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Abstract: In this article, we analysed the approximate solutions of the time-fractional Kawahara
equation and modified Kawahara equation, which describe the propagation of signals in transmission
lines and the formation of nonlinear water waves in the long wavelength region. An efficient tech-
nique, namely the natural transform decomposition method, is used in the present study. Fractional
derivatives are considered in Caputo, Caputo–Fabrizio, and Atangana–Baleanu operative in the Ca-
puto manner. We have presented numerical results graphically to demonstrate the applicability and
efficiency of derivatives with fractional order to depict the water waves in long wavelength regions.
The symmetry pattern is a fundamental feature of the Kawahara equation and the symmetrical aspect
of the solution can be seen from the graphical representations. The obtained outcomes of the proposed
method are compared to those of other well-known numerical techniques, such as the homotopy
analysis method and residual power series method. Numerical solutions converge to the exact
solution of the Kawahara equations, demonstrating the significance of our proposed method.

Keywords: Caputo; Caputo–Fabrizio; Atangana–Baleanu in Caputo manner; natural transform
decomposition; Kawahara and modified Kawahara equations

1. Introduction

In recent years, the study of nonlinear physical processes has benefited tremendously
from the exploration of travelling wave solutions for nonlinear equations. Numerous scien-
tific and engineering disciplines, including fluid mechanics, plasma physics, optical fibres,
solid state physics and geology, deal with nonlinear wave processes. One of the significant
equations in physics and ocean engineering is the Kawahara equation. The purpose of this
research is to investigate the analytical scheme and efficiency of using the natural transform
decomposition method (NTDM) on finding the symmetric solutions of the time-fractional
Kawahara equation (TFKE) and time fractional modified Kawahara equation (TFMKE),
which are given below as follows

Dµ
τ V + VVζ + Vζζζ −Vζζζζζ = 0, 0 < µ ≤ 1, (1)

with
V(ζ, 0) = f (ζ), (2)

Dµ
τ V + V2Vζ + aVζζζ + bVζζζζζ = 0, 0 < µ ≤ 1, (3)

with
V(ζ, 0) = g(ζ), (4)

where a > 0, b < 0 are nonzero arbitrary constants. Dispersive wave equations are
important in both mathematics and physics. In the past few decades, the Kawahara
equation (KE) and modified Kawahara equation (MKE) have been a popular and active
study topic [1–3]. Kawahara proposed the KE for characterising solitary-wave propagation
in media in 1972 [4]. Kawahara numerically investigated this kind of equation and found
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that it has monotone and oscillatory solitary wave solutions. The symmetry pattern and
set of conservation laws are two further fundamental features of the Kawahara equation.
Symmetries and conservation laws of a generalization of the Kawahara equation were
examined in [5]. It can be seen in both plasma magneto-acoustic wave theory and shallow
water waves with surface tension. Furthermore, the MKE has numerous applications
in capillary-gravity water waves, plasma waves, and other fields [6–9].

Fractional calculus (FC) allows for the differentiation and integration of arbitrary
orders and it has grown in popularity in recent decades in fields such as physics, fluid me-
chanics, electrical networks, groundwater problems, hepatitis B virus model, HIV dynamics
model, biological sciences, diffusive transport, and electromagnetic theory [10–16]. Some
of the applications of FC are control theory [17], dissipation [18], relaxation [19], modelling
of processes such anomalous diffusion [20,21], and so on. Many scientists and engineers
have worked to use fractional differential equations to examine various biological and
physical systems. Solving these equations has proven to be a topic of study and interest for
scientists from a wide range of disciplines. Numerous efficient approaches for dealing with
such models have been established in the modern area of applied research and engineering.
Homotopy analysis method (HAM) [22], variational iteration method (VIM) [23,24], mono-
tone iterative technique [25], homotopy perturbation method (HPM) [26], reproducing
kernel Hilbert space method [27–29], fractional Newton method [30], extended auxiliary
equation mapping method, and extended direct algebraic mapping method [31], Laplace
transform method for fuzzy partial differential equations [32], modified Adams–Bashforth
method [33], (m + 1

G′ )−expansion method [34], modified expansion function method
and the sine–Gordon expansion method [35], the sine–Gordon expansion technique, and
the modified exp(−Ω(ζ))-expansion function technique [36], Laplace Adomian decom-
position method [37], and several others are some of the most popular numerical and
analytical approaches for solving linear and nonlinear fractional differential equations.

Several researchers have recently investigated the TFKE and TFMKE using various of
methods and techniques, such as the iterative Laplace transform method [17], the HAM [38]
and the new iterative method [39], and the residual power series method (RPSM) [40,41].

To the best of the author’s knowledge, this is the first utilisation of NTDM for the study
of Kawahara equations with three derivatives, where the Caputo (C) approach is singular
and the Caputo–Fabrizio (CF) and Atangna–Baleanu operative in Caputo sense (ABC)
approaches have non-singular kernels. The goal of this study is to solve the TFKE and
TFMKE using NTDM. The NTDM developed using two powerful approaches, namely
natural transform (NT) and Adomian decomposition method. Round-off errors are avoided
with the NTDM since it does not require linearization, assumptions, perturbation or dis-
cretization. NTDM can transcend the preceding restrictions and limitations of perturbation
techniques, allowing us to analyse strongly nonlinear problems. The limitation of the HPM
is that it needs solving the functional equation in each iteration, which can be difficult
and time-consuming. VIM has an inherent precision in finding the Lagrange multiplier,
corrective function, and stationary conditions for fractional order. Unlike the classic Ado-
mian process, the proposed approach does not include the calculation of the fractional
derivative or fractional integrals in the recursive formula, which simplifies the estimation
of the series terms. Therefore, this method is thought to be a useful tool for fast and
easy solving specific classes of coupled nonlinear partial differential equations (PDEs).
This method uses a fast convergence series to offer a solution that can be accurate or ap-
proximate. As a result, the NTDM is increasingly being used to solve a wide range of
linear and nonlinear PDEs [42,43]. NTDM has been used to study a wide range of physical
issues, including fractional order problems, such as the fractional system of ordinary dif-
ferential equations [44], time fractional Klein–Gordon equation [45], time fractional-order
coupled Burgers equations [46], and fractional-order Fisher’s equation [47]. Recently, the
Kaup–Kupershmidt equation [48] and Kuramoto–Sivashinsky equations [49] have been
studied using the natural decomposition method.
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The structure of the paper is summarised as follows. The NT of fundamental def-
initions as well as some additional results useful in the study of fractional differential
equations are presented in Section 2. In Section 3, the basic idea for NTDM is to use
fractional derivatives such as C, CF, and ABC. In Section 4, the solutions’ uniqueness
and convergence are investigated. Solutions of TFKE and TFMKE employing NTDM are
included in Section 5. The numerical results and graphs for the TFKE and TFMKE are
presented in Section 6. Lastly, in Section 7, we discuss our conclusions.

2. Basic Definitions

The fractional derivative definitions of C, CF, ABC, and some properties of NT are
presented as follows.

Definition 1 ([50]). In the Caputo manner, the fractional derivative of f ∈ Cq
−1 is shown as

Dµ
τ f (τ) =

{ dq f (τ)
dτq , µ = q ∈ N,

1
Γ(q−µ)

∫ τ
0 (τ − ξ)q−µ−1 f q(ξ)dξ, q− 1 < µ < q, q ∈ N.

(5)

Definition 2 ([51]). Let 0 < µ < 1. Fractional CF derivative of order µ is denoted as

CFDµ
τ f (τ) =

1
1− µ

∫ τ

0
f ′(ζ) exp

(−µ(τ − ζ)

1− µ

)
dζ, τ ≥ 0. (6)

Definition 3 ([52]). Fractional ABC derivative definition of f is as follows

ABCDµ
τ f (τ) =

B[µ]
1− µ

∫ τ

0
f ′(ζ)Eµ

(−µ(τ − ζ)µ

1− µ

)
dζ, (7)

where 0 < µ < 1. The B[µ] is a normalization function and the Mittag-Leffler function is

Eµ =
∞

∑
i=0

Zi

Γ(µi + 1)
.

Definition 4 ([53,54]). The NT of the function f (τ) is defined as

N+[ f (τ)] = R(s, u) =
1
u

∫ +∞

0
e(
−sτ

u ) f (τ)dτ, u, s > 0. (8)

Definition 5 ([55]). NT of Dµ
τ V(τ) by means of C derivative is given as

N+[C0 Dµ
τ V(τ)] = (

s
v
)µ
(

N+[V(τ)]− 1
s

V(0)
)
. (9)

Definition 6 ([56]). NT of Dµ
τ V(τ) by means of CF derivative is defined as

N+[CF
0 Dµ

τ V(τ)] =
1

1− µ + µ( v
s )

(
N+[V(τ)]− 1

s
V(0)

)
. (10)

Definition 7 ([57]). NT of Dµ
τ V(τ) by means of ABC derivative is represented as

N+[ABC
0 Dµ

τ V(τ)] =
M[µ]

1− µ + µ( v
s )

µ

(
N+[V(τ)]− 1

s
V(0)

)
, (11)

where M[µ] is the normalization function such that M[0] = M[1] = 1.

3. Basic Idea of NTDM

We consider the general inhomogeneous nonlinear equation as follows in this section,
which contains the basic idea of NTDM.
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Dµ
τ V(ζ, τ) = R[V(ζ, τ)] + F[V(ζ, τ)] + p(ζ, τ), (12)

with the initial condition,
V(ζ, 0) = f (ζ). (13)

Here, R is linear, F is nonlinear and p(ζ, τ) is the source term. Now, we can use the NT
of Equation (12) by taking fractional derivatives of C, CF, and ABC definitions.

NTDMC: By taking the NT of Equation (12) using C derivative, we get( s
v

)µ(
N+[V(ζ, τ)]− f (ζ)

s

)
= N+

[
R[V(ζ, τ)] + F[V(ζ, τ)] + p(ζ, τ)

]
. (14)

By taking inverse NT on Equation (14), we get

V(ζ, τ) = N−1
[ f (ζ)

s
+
(v

s

)µ
N+
[

R[V(ζ, τ)] + F[V(ζ, τ)] + p(ζ, τ)
]]

. (15)

The nonlinear term can also be expressed as

F[V(ζ, τ)] =
∞

∑
k=0

Ak, (16)

where Ak are the Adomian polynomials of V0, V1, V2, . . . , and can be calculated with
the given formula

Ak =
1
k!

dk

dµk

[
F
( ∞

∑
k=0

µkVk

)]
µ=0

, k = 0, 1, 2, . . . . (17)

Let the infinite series solution V(ζ, τ) be of the form

V(ζ, τ) =
∞

∑
k=0

Vk(ζ, τ). (18)

Now, we substitute Equations (16) and (18) into (15) to obtain

∞

∑
k=0

Vk(ζ, τ) =N−1
[ f (ζ)

s

]
+ N−1

[(v
s

)µ
N+[p(ζ, τ)]

]
+ N−1

[(v
s

)µ
N+
[

R
∞

∑
k=0

Vk(ζ, τ) +
∞

∑
k=0

Ak

]]
. (19)

By comparing the two sides of the Equation (19), we get

CV0(ζ, τ) = N−1
[ f (ζ)

s

]
+ N−1

[(v
s

)µ
N+[p(ζ, τ)]

]
,

CV1(ζ, τ) = N−1
[(v

s

)µ
N+
[

R[V0(ζ, τ)] + A0

]]
,

CV2(ζ, τ) = N−1
[(v

s

)µ
N+
[

R[V1(ζ, τ)] + A1

]]
,

CV3(ζ, τ) = N−1
[(v

s

)µ
N+
[

R[V2(ζ, τ)] + A2

]]
,

...

CVk+1(ζ, τ) = N−1
[(v

s

)µ
N+
[

R[Vk(ζ, τ)] + Ak

]]
, k ≥ 0. (20)

By substituting (20) into (18), we get the NTDMC by the series solutions of (12) and (13) as

CV(ζ, τ) = CV0(ζ, τ) + CV1(ζ, τ) + CV2(ζ, τ) + . . . . (21)
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NTDMCF: By taking NT of Equation (12) using CF derivative, we get

1
1− µ + µ( v

s )

(
N+[V(ζ, τ)]− f (ζ)

s

)
= N+

[
R[V(ζ, τ)] + F[V(ζ, τ)] + p(ζ, τ)

]
. (22)

By taking inverse NT on Equation (22), we get

V(ζ, τ) = N−1
[ f (ζ)

s
+
(

1− µ + µ
(v

s

))
N+
[

R[V(ζ, τ)] + F[V(ζ, τ)] + p(ζ, τ)
]]

. (23)

Now, we substitute Equations (16) and (18) into (23) to obtain

∞

∑
k=0

Vk(ζ, τ) = N−1
[ f (ζ)

s

]
+ N−1

[(
1− µ + µ

(v
s

))
N+[p(ζ, τ)]

]
+ N−1

[(
1− µ + µ

(v
s

))
N+
[

R
∞

∑
k=0

Vk(ζ, τ) +
∞

∑
k=0

Ak

]]
.

(24)

By comparing the two sides of the Equation (24), we get

CFV0(ζ, τ) = N−1
[ f (ζ)

s

]
+ N−1

[(
1− µ + µ

(v
s

))
N+[p(ζ, τ)]

]
,

CFV1(ζ, τ) = N−1
[(

1− µ + µ
(v

s

))
N+
[

R[V0(ζ, τ)] + A0

]]
,

CFV2(ζ, τ) = N−1
[(

1− µ + µ
(v

s

))
N+
[

R[V1(ζ, τ)] + A1

]]
,

CFV3(ζ, τ) = N−1
[(

1− µ + µ
(v

s

))
N+
[

R[V2(ζ, τ)] + A2

]]
,

...

CFVk+1(ζ, τ) = N−1
[(

1− µ + µ
(v

s

))
N+
[

R[Vk(ζ, τ)] + Ak

]]
, k ≥ 0. (25)

By substituting (25) into (18), we get the NTDMCF by the series solutions of (12) and (13) as

CFV(ζ, τ) = CFV0(ζ, τ) + CFV1(ζ, τ) + CFV2(ζ, τ) + . . . . (26)

NTDMABC: By taking NT of Equation (12) using ABC derivative, we get

M[µ]

1− µ + µ
(

v
s

)µ

(
N+[V(ζ, τ)]− f (ζ)

s

)
= N+

[
R[V(ζ, τ)] + F[V(ζ, τ)] + p(ζ, τ)

]
. (27)

By taking inverse NT on Equation (27), we get

V(ζ, τ) = N−1
[ f (ζ)

s
+

1− µ + µ
(

v
s

)µ

M[µ]
N+
[

R[V(ζ, τ)] + F[V(ζ, τ)] + p(ζ, τ)
]]

. (28)

Now, we substitute Equations (16) and (18) into (28) to obtain

∞

∑
k=0

Vk(ζ, τ) = N−1
[ f (ζ)

s

]
+ N−1

[1− µ + µ
(

v
s

)µ

M[µ]
N+[p(ζ, τ)]

]

+ N−1
[1− µ + µ

(
v
s

)µ

M[µ]
N+
[

R
∞

∑
k=0

Vk(ζ, τ) +
∞

∑
k=0

Ak

]]
.

(29)
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By comparing the two sides of the Equation (29), we get

ABCV0(ζ, τ) = N−1
[ f (ζ)

s

]
+ N−1

[1− µ + µ
(

v
s

)µ

M[µ]
N+[p(ζ, τ)]

]
,

ABCV1(ζ, τ) = N−1
[1− µ + µ

(
v
s

)µ

M[µ]
N+
[

R[V0(ζ, τ)] + A0

]]
,

ABCV2(ζ, τ) = N−1
[1− µ + µ

(
v
s

)µ

M[µ]
N+
[

R[V1(ζ, τ)] + A1

]]
,

ABCV3(ζ, τ) = N−1
[1− µ + µ

(
v
s

)µ

M[µ]
N+
[

R[V2(ζ, τ)] + A2

]]
,

...

ABCVk+1(ζ, τ) = N−1
[1− µ + µ

(
v
s

)µ

M[µ]
N+
[

R[Vk(ζ, τ)] + Ak

]]
, k ≥ 0. (30)

By substituting (30) into (18), we get the NTDMABC by the series solutions of (12) and (13) as

ABCV(ζ, τ) = ABCV0(ζ, τ) + ABCV1(ζ, τ) + ABCV2(ζ, τ) + . . . . (31)

4. Convergence Analysis

In this section, we illustrate convergence and uniqueness of the NTDMC, NTDMCF,
and NTDMABC.

Theorem 1 ([57]). The NTDMC solution of (12) is unique when 0 < (δ1 + δ2)
τµ

Γ(1+µ)
< 1.

Proof. Assume that H = (C[I], ‖.‖) stands ∀ continuous mapping on the Banach space
with the norm, specified on I = [0,T]. For this, we propose the mapping L : H → H,
we have

VC
k+1(ζ, τ) = VC

0 + N−1
[(v

s

)µ
N+[R(Vk(ζ, τ))]

]
+ N−1

[(v
s

)µ
N+[F(Vk(ζ, τ))]

]
, k ≥ 0.

Let us suppose | R(V)− R(V∗) |< δ1 | V −V∗ | and | F(V)− F(V∗) |< δ2 | V −V∗ |,
where δ1 and δ2 are Lipschitz constants, respectively, and V and V∗ are two arbitrary values
of the mapping.

‖L(V)− L(V∗)‖ = max
τ∈I

∣∣∣N−1
[( v

s

)µ
N+[R(V) + F(V)]

]
− N−1

[( v
s

)µ
N+[R(V∗) + F(V∗)]

]∣∣∣
≤ max

τ∈I

∣∣∣N−1
[( v

s

)µ
N+[R(V)− R(V∗)] +

( v
s

)µ
N+[F(V)− F(V∗)]

]∣∣∣
≤ max

τ∈I

[
δ1N−1

[( v
s

)µ
N+|V −V∗|

]
+ δ2N−1

[( v
s

)µ
N+|V −V∗|

]]
≤ max

τ∈I
(δ1 + δ2)

[
N−1

( v
s

)µ[
N+|V −V∗|

]]
≤ (δ1 + δ2)

[
N−1

[( v
s

)µ
N+‖V −V∗‖

]]
= (δ1 + δ2)

τµ

Γ(µ + 1)
‖V −V∗‖.

The mapping is a contraction under the premise 0 < (δ1 + δ2)
τµ

Γ(1+µ)
< 1. As a result

of the Banach contraction fixed point theorem, there is a unique solution to (12).

Theorem 2 ([57]). When 0 < (δ1 + δ2)(1− µ+ µτ) < 1, then NTDMCF solution to (12) is unique.
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Proof. This proof has been omitted since it is identical to Theorem 1.

Theorem 3 ([57]). When 0 < (δ1 + δ2)(1− µ + µ τµ

Γ(µ+1) ) < 1, the NTDMABC solution to (12)
is unique.

Proof. Because it is similar to Theorem 1, it has been omitted.

Theorem 4 ([57]). The general form of NTDMC solution to (12) will be convergent.

Proof. Assume that Vm is the mth parital sum and that Vm =
m
∑

k=0
Vk(ζ, τ). First, we demon-

strate the Vm in Banach space in H is a Cauchy sequence. We obtain this by considering
a new form Adomian polynomials.

Now, ∥∥Vm −Vq
∥∥ = max

τ∈I
|Vm −Vq|

= max
τ∈I

∣∣∣ m

∑
r=q+1

Vr

∣∣∣, q = 1, 2, 3, . . . .

≤ max
τ∈I

∣∣∣N−1
[(v

s

)µ
N+
[ m

∑
r=q+1

(R(Vr−1) + F(Vr−1))
]]∣∣∣

= max
τ∈I

∣∣∣N−1
[(v

s

)µ
N+
[ m−1

∑
r=q

R(Vr) + F(Vr)
]]∣∣∣

≤ max
τ∈I

∣∣∣N−1
[(v

s

)µ
N+[R(Vm−1)− R(Vq−1)]

]∣∣∣
+ max

τ∈I

∣∣∣N−1
[(v

s

)µ
N+[F(Vm−1)− F(Vq−1)]

]∣∣∣
≤ δ1 max

τ∈I

∣∣∣N−1
(v

s

)µ[
N+[R(Vm−1)− R(Vq−1)]

]∣∣∣
+ δ2 max

τ∈I

∣∣∣N−1
(v

s

)µ[
N+[F(Vm−1)− F(Vq−1)]

]∣∣∣
= (δ1 + δ2)

τµ

Γ(µ + 1)

∥∥Vm−1 −Vq−1
∥∥.

Consider m = q + 1, then∥∥Vq+1 −Vq
∥∥ ≤ δ

∥∥Vq −Vq−1
∥∥

≤ δ2∥∥Vq−1 −Vq−2
∥∥

≤ · · · ≤ δq‖V1 −V0‖,

where δ = (δ1 + δ2)
τµ

Γ(µ+1) . Analogously, we get the triangular inequality.∥∥Vm −Vq
∥∥ ≤ ∥∥Vq+1 −Vq

∥∥+ ∥∥Vq+2 −Vq+1
∥∥+ · · ·+ ‖Vm −Vm−1‖

≤ (δq + δq+1 + · · ·+ δm−1)‖V1 −V0‖

≤ δq
(1− δm−q

1− δ

)
‖V1‖.

As 0 < δ < 1, we get 1− δm−q < 1. Therefore,

∥∥Vm −Vq
∥∥ ≤ δq

1− δ
max
τ∈I
‖V1‖.

However, ‖V1‖ < ∞. Thus, as q → ∞, then
∥∥Vm −Vq

∥∥ → 0. Hence, Vm is a Cauchy
sequence in H. As a result, the series Vm is convergent.
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Theorem 5 ([57]). The (12) NTDMCF solution is convergent.

Proof. The proof has been omitted since it is similar to Theorem 4.

Theorem 6 ([57]). The (12) NTDMABC solution is convergent.

Proof. The proof has been omitted since it is similar to Theorem 4.

5. Solutions for TFKE and TFMKE

In this section, we obtain the following solutions of TFKE and TFMKE using NTDM
by taking C, CF, and ABC derivatives.

Example 1. Consider the TFKE as of the form

Dµ
τ V + VVζ + Vζζζ −Vζζζζζ = 0,

with initial condition,

V(ζ, 0) =
105
169

sech4
( ζ

2
√

13

)
.

If µ = 1, then the exact solution is [38],

V(ζ, τ) =
105
169

sech4

(
1

2
√

13

(
ζ − 36τ

169

))
.

NTDMC: We obtain the following solutions of NTDMC derivative as

CV0(ζ, τ) =
105
169

sech4
( ζ

2
√

13

)
,

CV1(ζ, τ) =
7560
√

13τµ sinh
(√

13ζ
26

)
371,293 Γ(1 + µ)cosh5

(√
13ζ
26

) ,

CV2(ζ, τ) =
136,080 τ2 µ

(
2 sinh

(√
13ζ
26 − 1

)(
2 sinh

(√
13ζ
26 + 1

))
62,748,517 Γ(1 + 2 µ)

(
sinh2

(√
13 ζ
26

)
+ 1
)3 ,

...

by substituting CV0(ζ, τ), CV1(ζ, τ), CV2(ζ, τ), · · · values in (21), we obtain the approximate
solution as

CV(ζ, τ) =
105
169

sech4
( ζ

2
√

13

)
+

7560
√

13 τµ sinh
(√

13 ζ
26

)
371,293 Γ(1 + µ) cosh5

(√
13 ζ
26

)
+

136,080 τ2 µ
(

2 sinh
(√

13ζ
26 − 1

)(
2 sinh

(√
13ζ
26 + 1

))
62,748,517 Γ(1 + 2 µ)

(
sinh2

(√
13 ζ
26

)
+ 1
)3 + · · · .

NTDMCF: We obtain the following solutions of NTDMCF derivative as
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CFV0(ζ, τ) =
105
169

sech4
( ζ

2
√

13

)
,

CFV1(ζ, τ) =
7560

√
13 sinh

(√
13 ζ
26

)
(1− µ + µ τ)

371,293 cosh5
(√

13 ζ
26

) ,

CFV2(ζ, τ) =

(
2 cosh

(√
13 ζ
13

)
− 3
)

62,748,517
(

sinh2
(√

13 ζ
26

)
+ 1
)3

(
136,080− 272,160 µ + 136,080 µ2

+ 272,160 µ τ − 272,160 µ2 τ + 68,040 µ2 τ2
)

,

...

by substituting CFV0(ζ, τ), CFV1(ζ, τ), CFV2(ζ, τ), · · · values in (26), we obtain the approxi-
mate solution as

CFV(ζ, τ) =
105
169

sech4
( ζ

2
√

13

)
+

7560
√

13 sinh
(√

13 ζ
26

)
(1− µ + µ τ)

371,293 cosh5
(√

13 ζ
26

)
+

(
2 cosh

(√
13 ζ
13

)
− 3
)

62,748,517
(

sinh2
(√

13 ζ
26

)
+ 1
)3

(
136,080− 272,160 µ + 136,080 µ2

+ 272,160 µ τ − 272,160 µ2 τ + 68,040 µ2 τ2
)
+ · · · .

NTDMABC: We obtain the following solutions of NTDMABC derivative as

ABCV0(ζ, τ) =
105
169

sech4
( ζ

2
√

13

)
,

ABCV1(ζ, τ) =
7560

√
13 sinh

(√
13 ζ
26

)
(Γ(1 + µ)− µ Γ(1 + µ) + µ τµ)

371,293 Γ(1 + µ) cosh
(√

13 ζ
26

)5 ,

ABCV2(ζ, τ) =
136,080

(
2 sinh

√
13ζ
26 − 1

)(
2 sinh

√
13ζ
26 + 1

)
62,748,517 Γ(1 + µ) Γ(1 + 2µ)

(
sinh2

√
13ζ
26 + 1

)3

(
Γ(1 + µ) Γ(1 + 2µ)− 2 µ Γ(1 + µ) Γ(1 + 2µ) + 2 µ τµ Γ(1 + 2µ)

+ µ2 Γ(1 + µ) Γ(1 + 2µ)− 2 µ2 τµ Γ(1 + 2µ) + µ2 τ2 µ Γ(1 + µ)
)

,

...

by substituting ABCV0(ζ, τ), ABCV1(ζ, τ), ABCV2(ζ, τ), · · · values in (31), we obtain the ap-
proximate solution as

ABCV(ζ, τ) =
105
169

sech4
( ζ

2
√

13

)
+

7560
√

13 sinh
(√

13 ζ
26

)
(Γ(1 + µ)− µ Γ(1 + µ) + µ τµ)

371,293 Γ(1 + µ) cosh
(√

13 ζ
26

)5

+
136,080

(
2 sinh

√
13ζ
26 − 1

)(
2 sinh

√
13ζ
26 + 1

)
62,748,517 Γ(1 + µ) Γ(1 + 2µ)

(
sinh2

√
13ζ
26 + 1

)3

(
Γ(1 + µ) Γ(1 + 2µ)

− 2 µ Γ(1 + µ) Γ(1 + 2µ) + 2 µ τµ Γ(1 + 2µ) + µ2 Γ(1 + µ) Γ(1 + 2µ)

− 2 µ2 τµ Γ(1 + 2µ) + µ2 τ2 µ Γ(1 + µ)
)
+ · · · .
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Example 2. Consider the TFMKE as of the form

Dµ
τ V + V2Vζ + a Vζζζ + b Vζζζζζ = 0,

with initial condition,

V(ζ, 0) =
3a√
−10b

sech2(Pζ).

If µ = 1, then the exact solution is [38],

V(ζ, τ) =
3a√
−10b

sech2(P(ζ − lτ)), P =
1
2

√
−a
5b

, l =
25b− 4a2

25b
.

NTDMC: We obtain the following solutions of NTDMC derivative as

CV0(ζ, τ) =
3a√
−10b

sech2

(
1
2

√
−a
5b

ζ

)
,

CV1(ζ, τ) =

6
√

2 a3 τµ sinh
(√

5 ζ
√
− a

b
10

)√
− a

b

125 (−b)3/2 Γ(1 + µ) cos
(√

5
√

a ζ

10
√

b

)3 ,

CV2(ζ, τ) =
6
√

10a11/2τ2µ

15,625(−b)
7
2 cos8

(√
5
√

aζ

10
√

b

)
Γ(1 + 2µ)

(
45
√

a sinh2

√5ζ
√
− a

b

10

− 2
√

a

+ 51
√

asin2

(√
5
√

aζ

10
√

b

)
− 51
√

asin4

(√
5
√

aζ

10
√

b

)
+ 2
√

asin6

(√
5
√

aζ

10
√

b

)

+ 6
√

b sin

(√
5
√

aζ

10
√

b

)
sinh

√5ζ
√
− a

b

10

√− a
b
− 57
√

bsin3

(√
5
√

aζ

10
√

b

)

× sinh

√5ζ
√
− a

b

10

√− a
b
+ 6
√

bsin5

(√
5
√

aζ

10
√

b

)
sinh

√5ζ
√
− a

b

10

√− a
b

)
,

...

by substituting CV0(ζ, τ), CV1(ζ, τ), CV2(ζ, τ), · · · values in (21), we obtain the approximate
solution as

CV(ζ, τ) =
3a√
−10b

sech2

(
1
2

√
−a
5b

ζ

)
+

6
√

2a3τµ sinh
(√

5ζ
√
− a

b
10

)√
− a

b

125(−b)3/2Γ(1 + µ)cos
(√

5
√

aζ

10
√

b

)3

+
6
√

10a11/2τ2µ

15,625(−b)
7
2 cos8

(√
5
√

aζ

10
√

b

)
Γ(1 + 2µ)

(
45
√

a sinh2

√5ζ
√
− a

b

10

− 2
√

a

+ 51
√

asin2

(√
5
√

aζ

10
√

b

)
− 51
√

asin4

(√
5
√

aζ

10
√

b

)
+ 2
√

asin6

(√
5
√

aζ

10
√

b

)

+ 6
√

b sin

(√
5
√

aζ

10
√

b

)
sinh

√5ζ
√
− a

b

10

√− a
b
− 57
√

bsin3

(√
5
√

aζ

10
√

b

)

× sinh

√5ζ
√
− a

b

10

√− a
b
+ 6
√

bsin5

(√
5
√

aζ

10
√

b

)
sinh

√5ζ
√
− a

b

10

√− a
b

)
+ · · · .
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NTDMCF: We obtain the following solutions of NTDMCF derivative as

CFV0(ζ, τ) =
3a√
−10b

sech2

(
1
2

√
−a
5b

ζ

)
,

CFV1(ζ, τ) =

6
√

2 a3 sinh
(√

5 ζ
√
− a

b
10

)√
− a

b (1− µ + µ τ)

125 (−b)3/2 cos
(√

5
√

a ζ

10
√

b

)3 ,

CFV2(ζ, τ) =
3
√

10a11/2
(

2− 4µ + 2µ2 + 4 µτ − 4µ2τ + µ2τ2
)

15,625(−b)7/2cos8
(√

5
√

aζ

10
√

b

)
(

45
√

a sinh2

√5ζ
√
− a

b

10

 − 2
√

a + 51
√

asin2

(√
5
√

aζ

10
√

b

)

− 51
√

asin4

(√
5
√

aζ

10
√

b

)
+ 2
√

asin6

(√
5
√

aζ

10
√

b

)
+ 6
√

b sin

(√
5
√

aζ

10
√

b

)

× sinh

√5ζ
√
− a

b

10

 √− a
b
− 57
√

bsin3

(√
5
√

aζ

10
√

b

)
sinh

√5ζ
√
− a

b

10

 √− a
b

+ 6
√

bsin5

(√
5
√

aζ

10
√

b

)
sinh

√5ζ
√
− a

b

10

 √− a
b

)
,

...

by substituting CFV0(ζ, τ), CFV1(ζ, τ), CFV2(ζ, τ), · · · values in (26), we obtain the approxi-
mate solution as

CFV(ζ, τ) =
3a√
−10b

sech2

(
1
2

√
−a
5b

ζ

)
+

6
√

2a3 sinh
(√

5ζ
√
− a

b
10

)√
− a

b (1− µ + µτ)

125(−b)3/2cos
(√

5
√

aζ

10
√

b

)3

+
3
√

10a11/2
(

2− 4µ + 2µ2 + 4µτ − 4µ2τ + µ2τ2
)

15,625(−b)7/2cos8
(√

5
√

aζ

10
√

b

)
(

45
√

a sinh2

√5ζ
√
− a

b

10

 − 2
√

a + 51
√

asin2

(√
5
√

aζ

10
√

b

)

− 51
√

asin4

(√
5
√

aζ

10
√

b

)
+ 2
√

asin6

(√
5
√

aζ

10
√

b

)
+ 6
√

b sin

(√
5
√

aζ

10
√

b

)

× sinh

√5ζ
√
− a

b

10

√− a
b
− 57
√

bsin3

(√
5
√

aζ

10
√

b

)
sinh

√5ζ
√
− a

b

10

√− a
b

+ 6
√

bsin5

(√
5
√

aζ

10
√

b

)
sinh

√5ζ
√
− a

b

10

√− a
b

)
+ · · · .

NTDMABC: We obtain the following solutions of NTDMABC derivative as
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ABCV0(ζ, τ) =
3a√
−10b

sech2

(
1
2

√
−a
5b

ζ

)
,

ABCV1(ζ, τ) =

6
√

2 a3 sinh
(√

5 ζ
√
− a

b
10

)√
− a

b (Γ(1 + µ)− µ Γ(1 + µ) + µ τµ)

125 (−b)3/2 Γ(1 + µ) cos
(√

5
√

a ζ

10
√

b

)3 ,

ABCV2(ζ, τ) =
1

15,625(−b)7/2Γ(1 + µ)cos8
(√

5
√

aζ

10
√

b

)
Γ(1 + 2µ)(

6
√

10a11/2
(

Γ(1 + µ)Γ(1 + 2µ)− 2µΓ(1 + µ)Γ(1 + 2µ) + 2µτµΓ(1 + 2µ)

+ µ2Γ(1 + µ)Γ(1 + 2µ)− 2µ2τµΓ(1 + 2µ) + µ2τ2µΓ(1 + µ)
)

×
(

45
√

asinh

√5ζ
√
− a

b

10

2

− 2
√

a + 51
√

asin2

(√
5
√

aζ

10
√

b

)

− 51
√

asin4

(√
5
√

aζ

10
√

b

)
+ 2
√

asin6

(√
5
√

aζ

10
√

b

)
+ sinh

√5ζ
√
− a

b

10

√− a
b

×
(

6
√

b sin

(√
5
√

aζ

10
√

b

)
− 57
√

bsin3

(√
5
√

aζ

10
√

b

)
+ 6
√

bsin5

(√
5
√

aζ

10
√

b

))))
,

...

by substituting ABCV0(ζ, τ), ABCV1(ζ, τ), ABCV2(ζ, τ), · · · values in (31), we obtain the ap-
proximate solution as

ABCV(ζ, τ) =
3a√
−10b

sech2

(
1
2

√
−a
5b

ζ

)

+

6
√

2 a3 sinh
(√

5 ζ
√
− a

b
10

)√
− a

b (Γ(1 + µ)− µ Γ(1 + µ) + µ τµ)

125 (−b)3/2 Γ(1 + µ) cos
(√

5
√

a ζ

10
√

b

)3

+
1

15,625(−b)7/2Γ(1 + µ)cos8
(√

5
√

aζ

10
√

b

)
Γ(1 + 2µ)(

6
√

10a11/2
(

Γ(1 + µ)Γ(1 + 2µ)− 2µΓ(1 + µ)Γ(1 + 2µ) + 2µτµΓ(1 + 2µ)

+ µ2Γ(1 + µ)Γ(1 + 2µ)− 2µ2τµΓ(1 + 2µ) + µ2τ2µΓ(1 + µ)
)

×
(

45
√

asinh

√5ζ
√
− a

b

10

2

− 2
√

a + 51
√

asin2

(√
5
√

aζ

10
√

b

)

− 51
√

asin4

(√
5
√

aζ

10
√

b

)
+ 2
√

asin6

(√
5
√

aζ

10
√

b

)
+ sinh

√5ζ
√
− a

b

10

√− a
b

×
(

6
√

b sin

(√
5
√

aζ

10
√

b

)
− 57
√

bsin3

(√
5
√

aζ

10
√

b

)
+ 6
√

bsin5

(√
5
√

aζ

10
√

b

))))
+ · · · .

6. Numerical Results and Discussion

In this section, we illustrate the approximate solutions of TFKE and TFMKE using
NTDM with unique space and time variables at various fractional-order values in Tables 1–4.
To demonstrate the dynamical behaviour of the solutions, their animations are exploited
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using numerical simulation in Figures 1–4. Table 1 displays the absolute error of TFKE for
various τ values at ζ = 10. Table 2 demonstrates the approximate solution of TFKE for vari-
ous µ, τ values at fixed ζ = 10 using the current technique. Figure 1 shows the approximate
solution of TFKE with different values of µ. Figure 2 shows the surface plot of the ap-
proximate solution of V(ζ, τ) with different values of µ. Table 3 displays the approximate
solutions of TFMKE for various τ and ζ values at µ = 1. Table 4 displays the approximate
solution of TFMKE with various values of µ, τ, and ζ. Figure 3 shows the approximate
solution of TFMKE with different values of µ. Figure 4 shows the surface plot of the approx-
imate solution of V(ζ, τ) with different values of µ. The tables and graphs demonstrate
the suggested techniques’ accuracy and applicability. From the figures, we can observe that
three derivative graphical patterns are similar and symmetric. Tables display the accuracy
of the proposed method with existing techniques with various fractional-order values.

Table 1. Absolute error of TFKE in Example 1 with different values of τ at fixed ζ = 10.

µ = 1

τ NTDMC NTDMCF NTDMABC RPSM [40]

0.0 0 0 0 0

0.1 1.41553 × 10−15 1.41553 × 10−15 1.41553 × 10−15 1.41553 × 10−15

0.2 4.68063 × 10−14 4.68063 × 10−14 4.68063 × 10−14 4.68063 × 10−14

0.3 3.6391 × 10−13 3.6391 × 10−13 3.6391 × 10−13 3.6391 × 10−13

0.4 1.56886 × 10−12 1.56886 × 10−12 1.56886 × 10−12 1.56886 × 10−12

0.5 4.89617 × 10−12 4.89617 × 10−12 4.89617 × 10−12 4.89617 × 10−12

0.6 1.24542 × 10−11 1.24542 × 10−11 1.24542 × 10−11 1.24542 × 10−11

0.7 2.75069 × 10−11 2.75069 × 10−11 2.75069 × 10−11 2.75069 × 10−11

0.8 5.47829 × 10−11 5.47829 × 10−11 5.47829 × 10−11 5.47829 × 10−11

0.9 1.0081 × 10−10 1.0081 × 10−10 1.0081 × 10−10 1.0081 × 10−10

1.0 1.7428 × 10−10 1.7428 × 10−10 1.7428 × 10−10 1.7428 × 10−10

Table 2. Approximate solution of TFKE in Example 1 with different values of µ, τ at fixed ζ = 10.

µ = 0.25

τ NTDMC NTDMCF NTDMABC RPSM [40]

0.0 3.04206 × 10−2 3.29806 × 10−2 3.29806 × 10−2 3.04206 × 10−2

0.1 3.25021 × 10−2 3.30723 × 10−2 3.35567 × 10−2 3.25033 × 10−2

0.2 3.29225 × 10−2 3.31643 × 10−2 3.36675 × 10−2 3.29247 × 10−2

0.3 3.32093 × 10−2 3.32564 × 10−2 3.37421 × 10−2 3.32123 × 10−2

0.4 3.34339 × 10−2 3.33488 × 10−2 3.38000 × 10−2 3.34378 × 10−2

0.5 3.36214 × 10−2 3.34414 × 10−2 3.38480 × 10−2 3.3626 × 10−2

0.6 3.37839 × 10−2 3.35342 × 10−2 3.38893 × 10−2 3.37893 × 10−2

0.8 3.40585 × 10−2 3.37206 × 10−2 3.39586 × 10−2 3.40655 × 10−2

0.9 3.41778 × 10−2 3.38141 × 10−2 3.39885 × 10−2 3.41855 × 10−2

1.0 3.42882 × 10−2 3.39078 × 10−2 3.40160 × 10−2 3.42966 × 10−2
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Table 2. Cont.

µ = 0.50

0.0 3.04206 × 10−2 3.20859 × 10−2 3.20859 × 10−2 3.04206 × 10−2

0.1 3.15837 × 10−2 3.22610 × 10−2 3.27177 × 10−2 3.15838 × 10−2

0.2 3.20842 × 10−2 3.24370 × 10−2 3.29844 × 10−2 3.20845 × 10−2

0.3 3.24759 × 10−2 3.26138 × 10−2 3.31911 × 10−2 3.24765 × 10−2

0.4 3.28114 × 10−2 3.27915 × 10−2 3.33667 × 10−2 3.28122 × 10−2

0.5 3.31109 × 10−2 3.29700 × 10−2 3.35224 × 10−2 3.31122 × 10−2

0.6 3.33850 × 10−2 3.31495 × 10−2 3.36641 × 10−2 3.33867 × 10−2

0.7 3.36398 × 10−2 3.33297 × 10−2 3.37950 × 10−2 3.36421 × 10−2

0.8 3.38794 × 10−2 3.35109 × 10−2 3.39175 × 10−2 3.38822 × 10−2

0.9 3.41066 × 10−2 3.36929 × 10−2 3.40331 × 10−2 3.41099 × 10−2

1.0 3.43233 × 10−2 3.38757 × 10−2 3.41429 × 10−2 3.43273 × 10−2

µ = 0.75

0.0 3.04206 × 10−2 3.12331 × 10−2 3.12331 × 10−2 3.04206 × 10−2

0.1 3.10417 × 10−2 3.14837 × 10−2 3.17206 × 10−2 3.10417 × 10−2

0.2 3.14737 × 10−2 3.17362 × 10−2 3.20580 × 10−2 3.14737 × 10−2

0.3 3.18582 × 10−2 3.19905 × 10−2 3.23572 × 10−2 3.18583 × 10−2

0.4 3.22162 × 10−2 3.22466 × 10−2 3.26348 × 10−2 3.22163 × 10−2

0.5 3.25565 × 10−2 3.25047 × 10−2 3.28978 × 10−2 3.25567 × 10−2

0.6 3.28839 × 10−2 3.27645 × 10−2 3.31501 × 10−2 3.28842 × 10−2

0.7 3.32014 × 10−2 3.30263 × 10−2 3.33941 × 10−2 3.32019 × 10−2

0.8 3.35111 × 10−2 3.32900 × 10−2 3.36315 × 10−2 3.35117 × 10−2

0.9 3.38144 × 10−2 3.35556 × 10−2 3.38633 × 10−2 3.38153 × 10−2

1.0 3.41124 × 10−2 3.38231 × 10−2 3.40906 × 10−2 3.41135 × 10−2

µ = 1

0.0 3.04206 × 10−2 3.04206 × 10−2 3.04206 × 10−2 3.04206 × 10−2

0.1 3.07393 × 10−2 3.07393 × 10−2 3.07393 × 10−2 3.07393 × 10−2

0.2 3.10612 × 10−2 3.10612 × 10−2 3.10612 × 10−2 3.10612 × 10−2

0.3 3.13861 × 10−2 3.13861 × 10−2 3.13861 × 10−2 3.13861 × 10−2

0.4 3.17143 × 10−2 3.17143 × 10−2 3.17143 × 10−2 3.17143 × 10−2

0.5 3.20455 × 10−2 3.20455 × 10−2 3.20455 × 10−2 3.20455 × 10−2

0.6 3.23800 × 10−2 3.23800 × 10−2 3.23800 × 10−2 3.23800 × 10−2

0.7 3.27178 × 10−2 3.27178 × 10−2 3.27178 × 10−2 3.27178 × 10−2

0.8 3.30588 × 10−2 3.30588 × 10−2 3.30588 × 10−2 3.30588 × 10−2

0.9 3.34030 × 10−2 3.34030 × 10−2 3.34030 × 10−2 3.34030 × 10−2

1.0 3.37506 × 10−2 3.37506 × 10−2 3.37506 × 10−2 3.37506 × 10−2



Symmetry 2022, 14, 1777 15 of 21

Table 3. Approximate solution of TFMKE in Example 2 with different values of ζ, τ with
a = 0.001, b = −1.

µ = 1

ζ τ NTDMC NTDMCF NTDMABC HAM [38]

−20 0.0 9.2996 × 10−4 9.2996 × 10−4 9.2996 × 10−4 9.299 × 10−4

0.2 9.2996 × 10−4 9.2996 × 10−4 9.2996 × 10−4 9.299 × 10−4

0.4 9.2996 × 10−4 9.2996 × 10−4 9.2996 × 10−4 9.299 × 10−4

0.6 9.2996 × 10−4 9.2996 × 10−4 9.2996 × 10−4 9.299 × 10−4

0.8 9.2996 × 10−4 9.2996 × 10−4 9.2996 × 10−4 9.299 × 10−4

1.0 9.2996 × 10−4 9.2996 × 10−4 9.2996 × 10−4 9.299 × 10−4

−10 0.0 9.4396 × 10−4 9.4396 × 10−4 9.4396 × 10−4 9.439 × 10−4

0.2 9.4396 × 10−4 9.4396 × 10−4 9.4396 × 10−4 9.439 × 10−4

0.4 9.4396 × 10−4 9.4396 × 10−4 9.4396 × 10−4 9.439 × 10−4

0.6 9.4396 × 10−4 9.4396 × 10−4 9.4396 × 10−4 9.439 × 10−4

0.8 9.4396 × 10−4 9.4396 × 10−4 9.4396 × 10−4 9.439 × 10−4

1.0 9.4396 × 10−4 9.4396 × 10−4 9.4396 × 10−4 9.439 × 10−4

0 0.0 9.4868 × 10−4 9.4868 × 10−4 9.4868 × 10−4 9.486 × 10−4

0.2 9.4868 × 10−4 9.4868 × 10−4 9.4868 × 10−4 9.486 × 10−4

0.4 9.4868 × 10−4 9.4868 × 10−4 9.4868 × 10−4 9.486 × 10−4

0.6 9.4868 × 10−4 9.4868 × 10−4 9.4868 × 10−4 9.486 × 10−4

0.8 9.4868 × 10−4 9.4868 × 10−4 9.4868 × 10−4 9.486 × 10−4

1.0 9.4868 × 10−4 9.4868 × 10−4 9.4868 × 10−4 9.486 × 10−4

10 0.0 9.4396 × 10−4 9.4396 × 10−4 9.4396 × 10−4 9.439 × 10−4

0.2 9.4396 × 10−4 9.4396 × 10−4 9.4396 × 10−4 9.439 × 10−4

0.4 9.4396 × 10−4 9.4396 × 10−4 9.4396 × 10−4 9.439 × 10−4

0.6 9.4396 × 10−4 9.4396 × 10−4 9.4396 × 10−4 9.439 × 10−4

0.8 9.4396 × 10−4 9.4396 × 10−4 9.4396 × 10−4 9.439 × 10−4

1.0 9.4396 × 10−4 9.4396 × 10−4 9.4396 × 10−4 9.439 × 10−4

20 0.0 9.2996 × 10−4 9.2996 × 10−4 9.2996 × 10−4 9.299 × 10−4

0.2 9.2996 × 10−4 9.2996 × 10−4 9.2996 × 10−4 9.299 × 10−4

0.4 9.2996 × 10−4 9.2996 × 10−4 9.2996 × 10−4 9.299 × 10−4

0.6 9.2996 × 10−4 9.2996 × 10−4 9.2996 × 10−4 9.299 × 10−4

0.8 9.2996 × 10−4 9.2996 × 10−4 9.2996 × 10−4 9.299 × 10−4

1.0 9.2996 × 10−4 9.2996 × 10−4 9.2996 × 10−4 9.299 × 10−4
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Table 4. Approximate solution of TFMKE in Example 2 with different values of µ, τ and ζ with
a = 0.001, b = −1.

ζ τ
µ = 0.25 µ = 0.50 µ = 0.75

NTDMC NTDMCF NTDMABC NTDMC NTDMCF NTDMABC NTDMC NTDMCF NTDMABC

−20 0.0 9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

0.2 9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

0.4 9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

0.6 9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

0.8 9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

1.0 9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

−10 0.0 9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

0.2 9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

0.4 9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

0.6 9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

0.8 9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

1.0 9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

0 0.0 9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

0.2 9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

0.4 9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

0.6 9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

0.8 9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

1.0 9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

9.4868
× 10−4

10 0.0 9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

0.2 9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

0.4 9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

0.6 9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

0.8 9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

1.0 9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

9.4396
× 10−4

20 0.0 9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

0.2 9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

0.4 9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

0.6 9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

0.8 9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

1.0 9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4

9.2996
× 10−4
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Figure 1. Approximate solution of Example 1 with different values µ. (a) NTDMC, τ = 5;
(b) NTDMCF, τ = 5; (c) NTDMABC, τ = 5; (d) NTDMC, τ = 10; (e) NTDMCF, τ = 10;
(f) NTDMABC, τ = 10.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Figure 2. Surface plot of NTDMC , NTDMCF , NTDMABC solution of V(ζ, τ) for Example 1 with
different values of µ. (a) NTDMC, µ = 0.25; (b) NTDMCF, µ = 0.25; (c) NTDMABC, µ = 0.25;
(d) NTDMC, µ = 0.50; (e) NTDMCF, µ = 0.50; (f) NTDMABC, µ = 0.50; (g) NTDMC, µ = 0.75;
(h) NTDMCF, µ = 0.75; (i) NTDMABC, µ = 0.75; (j) NTDMC, µ = 1; (k) NTDMCF, µ = 1;
(l) NTDMABC, µ = 1.
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Figure 3. Approximate solution of Example 2 with different values µ and a = 0.001, b = −1.
(a) NTDMC, τ = 5; (b) NTDMCF, τ = 5; (c) NTDMABC, τ = 5; (d) NTDMC, τ = 10;
(e) NTDMCF, τ = 10; (f) NTDMABC, τ = 10.
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Figure 4. Surface plot of NTDMC , NTDMCF , NTDMABC solution of V(ζ, τ) for Example 2 with
different values of µ with a = 0.001, b = −1. (a) NTDMC, µ = 0.25; (b) NTDMCF, µ = 0.25;
(c) NTDMABC, µ = 0.25; (d) NTDMC, µ = 0.50; (e) NTDMCF, µ = 0.50; (f) NTDMABC, µ = 0.50;
(g) NTDMC, µ = 0.75; (h) NTDMCF, µ = 0.75; (i) NTDMABC, µ = 0.75; (j) NTDMC, µ = 1;
(k) NTDMCF, µ = 1; (l) NTDMABC, µ = 1.
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7. Conclusions

In this work, we investigated the approximate solutions of TFKE and TFMKE based
on the C, CF, and ABC fractional derivative operators using NTDM. The projected method
is the amalgamation of two efficient techniques and it overcomes most of the limitations.
The numerical simulation is shown to confirm the accuracy and to demonstrate that
the fractional order goes to classical order. The derived solutions converge extremely fast to
the actual solutions, indicating that approximate solutions are quite close to exact solutions.
The numerical results suggest that the current technique is easy to use, effective, and precise.
With the use of graphs and tables, the effect of all relevant parameters were discussed
and presented. This is a fairly simple, dependable, and effective method for approximate
solutions to several fractional physical models encountered in engineering and science
such as the modified Korteweg–de Vries equation and it can also extended for fuzzy partial
differential equations.
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