental
findings that will be employed to compute the Aγ eigenvalues of Γ(Zn). Section 3 discusses
the Aγ eigenvalues of zero divisor graphs over von Neumann regular rings. Section 4
contains the paper’s conclusion and future work.

2. Aγ Eigenvalues of the Zero Divisor Graph

We begin this section with a couple of definitions and well-known outcomes, which
we use to demonstrate our main results.
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Definition 1. (Joined Union) Let us assume that a connected graph G with V = {u1, u2, . . . , un},
and Gi, where i = 1, 2, . . . , n are ni order disjoint graphs. The joined union of G denoted by
G[G1, G2, . . . , Gn] is obtained from G by substituting every ui by Gi and connecting every node of
Gi with each node of Gj, when ui and uj are adjacent in G.

Consider the n× n matrix

M =


t1,1 t1,2 · · · t1,l
t2,1 t2,2 · · · t2,l

...
...

. . .
...

tl,1 tl,2 · · · tl,l

,

such that the columns of M and rows M are partitioned as per the partition P = {π1, . . . , πl}
of the π = {1, 2, . . . , l} set. The matrix Q is an l × l matrix with entries equal to the mean
column or rows sum of the ti,j blocks of M; such matrix is known as the quotient matrix,
see [1,26]. If every ti,j has a fixed column (row) sum, the P is known as regular, and Q
is said to be the regular quotient matrix. For generality, the eigenvalues of Q and M are
the same.

Let Gi be regular graphs, the subsequent result from [27] indicates the Aγ spectrum of
the joined union of Gi in relation with the adjacency spectrum of Gi, for n ≥ i ≥ 1, together
with the eigenvalues of Q.

Theorem 1 ([27]). Consider graph G of order n ≥ 2. Suppose Gi are ri-regular graphs having
ni order and λini ≤ λi(ni−1) ≤ · · · ≤ λi2 ≤ λi1 = ri, where 1 ≤ i ≤ n are their adjacency
eigenvalues. The Aγ spectrum of the joined union G[G1, . . . , Gn] comprises (1− γ)λik(Gi) +
γ(ri + γi) eigenvalues, for k = 2, 3, . . . , ni, i = 1, . . . , n, where γi = ∑

uj∈NG(ui)
ni is the sum of

the orders of Gj, i 6= j that correspond to the neighbors of ui ∈ G. The other n eigenvalues of
G[G1, . . . , Gn] correspond to the eigenvalues of the matrix specified below:

M =


ξ11 (1− γ)ξ12 . . . (1− γ)ξ1n

(1− γ)ξ21 ξ22 . . . (1− γ)ξ2n
...

...
. . .

...
(1− γ)ξn1 (1− γ)ξn2 . . . ξnn

, (1)

where 1 ≤ i ≤ n, ξii = γγi + ri, and j 6= i, ξij = nj, when ui and uj are connected, and
0 otherwise.

Assume that Υn is the simple connected graph, where d1, . . . , ds of n is a set of proper
divisors with two distinct nodes being adjacent whenever n divides didj.

For s ≥ i ≥ 1, consider

Cdi
= {z ∈ Zn : (z, n) = di},

where (z, n) represents the G.C.D of z and n. Notice that Cdi
∩ Cdj

= φ, when j 6= i; this
implies that Cd1 , Cd2 , . . . , Cds are disjoint and partitions V(Γ(Zn)) as:

V(Γ(Zn)) = Cd1 ∪ Cd2 ∪ · · · ∪ Cds .

According to the Cdi
definition, a node of Cdi

is edge connected to the node of Cdj
in Γ(Zn)

when n divides didj, where j, i ∈ {1, 2, . . . , s}. In addition, the order of Cdi
is φ

(
n
di

)
, where

s ≥ i ≥ 1, (see [22]).
The succeeding lemma presents important properties about the subgraphs that are

either null graphs or cliques.
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Lemma 1 ([12]). Assume that di is its proper divisor and n ∈ N. Then, the subsequent holds.

(i) For any i ∈ {1, 2, . . . , s}, the subgraph induced by Γ(Cdi
) of Γ(Zn) is either K

φ
(

n
di

) or

K
φ
(

n
di

). Furthermore, Γ(Cdi
) is K

φ
(

n
di

) if n|d2
i .

(ii) For j, i ∈ {1, 2, . . . , s} (j 6= i), a node of Cdi
is connected to either none or all of the nodes in

Cdj
of Γ(Zn).

The sequel results give the structure of Γ(Zn).

Lemma 2 ([12]). For 1 ≤ i ≤ s, suppose Γ(Adi
) is the subgraph induced by Γ(Zn) of Cdi

. Then

Γ(Zn) = Υn[Γ(Cd1), Γ(Cd2), . . . , Γ(Cds)].

Lemma 3 ([21]). The following properties hold for Γ(Zn).

(i) If n = q2m, whenever q is prime and m ∈ N, we have

Γ(Zn) =Υn
[
Kφ(q2m−1), . . . , Kφ(qm+1), Kφ(qm), . . . , Kφ(q)

]
.

(ii) If n = q2m+1, where q is prime and m ∈ N, we have

Γ(Zn) =Υn
[
Kφ(q2m), . . . , Kφ(qm+1), Kφ(qm), . . . , Kφ(q)

]
.

Furthermore, we examine the Aγ eigenvalues of Γ(Zn) of Zn.

Theorem 2. The Aγ spectrum of Γ(Zn) contains the eigenvalues (1− γ)λik(Γ(Adi
)) + γ(ri +

γi) having multiplicity φ
(

n
di

)
− 1, also the eigenvalues of M presented in Equation (1).

Proof. The proof directly follows from Theorem 1.

Corollary 1. If n = p1 p2 . . . pl , where l ≥ 2 and pl > pl−1 > · · · > p1 are distinct prime
numbers, then the Aγ spectrum of Γ(Zn) contains the γ(γi) eigenvalues, where i = 1, 2, . . . , l

with multiplicity φ
(

n
di

)
− 1 together with the eigenvalues of M presented in Equation (1).

Next, we discuss the Aγ spectrum for some special classes of zero divisor graph. As a
reminder, Kn has an adjacency spectrum {n− 1, (−1)[n−1]} and that of Kn is {0[n]}.

Lemma 4. If n = q2, then Aγ spectrum of Γ(Zn) is given as:{
(γφ(q)− 1)[φ(q)−1], φ(q)− 1

}
,

where q is prime.

Proof. For prime q, the zero divisor graph Γ(Zq2) ∼= Kq−1 and its Aγ spectrum is already
known.

Lemma 5. For primes p1 < p2, the Aγ spectrum of Γ(Zp1 p2) is specified below:{
(γφ(p2))

[φ(p1)−1], (γφ(p1))
[φ(p2)−1],

1
2

(
γ(φ(p1) + φ(p2)) ±

√
(γ(φ(p1) + φ(p2)))2 − 4(2γ − 1)φ(p1)φ(p2)

)}
.
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Proof. Suppose n = p1 p2, whereas p1 < p2 are prime numbers. Then, by Lemma 3,
Γ(Zp1 p2)

∼= K2[Kφ(p1)
, Kφ(p2)

] = Kφ(p1)
∨ Kφ(p2)

and by Theorem 1, r1 = r2 = 0 and
γ1 = φ(p2), γ2 = φ(p1). The Aγ spectrum of Γ(Zp1 p2) contains the eigenvalue

γ(r1 + γ1) + (1− γ)λ1i(Kφ(p1)
) = γφ(p2),

whose multiplicity is φ(p1) − 1. Similarly, γ(r2 + γ2) + (1− γ)λ2i(Kφ(p2)
) = γφ(p1) is

another Aγ eigenvalue of Γ(Zp1 p2) whose multiplicity is φ(p2)− 1. The remaining two Aγ

eigenvalues of Γ(Zp1 p2) are the eigenvalues of the matrix presented below:(
γφ(p2) (1− γ)φ(p2)

(1− γ)φ(p1) γφ(p1)

)
,

and its characteristic polynomial is φ(p1)φ(p2)(2γ− 1)− γ(φ(p1) + φ(p2))x + x2.

Lemma 6. For prime q, the Aγ spectrum of Γ(Zq3) is{(
γφ(q)

)[φ(q2)−1]
,
(

γ(φ(q) + φ(q2))− 1
)[φ(q)−1]

,
1
2

(
γ(φ(q2) + φ(q)) + φ(q)− 1±

√
∆
)}

,

where ∆ =
(
φ(q) + γ(φ(q2) + φ(q))− 1

)2 − 4
(
γ(φ(q2)− φ(q)) + φ(q)φ(q2)(2γ− 1)

)
.

Proof. By Lemma 3, then the graph Γ(Zq3) of Zq3 is specified as:

Γ(Zq3) = K2[Kφ(q2), Kφ(q)] = Kφ(q2) ∨ Kφ(q),

that is, the complete split graph with the clique number φ(q) as well as the independence
number is φ(q2). Using Theorem 1, the Aγ spectrum of Γ(Zq3) contains the eigenvalue

γ(r1 + γ1) + (1− γ)λ1i(Kφ(q2)) = γφ(q),

with multiplicity φ(q2)− 1, the eigenvalue

γ(r2 + γ2) + (1− γ)λ2i(Kφ(q)) = γ(φ(q2) + φ(q))− 1,

whose multiplicity is φ(q)− 1. The other two Aγ eigenvalues of Zq3 correspond to the
eigenvalues of the sequel matrix:(

γφ(q) (1− γ)φ(q)
(1− γ)φ(q2) γφ(q2) + φ(q)− 1

)
.

Theorem 3. Suppose n = q2m, where m ∈ N and q is any prime. Then, the Aγ spectrum of Γ(Zn)
comprises the eigenvalue γ(qi − 1) whose multiplicity is φ(q2m−i)− 1, whenever 1 ≤ i ≤ m− 1,
the eigenvalues γ(qi − 1)− 1 with multiplicity φ(q2m−i)− 1, whenever m ≤ i ≤ 2m− 1 and the
eigenvalues of the matrix in Equation (2).

Proof. Applying Lemma 3, the structure of Γ(Zn) is given as:

Γ(Zn) = Υn
[
Kφ(q2m−1), . . . , Kφ(qm+1), Kφ(qm), . . . , Kφ(q)

]
.

Now, we need to know the structure of Υn. For that, note that {q, q2, . . . , qm, . . . , q2m−1} di-
vides n properly. Thus, by definition of Υq2m , the node qi is connected to qj if
2m− i ≤ j and j 6= i where 1 ≤ i ≤ 2m− 1. In addition, r1 = r2 = · · · = rm−1 = 0 and
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ri = φ(q2m−i)− 1, where m ≤ i ≤ 2m− 1. Then, γ2 = φ(q2) + φ(q) = q2 − 1, γ1 = φ(q). In

general, using the fact that
r
∑

i=1
φ(qr) = qr − 1, we have

γi = φ(qi) + φ(qi−1) + · · ·+ φ(q2) + φ(q) = qi − 1,

for i = 1, 2, . . . , m− 1.
Next, we find the remaining γi’s

γm =φ(qm−1) + φ(qm−2) + · · ·+ φ(q2) + φ(q)

=φ(qm−1) + φ(qm−2) + · · ·+ φ(q2) + φ(q) + φ(qm)− φ(qm)

=qm − 1− φ(qm).

More generally, for i = m, . . . , 2m− 1, add and subtract φ(q2m−i), so γi values take the
simple form

γi =
t

∑
k=1

φ(qt)− φ(q2m−i) = qi − 1− φ(q2m−i).

Applying Theorem 1, the Aγ spectrum of Γ(Zn) are the eigenvalues:

(1− γ)λik(Gi) + γ(ri + γi) = γγi = γ(qi − 1),

where i = 1, . . . , (m− 1). Likewise, as i = m, . . . , (2m− 1) and using the values of ri, Gi,
and γi, the other Aγ eigenvalues are:

(1− γ)λik(Gi) + γ(ri + γi) =γ(φ(q2m−i)− 1 + qi − 1− φ(q2m−i)) + (1− γ)(−1)

=γ(qi − 1)− 1,

with φ(q2m−i)− 1 multiplicities. The remaining Aγ eigenvalues of Γ(Zn) are actually the
subsequent matrix eigenvalues:

Am Bm×(m−1)
dm+1 · · · (1− γ)φ(q2) (1− γ)φ(q)

Cm−1×m
...

. . .
...

...
(1− γ)φ(qm−1) · · · d2m−2 (1− γ)φ(q)
(1− γ)φ(qm−1) · · · (1− γ)φ(q2) d2m−1

, (2)

where Am = diag
(
γγ1, γγ2, . . . , γγm−1, γ(qm − 1− φ(qm)) + φ(qm)− 1

)
,

B =


0 . . . 0 (1− γ)φ(q)
0 . . . (1− γ)φ(q2) (1− γ)φ(q)
...

. . .
...

...
(1− γ)φ(qm−1) . . . (1− γ)φ(q2) (1− γ)φ(q)
(1− γ)φ(qm−1) . . . (1− γ)φ(q2) (1− γ)φ(q)

,

C =


0 0 . . . 0 φ(q)(1− γ)
0 0 . . . φ(q2)(1− γ) φ(q)(1− γ)
...

...
. . .

...
...

φ(q2m−1)(1− γ) φ(q2m−2)(1− γ) . . . φ(q2)(1− γ) φ(q)(1− γ)
φ(q2m−1)(1− γ) φ(q2m−2)(1− γ) . . . φ(q2)(1− γ) φ(q)(1− γ)


and di = γ(qi − 1− φ(q2m−i)) + φ(q2m−i)− 1, where i = m + 1, . . . , 2m− 1.

Following the steps as in Theorem 3, we can prove the odd case.
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Theorem 4. If n = q2m+1 where m ≥ 2, then the Aγ spectrum of Γ(Zn) contains γ(qi − 1)
eigenvalues whose multiplicity is φ(q2m+1−i)− 1, for i = 1, 2, . . . , m, the eigenvalues γ(qi− 1)− 1
with multiplicity φ(q2m+1−i)− 1, where m + 1 ≤ i ≤ 2m, and the eigenvalues of the matrix below:

Am+1 B(m+1)×(m−1)
dm+2 · · · (1− γ)φ(q2) (1− γ)φ(q)

C(m−1)×(m+1)
...

. . .
...

...
(1− γ)φ(qm−1) · · · d2m−1 φ(q)(1− γ)
φ(qm−1)(1− γ) · · · (1− γ)φ(q2) d2m

,

where Am+1 = diag
(
γγ1, γγ2, . . . , γγm−1, γγm, γ(qm+1 − φ(qm+1)− 1)− 1 + φ(qm+1)

)
,

B =


0 . . . 0 φ(q)(1− γ)
0 . . . φ(q2)(1− γ) φ(q)(1− γ)
...

. . .
...

...
φ(qm−1)(1− γ) . . . φ(q2)(1− γ) φ(q)(1− γ)
φ(qm−1)(1− γ) . . . φ(q2)(1− γ) φ(q)(1− γ)

,

C =


0 0 . . . 0 φ(q)(1− γ)
0 0 . . . φ(q2)(1− γ) φ(q)(1− γ)
...

...
. . .

...
...

φ(q2m)(1− γ) φ(q2m−1)(1− γ) . . . φ(q2)(1− γ) φ(q)(1− γ)
φ(q2m)(1− γ) φ(q2m−1)(1− γ) . . . φ(q2)(1− γ) φ(q)(1− γ)


and di = γ(qi − φ(q2m+1−i)− 1) + φ(q2m+1−i)− 1, where i = m + 2, . . . , 2m− 1, 2m.

The next result gives the Aγ eigenvalues of Γ(Zn), where n is the multiplication of
three prime numbers.

Proposition 1. The Aγ spectrum of Γ(Zp1 p2 p3) contains the eigenvalues γ(p1 − 1), γ(p2 − 1),
γ(p3 − 1), γ(p1 p2 − 1), γ(p1 p3 − 1), and γ(p2 p3 − 1) whose multiplicities are φ(p2 p3)− 1,
φ(p1 p3)− 1, φ(p1 p2)− 1, φ(p3)− 1, φ(p2)− 1, and φ(p1)− 1, respectively. The leftover Aγ

eigenvalues of Γ(Zp1 p2 p3) are actually the eigenvalues of the matrix presented in Equation (3).

Proof. Figure 1 illustrates the proper divisor graph Υp1 p2 p3 . By expanding the divisor
sequence while using Lemma 2 to the nodes, we obtain the following zero divisor graph:

Γ(Zp1 p2 p3) = Υp1 p2 p3 [Kp2 p3 , Kp1 p3 , Kp1 p2 , Kp3 , Kp2 , Kp1 ].

By Theorem 1, the values of γi are presented as:

γ1 = φ(p1) = p1 − 1, γ2 = φ(p2) = p2 − 1, γ3 = φ(p3) = p3 − 1,

γ4 = φ(p1 p2) + φ(p1) + φ(p2) = p1 p2 − 1, γ5 = φ(p1 p3) + φ(p1) + φ(p3) = p1 p3 − 1,

γ6 = φ(p2 p3) + φ(p2) + φ(p3) = p2 p3 − 1.

As every component of Γ(Zp1 p2 p3) is an empty graph, therefore, the Aγ spectrum of
Γ(Zp1 p2 p3) comprises the eigenvalue

γ(0 + γ1) + (1− γ)0 = γ(p1 − 1),

with multiplicity φ(p2 p3)− 1. Likewise, the other Aγ eigenvalues of Γ(Zp1 p2 p3) can be
calculated as given in the statement. The remaining six Aγ eigenvalues of Γ(Zp1 p2 p3)
correspond to the matrix as specified below:
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γφ(p1) 0 0 0 0 (1− γ)φ(p1)
0 γφ(p2) 0 0 (1− γ)φ(p2) 0
0 0 γφ(p3) −(γ− 1)φ(p2) 0 0
0 0 (1− γ)φ(p1 p2) γ(p1 p2 − 1) −(γ− 1)φ(p2) −(γ− 1)φ(p1)
0 (1− γ)φ(p1 p3) 0 (1− γ)φ(p3) γ(p1 p3 − 1) −(γ− 1)φ(p1)

(1− γ)φ(p2 p3) 0 0 (1− γ)φ(p3) −(γ− 1)φ(p2) γ(p2 p3 − 1)

. (3)

By putting γ = 0 and γ = 1
2 in Theorem 2 and its consequences, we obtain the adja-

cency spectrum while the signless Laplacian spectrum of Γ(Zn) is obtained
in [14,17,20]. Similarly, using the fact (γ− β)L(G) = (γ− β)(D(G)− A(G)) = Aγ(G)−
Aβ(G) and Theorem 2 along with its consequences, we obtain the Laplacian eigenvalues,
which were earlier obtained in [12,21].

p2

p1 p3

p2 p3

p1

p3

p1 p2 Kφ(p2)
Kφ(p1 p3)

Kφ(p3)
Kφ(p1 p2)

Kφ(p1)

Kφ(p2 p3)

Figure 1. Proper divisor graph Υp1 p2 p3 and Γ(Zp1 p2 p3 ).

3. Aγ Eigenvalues of Zero Divisor Graphs of Von Nuemann Regular Rings

A ring R is known as von Neumann regular if there exists z ∈ R so that y = y2z for
each y ∈ R. The collection of idempotents of R is represented by B(R), and its zero divisor
graph is represented by Γ(B(R)). In [28–32], researchers examined the zero divisor graphs
of von Neumann regular rings and the adjacency spectrum was recently given in [33].

If r1 ∈ R, then the annihilator of r1 is denoted by Ann(r1) and is defined as
Ann(r1) = {r2 ∈ R : r1r2 = 0}. Define a relation r1 ∼ r2 on R, if Ann(r1) = Ann(r2) and
∼ is clearly an equivalence relation. In [29], the authors show the graph isomorphism, and
the equivalence class has a particular idempotent if R is a von Neumann regular. Patil
and Shinde [33] proved that for every non-trivial idempotent, the equivalence class of e
has an independent subgraph and two nodes a, b ∈ Γ(R) are edge connected whenever ea
and eb are edge connected in Γ(B(R)). They also showed that for a non-trivial idempotent
e = (e1, e2, . . . , ek) in F1 × F2 × · · · × Fk, the cardinality of Ae is ∏

ei 6=0

(|Fi| − 1), where × is

the usual product of rings (fields).
The structure of Γ(R) of the von Neumann regular rings R is obtained by the follow-

ing result.

Lemma 7 ([33]). Assume that e1, e2, . . . , et are the non-trivial idempotents in R. Then,

Γ(R) = Γ(B(R))[Γ(Ae1), Γ(Ae2), . . . , Γ(Aet)].

Now, we discuss the Aγ eigenvalues of R.
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Theorem 5. Suppose R is a finite von Neumann regular ring whose non-trivial idempotents
are e1, e2, . . . , et. Then the Aγ spectrum of Γ(R) consists of γ(γi) eigenvalues with multiplicity
|Aei | − 1, for i = 1, 2, . . . , t, together with the eigenvalues of M given in (1).

Proof. This proof directly follows by Theorem 1 and Lemma 7.

If R ∼= F1×F2× · · · ×Fk, for every Fi
∼= Zpi and pi, i = 1, . . . , k are distinct primes, the

Aγ spectrum of Γ(R) is presented by Corollary 1. Thus, by Theorem 5, we may determine
the spectrum of more general classes of zero divisors graphs of rings.

Next, we discuss some consequence of Theorem 5. First, we will find the Aγ spectrum
of F1 × F2, whereas F1 and F2 are finite fields. If F1

∼= Zp and F1
∼= Zq, whereas p < q are

primes, then Aγ eigenvalues are as in Lemma 5; otherwise, the Aγ spectrum is presented
by the sequel result.

Corollary 2. Suppose R ∼= F1 × F2. Then, the Aγ spectrum of Γ(R) contains the eigenvalues
γ(|F2| − 1) and γ(|F1| − 1) with multiplicities |F1| − 2 and |F2| − 2, respectively, and the two
zeros of the following polynomial:

λ2 − λ
(
γ(|F2|+ |F1|)− 2γ

)
+ γ2(|F1| − 1)(|F2| − 1)− (1− γ)2(|F1| − 1)(|F2| − 1).

Proof. For R ∼= F1 × F2, the non-trivial idempotent set is B(R) = {e1 = (1, 0),
e2 = (0, 1)} and Ae1 = {(x, 0) : x ∈ F1 \ {0}} and Ae2 = {(0, y) : x ∈ F2 \ {0}},
with |Aei | = |Fi| − 1, i = 1, 2. Thus, by the definition of Γ(B(R)) also by Lemma 7,
Γ(R) ∼= K2[K|F1|−1, K|F2|−1]. Therefore, from Theorem 5, the Aγ eigenvalues of Γ(R)
are the eigenvalue γ(γ1) = γ(|F2| − 1) with multiplicity |F1| − 1 and the eigenvalues
γ(γ2) = γ(|F1| − 1) with multiplicity |F2| − 1. The other Aγ eigenvalues are actually the
eigenvalues of the subsequent matrix:(

(|F2| − 1)γ (|F2| − 1)(1− γ)
(|F1| − 1)(1− γ) (|F1| − 1)γ

)
.

If R ∼= Zp × Zq × Zr, when r > q > p are distinct primes, as a result, Proposition 3
yields the Aγ eigenvalues of Γ(R). For R ∼= F1 × F2 × F3. As a consequence, we obtain
the following.

Corollary 3. Suppose R ∼= F1 × F2 × F3. We have that the Aγ spectrum of Γ(R) contains
the eigenvalues γ(|F3||F2| − 1), γ(|F3||F1| − 1), γ(|F2||F1| − 1), γ(|F3| − 1), γ(|F2| − 1),
γ(|F1| − 1) with multiplicities |F1| − 2, |F2| − 2, |F3| − 2, (n1 − 1), (n2 − 1), (n3 − 1), respec-
tively, and the other Aγ eigenvalues of Γ(R) are of Equation (4).

Proof. For R ∼= F1 × F2 × F3, the non-trivial idempotent set is B(R) = {e1 = (1, 0, 0),
e2 = (0, 1, 0), e3 = (0, 0, 1), e4 = (1, 1, 0), e5 = (1, 0, 1), e6 = (0, 1, 1), } and Ae1 = {(x, 0) :
x ∈ F1 \ {0}}, Γ(B(R)) is shown in Figure 2. Likewise, the graph Γ(R) is expressed on
the right side of Figure 2, where n1 = (|F2| − 1)(|F3| − 1), n2 = (|F1| − 1)(|F3| − 1) and
n3 = (|F1| − 1)(|F2| − 1) and by Theorem 5, the γi values are:

γ1 =(|F2| − 1)(|F3| − 1) + |F2|+ |F3| − 2 = |F2||F3| − 1,

γ2 =(|F1| − 1)(|F3| − 1) + |F1|+ |F3| − 2 = |F1||F3| − 1,

γ3 =|F1|+ |F2| − 2 + (|F1| − 1)(|F2| − 1) = |F1||F2| − 1,

γ4 =|F3| − 1, γ5 = |F2| − 1, γ6 = |F1| − 1.

As a result, Theorem 5 states that the Aγ eigenvalues of Γ(R) consist of the eigenvalues
γ(γ1) = γ(|F2||F3| − 1) with multiplicity |F1| − 2, and the other Aγ eigenvalues are as
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stated. The remaining six Aγ eigenvalues correspond to the eigenvalues of the matrix
given below:

γγ1 (1− γ)(|F2| − 1) (1− γ)(|F3| − 1) 0 0 (1− γ)n1
(1− γ)(|F1| − 1) γγ2 (1− γ)(|F3| − 1) 0 (1− γ)n2 0
(1− γ)(|F1| − 1) (1− γ)(|F2| − 1) γγ3 (1− γ)n3 0 0

0 0 (1− γ)(|F3| − 1) γγ4 0 0
0 (1− γ)(|F2| − 1) 0 0 γγ5

(1− γ)(|F1| − 1) 0 0 0 0 γγ6

. (4)

e6

e1

e3

e4

e5

e2

K|F1|−1Kn1
K|F2|−1 Kn2

K|F3|−1

Kn3

Figure 2. Idempotent zero divisor graph and zero divisor graph of F1 × F2 × F3, where
n1 = (|F2| − 1)(|F3| − 1), n2 = (|F1| − 1)(|F3| − 1) and n3 = (|F1| − 1)(|F2| − 1).

We note that for γ = 0 in Theorem 5, we obtain the adjacency eigenvalues of
the von Neumann regular rings obtained by Patil and Shinde [33]. Furthermore, from
Aγ(G)− Aβ(G) = (γ− β)L(G), applying Theorem 5, we derive the Laplacian spectrum
originally determined in [33]. For γ = 1

2 , we obtain the signless Laplacian eigenvalues of
Γ(R), where R is the von Neumann regular rings and they are given below.

Proposition 2. Assume R ∼= F1 × F2. The signless Laplacian spectrum of Γ(R) comprises the
eigenvalues |F2| − 1, |F1| − 1 whose multiplicities are |F1| − 2, and |F2| − 2, respectively. The
leftover two Aγ eigenvalues of Γ(R) are the eigenvalues given below:(

|F2| − 1 |F2|
|F1| |F1| − 1

)
.

For R ∼= F1 × F2 × F3, we obtain the following result.

Proposition 3. Suppose R ∼= F1 × F2 × F3. The signless Laplacian spectrum of Γ(R) contains
the eigenvalues |F2||F3| − 1, |F1||F3| − 1, |F1||F2| − 1, |F3| − 1, |F2| − 1, and |F1| − 1 with
multiplicities |F1| − 2, |F2| − 2, |F3| − 2, n1 − 1, n2 − 1, and n3 − 1, respectively. The leftover
six Aγ eigenvalues of Γ(R) are the eigenvalues given below:

γ1 |F2| − 1 |F3| − 1 0 0 n1
|F1| − 1 γ2 |F3| − 1 0 n2 0
|F1| − 1 |F2| − 1 γ3 n3 0 0

0 0 |F3| − 1 γ4 0 0
0 |F2| − 1 0 0 γ5

|F1| − 1 0 0 0 0 γ6

.

4. Conclusions

The present articles studied the Aγ eigenvalues of zero divisor graphs of various
commutative rings. Therefore, we derived the adjacency, Laplacian, and the signless
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Laplacian eigenvalues of such graphs. The field of theoretical chemistry is significant. We
study a large number of articles on spectral graph theory in order to investigate chemical
substances. Another useful application for the adjacency matrix is the spectral embedding
of graphs in the plane. In machine learning, the eigenvalues of the Laplacian matrix
provide the foundation for spectral clustering algorithms. In addition, computer scientists
incorporate it into load-balancing algorithms. Algebraic graph theory can be used to build
and study the topologies of interconnection networks. The topologies used to integrate
processors in a supercomputer are typically Cayley graphs with a high degree of symmetry.

However, some eigenvalues of these graphs remain unknown in terms of the eigen-
values of the quotient matrix, which are hard to find. At large, the Aγ eigenvalues of
zero divisors graphs of other commutative rings are yet to be discussed, and extremal
characterizations in terms of various spectral invariants are open and may be discussed
in future.
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