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Abstract: In this study, a two-stage approach is introduced to obtain a more interactive and flexible
solution to deal with the multi-objective programming under interval type-2 fuzzy environment. In
the first stage, the fuzzy multi-objective chance-constrained programming with regular symmetric
triangular interval type-2 fuzzy set parameters is proposed and transferred into its crisp equivalent
form. In the second stage, we use the fuzzy interactive approach to address the crisp multi-objective
programming obtained in the first stage by introducing the trade-off rate, which helps the decision
maker react via updating their reference member values to obtain a satisfactory solution. Finally,
taking a remanufacture of old clothes problem as an example, the comparison of experimental
results obtained using a non-interactive method and interactive method shows that the proposed
approach is conducive to obtaining satisfactory solutions effectively and efficiently, which broadens
the application scope of the multi-objective programming with regular symmetric triangular interval
type-2 fuzzy set parameters for sustainable manufacturing.

Keywords: multi-objective programming; interval type-2 fuzzy set; fuzzy interactive approach;
remanufacture of old clothes; sustainable manufacturing

1. Introduction

Today’s daily management work is not only faced with a single-objective decision
optimization problem, but also involves multi-objective decision optimization problems.
Enterprise management often encounters the problem of multi-objective decision making.
When formulating production plans, enterprises must not only consider the total output
value, but also consider profits, product quality and equipment utilization. Some objectives
are often contradictory. For example, corporate profits may contradict environmental
protection goals. How to take multi-objectives into account in an integrated manner and
choose a reasonable plan is a very complicated issue. Multi-objective programming (MOP)
has been applied in different areas widely for many years; there are a large number of ap-
plication examples in economic planning [1], supplier selection [2], energy development [3]
and financial decision making [4,5]. In real life, when settling multi-objective problems,
there are often several uncertainties required to be taken into account. Therefore, based
on the multi-objective environment and the authoritative theoretical basis of possibility
theory [6], the fuzzy multi-objective programming (FMOP) has been widely researched. In
accord with the way the decision maker (DM) specifies their preferences for the objectives,
existing methods for solving MOP in various practical environments can be divided into
two categories, namely non-interactive approaches and interactive approaches [7].

In relation to the non-interactive approaches, it is required to first clarify the prefer-
ence information and personal wishes of DM, and then a solution process is performed
in an attempt to find the Pareto optimal solution. Ahmadini et al. [8] considered an MOP
that includes multiple products with back-ordered quantity and solved it with a LINGO
optimization software. Khan et al. [9] discussed a production decision-making problem
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with multiple objectives, and figured out it by an intuitionistic and neutrosophic program-
ming method. Two classical non-interactive approaches are the weighting method [10,11]
and the ε-constraint method [12]. Firouzi and Jadidi [13] converted the multi-objective
into single-objective in fuzzy programming by developing a weighting additive function,
which could effectively take the preferences of DM into account and solve the problem.
Pérez-Cañedo et al. [14] developed a scheme of fuzzy ε-constraint, which was used to
work out the Pareto optimal fuzzy solutions of fuzzy multi-objective linear programming
in LR fuzzy environment. Ehsani et al. [15] investigated an MOP in project manage-
ment with fuzzy objectives, and a weighting maxmin model was applied for solving it.
Ren et al. [16] put forward a FMOP method to improve the irrigation rate of the existing
land under the fuzzy environment, and developed a minimum deviation method to solve
it. Ali et al. [17] solved a FMOP about vendor selection using the aggregated weighted crite-
rion method. The ε-constraint method and the weighting method both reflect to some extent
that non-interactive approaches do not provide preference information well, which means
the non-interactive approach cannot reflect the opinions of DMs in the decision-making
process, so it can only solve a limited number of decision-making problems.

The interactive approach has been improved and developed accordingly to address
the weaknesses of the non-interactive approach. In the process of interactive approaches, it
is necessary to illustrate the preference of DM for each iteration for the purpose of making
sure that the most preferred solution is obtained, rather than give the priori or posterior
global preference structure that employed in the non-interactive approaches. Interactive
approaches are generally classified into three categories: stand on the trade-off information,
the classification-based approach, and reference points methods, respectively, all of which
have difference in terms of technical elements and interaction style. Gupta et al. [18] estab-
lished a comprehensive MOP method to solve the transportation problem of expansion
capacitances, and a fuzzy interactive method was proposed to obtain preferred compromise
transportation solutions. Shahbeig et al. [19] proposed an fuzzy interactive method to opti-
mize the multi-objective problem of selecting the sub-optimal subset of genes from massive
gene expression data. El Sayed et al. [20] worked out the two-level MOP about supply
chain by means of interaction with decision-makers, and used the α-level methodology to
defuzzify and change the fuzzy programming into a valent crisp one.

In real life, there are lots of phenomena that need to consider multiple uncertain-
ties; thus, scholars have carried numerous works to enrich fuzzy set theory (e.g., fuzzy
random sets [21,22], twofold fuzzy sets [23,24], bifuzzy sets [25], fuzzy soft sets [26]).
Among them, type-2 fuzzy set (T2-FS) is a crucial embranchment that continues to draw
attention because of its advantage in expressing the uncertainty of the membership function.
Ahmad [27] investigated a multi-objective supplier decision making under type-2 fuzzy
environment, and developed a novel interactive neutrosophic programming method to
solve it. However, it is challenging to figure out the problems involving general T2-FS
because of the complexity of its calculations. Compared with this, research into the interval
type-2 fuzzy set (IT2-FS) has been developed rapidly in recent years. Gupta et al. [28] con-
sidered a transportation problem with interval type-2 fuzzy parameters and then converted
it into the crisp form by using an expected value (EV) function approach. Calik [29] studied
supplier decision making and order allocation in the context of sustainability, in which
an interval type-2 fuzzy AHP approach was used to determine the weight of the selected
standard. Kundu [30] considered a redundant allocation decision making under interval
type-2 fuzzy environment, and applied NIMBUS method to obtain compromise solution.
The literature related to FMOP mentioned above and the corresponding approaches for
solving them are summarized in Table 1.

As shown in Table 1, most of the papers on FMOP related to our research considered
non-interactive methods, and only a small number of the related works investigated
interactive methods. Moreover, even fewer are associated with T2-FS (see, e.g., [27,30]),
in which the presented methods involve complex operations and are difficult for solving
realistic problems. Therefore, in order to better handle the type-2 fuzzy multi-objective
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programming (T2-FMOP) that often occurs in real life, we develop the two-stage fuzzy
interactive multi-objective approach based on the operational law for T2-FS proposed
recently by Li and Cai [31], which is easier to understand, saves time and better reflects the
preference information of the DM compared with the current research. The procedure of
this approach is summarized in Figure 1. In the first stage, we propose a type-2 fuzzy multi-
objective chance constrained programming (CCP) and convert it into a crisp equivalent
model. In the second stage, we update the reference membership function through a
continuous interaction with the DM, and then convert the problem into a minmax model
so as to solve the MOP models with regular symmetric triangular interval type-2 fuzzy
set (RSTIT2-FS).

Table 1. Literature related to the fuzzy multi-objective programming.

Literature Type of Fuzzy Parameters Type of Programming Type of Approach MethodType-1 Type-2 Linear Non-Linear Interactive Non-Interactive

Ahmadini et al. [8] X X X LINGO

Khan et al. [9] X X X
intuitionistic and neutrosophic
programming approaches

Firouzi et al. [13] X X X weighted additive function
Pérez-Cañedo et al. [14] X X X ε-constraint method
Ehsani et al. [15] X X X weighted max-min approach
Ren C et al. [16] X X X minimum deviation method
Ali et al. [17] X X X aggregated weighted criterion method
Gupta et al. [18] X X X LINGO
Shahbeig et al. [19] X X X min-max method
El Sayed et al. [20] X X X ε-constraint method
Ahmad [27] X X X interactive neutrosophic method
Gupta et al. [28] X X X compromise criterion
Calik [29] X X X generalized credibility measure
Kundu [30] X X X NIMBUS method
Current paper X X X fuzzy interactive approach

Figure 1. The procedure of the two-stage fuzzy interactive multi-objective approach.

Our contributions are mainly reflected in the following: First, we propose a two-
stage fuzzy interactive multi-objective approach so as to more efficiently figure out multi-
objective problems with interval type-2 fuzzy parameters. Second, we propose a type-2
fuzzy chance-constrained programming (CCP) to transfer the interval T2-FMOP into its
crisp equivalent form. Third, we use the fuzzy interactive approach to solve the crisp model
and apply the approach to a problem of remanufacturing old clothes.

The structure and main content of this paper are as follows. In Section 2, the related
concepts about IT2-FS and RSTIT2-FS are briefly introduced. Then, the T2-FMOP model is
presented and transferred into the crisp equivalent form in Section 3. In Section 4, the fuzzy
interactive approach is provided to solve the crisp model. In Section 5, we apply the
two-stage method to help remanufactured apparel companies in making decisions, and to
achieve the win–win situation of sustainability development and profit maximization.
Finally, this article is concluded in Section 6.
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2. Preliminaries

For the sake of solving the T2-FMOP model, we should first transfer it to its crisp
equivalent form. In this section, we introduce some basic concepts about IT2-FS and
RSTIT2-FS in advance, which includes the definition, operational law and excepted value
of it.

2.1. Interval Type-2 Fuzzy Set

Definition 1 (Zadeh [32]). Let X be the universe of x, µN(x) the membership function of x. Then
the type-1 fuzzy set N can be defined as

N =
∫

x∈X

µN(x)
x

.

Definition 2 (Zadeh [32], Mendel and John [33]). For a fuzzy variable Θ̃, if the membership of
a given x ∈ X is a type-1 fuzzy set, then Θ̃ can be called a T2-FS and can be defined as

Θ̃ =
{
((x, u), µΘ̃(x, u))

∣∣ x ∈ X, u ∈ Jx ⊆ [0, 1]
}

,

where X is a infinite set, 0 ≤ µΘ̃(x, u) ≤ 1 is the secondary membership for u, Jx ⊆ [0, 1] is the
primary membership for x, and its range is the domain of µΘ̃.

Definition 3 (Men et al. [34]). For a T2-FS Θ̃, if µΘ̃(x, u) is identically equal to 1 for any x ∈ X
and u ∈ Jx, then Θ̃ can be called an IT2-FS.

2.2. Regular Symmetric Triangular Interval Type-2 Fuzzy Set

Definition 4 (Li and Cai [31]). An IT2-FS Θ̃ is called a RSTIT2-FS if its upper membership
function (UMF) and lower membership function (LMF) are expressed as follows,

UMF(x) =



x− h + lU
lU

, x ∈ [h− lU , h)

−x + h + lU
lU

, x ∈ [h, h + lU ]

0, otherwise,

and

LMF(x) =



x− h + lL
lL

, x ∈ [h− lL, h)

−x + h + lL
lL

, x ∈ [h, h + lL]

0, otherwise,

and can be denoted as
(

h− lU h h + lU
h− lL h h + lL

)
, where lU and lL are spreads of the UMF and LMF,

satisfying lU > lL, and the peak of them, 1, is reached when x is equal to h.

An RSTIT2-FS is visualized in Figure 2.
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x
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h− lU h− lL h + lUh + lLh

1
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Figure 2. The plane visualization of an RSTIT2-FS.

Definition 5 (Li and Cai [31]). Let Θ̃ be an RSTIT2-FS, λ a type-1 fuzzy set, and their member-
ship functions satisfy

µλ(x) =
1
2
(UMF(x) + LMF(x)).

Then λ is called the medium of Θ̃, and µλ can be expressed as,

µλ(x) =



x− h + lU
2lU

, x ∈ [h− lU , h− lL)

x− h + lU
2lU

+
x− h + lL

2lL
, x ∈ [h− lL, h)

−x + h + lU
2lU

+
−x + h + lL

2lL
, x ∈ [h, h + lL)

−x + h + lU
2lU

, x ∈ [h + lL, h + lU ]

0, otherwise.

(1)

Definition 6 (Li and Cai [31]). Let Θ̃ be an RSTIT2-FS, λ the medium of it, and E a fuzzy event
from the universe. Then we can have the possibility, necessity, and credibility measures of E for Θ̃
are, respectively,

Pos{E} = supx∈Eµλ(x),

Nec{E} = 1− supx∈Ec µλ(x),

Cr{E} = 1
2
(Pos{E}+ Nec{E}).

Definition 7 (Li and Cai [31]). Assuming that Θ̃ is an RSTIT2-FS, λ is the medium of it. Then
the credibility distribution (CD) of Θ̃ can be defined as ΦΘ̃ = Cr{Θ̃ ≤ x}.
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It follows from Definition 6 and Equation (1) that we can lightly obtain that

Pos{Θ̃ ≤ x} =



0, x ∈ (−∞, h− lU ]

x− h + lU
2lU

, x ∈ (h− lU , h− lL]

x− h + lU
2lU

+
x− h + lL

2lL
, x ∈ (h− lL, h]

1, x ∈ (h,+∞),

(2)

and

Nec{Θ̃ ≤ x} =



0, x ∈ (−∞, h]

1 +
x− h− lU

2lU
+

x− h− lL
2lL

, x ∈ (h, h + lL]

1 +
x− h− lU

2lU
, x ∈ (h + lL, h + lU ]

1, x ∈ (h + lU ,+∞).

(3)

Then the CD can be lightly calculated by making use of Definition 7 and
Equations (2) and (3), which is as follows

ΦΘ̃(x) = Cr{Θ̃ ≤ x}

=



0, x ∈ (−∞, h− lU ]

x− h + lU
4lU

x ∈ (h− lU , h− lL]

x− h + lU
4lU

+
x− h + lL

4lL
, x ∈ (h− lL, h + lL]

1 +
x− h− lU

4lU
, x ∈ (h + lL, h + lU ]

1, x ∈ (h + lU ,+∞).

Definition 8 (Li and Cai [31]). Let Θ̃ an RSTIT2-FS, and its inverse credibility distribution
(ICD) is defined as the inverse function of ΦΘ̃ and can be calculated by

Φ−1
Θ̃

(ω) =



4lUω + h− lU , ω ∈
[

0,
lU − lL

4lU

)
4lU lLω− 2lU lL

lU + lL
+ h, ω ∈

[
lU − lL

4lU
, 1− lU − lL

4lU

)

4lUω + h− 3lU , ω ∈
[

1− lU − lL
4lU

, 1
]

.

Definition 9 (Li and Cai [31]). Supposing that Θ̃i, i = 1, 2, · · · , n are RSTIT2-FVs with the
mediums of λi, i = 1, 2, · · · , n, respectively, and f is a function from Rn to R, then the CD of
Θ̃ = f (Θ̃1, Θ̃2, · · · , Θ̃n), ΦΘ̃(x) = Cr{Θ̃ ≤ x} is defined as

ΦΘ̃(x) = Φλ(x),

where λ = f (λ1, λ2, · · · , λn) is the medium of Θ̃.
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Remark 1. According to Definitions 8 and 9, it can be easily deduced that Φ−1
Θ̃

(ω) = Φ−1
λ (ω).

Theorem 1 (Li and Cai [31]). Supposing that Θ̃i, i = 1, 2, · · · , n, are mutually independent
RSTIT2-FVs with mediums of λi. If the function f (y1, · · · , yτ , yτ+1, · · · , yn) is strictly increasing
in regard to yi, i = 1, 2, · · · , τ and strictly decreasing in regard to yi, i = τ + 1, τ + 2, · · · , n, then

Θ̃ = f (Θ̃1, · · · , Θ̃τ , Θ̃τ+1, · · · , Θ̃n)

has the ICD of

Φ−1
Θ̃

(ω) = f
(

Φ−1
Θ̃1

(ω), · · · , Φ−1
Θ̃τ

(ω), Φ−1
Θ̃τ+1

(1−ω), · · · , Φ−1
Θ̃n

(1−ω)

)
.

Definition 10 (Li and Cai [31]). Let Θ̃ an RSTIT2-FS, and the EV of Θ̃ can be defined by

E(Θ̃) =
∫ +∞

0
Cr{Θ̃ ≥ x}dx−

∫ 0

−∞
Cr{Θ̃ ≤ x}dx.

Theorem 2 (Li and Cai [31]). Given that Θ̃ is an RSTIT2-FS, its EV can be calculated by

E[Θ̃] =
∫ 1

0
Φ−1

Θ̃
(ω)dω.

Theorem 3 (Li and Cai [31]). Let Θ̃1 and Θ̃2 two mutually independent RSTIT2-FSs. Then the
linearity of the EV operator concerning the two RSTIT2-FSs can be expressed in the following form,

E
[
k1Θ̃1 + k2Θ̃2

]
= k1E[Θ̃1] + k2E[Θ̃2].

3. Model Building and Equivalent Transformation

In the first stage, we introduce the MOP, and give the formulation of multi-objective
CCP under type-2 fuzzy environment. Then, according to the operation law, we further
transfer the type-2 fuzzy multi-objective CCP into its crisp equivalent form.

3.1. Multi-Objective Programming

MOPs have important applications in many areas of engineering and management [35].
Practically, a DM may want to optimize for more than one objectives under certain con-
straints, and these objectives may conflict with each other. So, we formulate a general MOP
as follows, 

min
x

( f1(x), f2(x), · · · , fm(x))

subject to:

zj(x) ≤ 0, j = 1, 2, · · · , p,

where x is the decision vector, fi, i = 1, 2, · · · , m, are the objective functions, zj, j = 1, 2, · · · , p,
are the constraint functions. In most cases, objective functions are mutually exclusive, namely,
the optimization of one sub-objective may cause the degradation of the performance of
another sub-objective or sub-objectives. Therefore, it is impossible for the DM to make each
sub-objective completely optimal. For the purpose of solving this type of MOP, the only way
is to find a balanced coordination among the sub-objectives, so that each sub-objective can be
optimized under certain conditions.

3.2. Type-2 Fuzzy Multi-Objective Chance-Constrained Programming

Fuzzy CCP provides a method that allows DM to consider objectives and constraints
based on the possibility of their acquirement, which is first proposed by Liu [36].
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The following type-2 fuzzy CCP model is proposed in order to obtain the result of the
decision to minimize the objective function under series of chance constraints. Assume
that x = (x1, x2, · · · , xl) is an l-dimensional decision vector, σ̃ = (σ̃1, σ̃2, · · · , σ̃n) is an
n-dimensional type-2 fuzzy vector, f (x, σ̃) is the objective function, and zj(x, σ̃) are the
constraint functions. Because the objective function f (x, σ̃) involves uncertain variable,
it cannot be minimized immediately. Instead, the EV of the objective function can be
minimized, i.e.,

min
x

E[ f (x, σ̃)].

Due to the type-2 fuzzy constraints zj(x, σ̃) ≤ 0 cannot define a deterministic feasible
set; we can provide a possibility β, called the confidence level, at which the type-2 fuzzy
constraints are desired to hold. Thus the following chance constraints are proposed,

Cr{zj(x, σ̃) ≤ 0} ≥ β j, j = 1, 2, · · · , p,

where β j are the confidence levels.
Then, the following type-2 fuzzy single-objective CCP model is obtained,

min
x

E[ f (x, σ̃)]

subject to:

Cr{zj(x, σ̃) ≤ 0} ≥ β j, j = 1, 2, · · · , p,

(4)

where x is the decision vector, σ̃ is the type-2 fuzzy vector, f (x, σ̃) is the objective function,
zj(x, σ̃) are the constraint functions, and β j are the specified confidence levels.

In the following, we further propose a type-2 fuzzy multi-objective chance-constraint
programming. Assume that x = (x1, x2, · · · , xl) is an l-dimensional decision vector,
σ̃ = (σ̃1, σ̃2, · · · , σ̃n) is an n-dimensional type-2 fuzzy vector, fi(x, σ̃) are objective func-
tions for i = 1, 2, · · · , m, and zj(x, σ̃) are constraint functions for j = 1, 2, · · · , p. Similarly,
since the objective functions fi(x, σ̃), i = 1, 2, · · · , m, also involve T2-FS, they cannot be
minimized immediately. Instead, their EV can be minimized, i.e.,

E[ f1(x, σ̃)], E[ f2(x, σ̃)], · · · , E[ fm(x, σ̃)],

with the following chance constraints,

Cr{zj(x, σ̃) ≤ 0} ≥ β j, j = 1, 2, · · · , p. (5)

Then, we obtain the following T2-FMOP model,
min

x
(E[ f1(x, σ̃)], E[ f2(x, σ̃)], · · · , E[ fm(x, σ̃)])

subject to:

Cr{zj(x, σ̃) ≤ 0} ≥ β j, j = 1, 2, · · · , p.

(6)

Model (6) is to arrive at the result of a decision to minimize as many EVs E[ fi(x, σ̃)] of
objective functions as possible under a range of chance constraints. In general, either ideal
or allowed choice are called solutions, as long as they are the specification of values for the
decision vector x.

3.3. Crisp Equivalent Model

We propose following theorems to transfer model 6 to its crisp equivalent form.

Theorem 4. Assuming that the objective function fi(x, σ̃1, σ̃2, · · · , σ̃n) is strictly increasing in
regard to σ̃1, σ̃2, · · · , σ̃ξ and strictly decreasing in regard to σ̃ξ+1, σ̃ξ+2, · · · , σ̃n. If σ̃1, σ̃2, · · · , σ̃ξ

are independent RSTIT2-FS, then the expected objective function in model (4) equals to
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∫ 1

0
f (x, Φ−1

1 (r), · · · , Φ−1
ξ (r), Φ−1

ξ+1(1− r), · · · , Φ−1
n (1− r))dr,

where Φ−1
i is the ICD of σ̃i for i = 1, 2, · · · , n.

Proof. According to Theorem 1, the ICD of fi(x, σ̃1, σ̃2, · · · , σ̃n) is

Φ−1(x, r) = f (x, Φ−1
1 (r), · · · , Φ−1

ξ (r), Φ−1
ξ+1(1− r), · · · , Φ−1

n (1− r)).

Additionally, making use of Theorem 2, we can have E[ f(x, σ̃1, σ̃2, · · · , σ̃n)] =
∫ 1

0
Φ−1(x, r)dr.

Theorem 5. Assuming that the constraint function gj(x, σ̃1, σ̃2, · · · , σ̃n) is strictly increasing in
regard to σ̃1, σ̃2, · · · , σ̃ξ j and strictly decreasing in regard to σ̃ξ j+1, σ̃ξ j+2, · · · , σ̃n. If σ̃1, σ̃2, · · · , σ̃ξ

are independent RSTIT2-FS, then the chance constraint (5) holds if and only if

zj(x, Φ−1
1 (β j), · · · , Φ−1

ξ j
(β j), Φ−1

ξ j+1(1− β j), · · · , Φ−1
n (1− β j)) ≤ 0, (7)

where Φ−1
i is the ICD of σ̃i for i = 1, 2, · · · , n.

Proof. According to Theorem 1, the ICD of fi(x, σ̃1, σ̃2, · · · , σ̃n) is

Φ−1(x, r) = f (x, Φ−1
1 (r), · · · , Φ−1

ξ (r), Φ−1
ξ+1(1− r), · · · , Φ−1

n (1− r)).

Furthermore, it is obvious that (5) holds if and only if Φ−1(x, r) ≤ 0.
Let σ̃1, σ̃2, · · · , σ̃n in model (6) be independent RSTIT2-FS with regular uncertainty dis-

tributions Φ1, Φ2, · · · , Φn, respectively. We also assume that fi(x, σ̃1, σ̃2, · · · , σ̃n) is strictly
increasing in regard to σ̃1, σ̃2, · · · , σ̃ηi and strictly decreasing in regard to σ̃ηi+1, σ̃ηi+2, · · ·
, σ̃n. Then in accordance with Theorem 4, each objective function in model (6) can be
rewritten as

E[ fi(x, σ̃1, σ̃2, · · · , σ̃n)]

=
∫ 1

0
fi(x, Φ−1

1 (r), · · · , Φ−1
ηi

(r), Φ−1
ηi+1(1− r), · · · , Φ−1

n (1− r))dr.
(8)

Thereby, combining Equations (7) and (8), the T2-FMOP model (6) can be transformed
into its equivalent crisp model as follows,

min
x

(∫ 1

0
f1(x, Φ−1

1 (r), · · · , Φ−1
η1

(r), Φ−1
η1+1(1− r), · · · , Φ−1

n (1− r))dr,

∫ 1

0
f2(x, Φ−1

1 (r), · · · , Φ−1
η2

(r), Φ−1
η2+1(1− r), · · · , Φ−1

n (1− r))dr, · · · ,

∫ 1

0
fm(x, Φ−1

1 (r), · · · , Φ−1
ηm (r), Φ−1

ηm+1(1− r), · · · , Φ−1
n (1− r))dr

)
subject to:

zj(x, Φ−1
1 (β j), · · · , Φ−1

ξ j
(β j), Φ−1

ξ j+1(1− β j), · · · , Φ−1
n (1− β j)) ≤ 0,

j = 1, 2, · · · , p.

(9)

4. Model Solving Based on Fuzzy Interactive Approach

For the sake of a satisfactory result to the DM, we propose a fuzzy interactive approach.
The core of the fuzzy interactive approach lies in the transformation of the model into the
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minmax problem and the continuous interaction with the DM to obtain new reference
member values, and eventually achieve a satisfactory solution for the DM.

4.1. The Minmax Problem

For the interactive process, we first consider the inexactness of the DM’s judgment
of the importance of each objective E[ fi(x, σ̃)] in model (9), so we construct a membership
function for each objective. We denote E[ fi(x, σ̃)] as f̄i(x) and assume that f̄i(x) should be
not greater than a certain value is equivalent to fuzzy min, f̄i(x) should be not less than
a certain value is equivalent to fuzzy max. The crisp objective functions in model (9) can
be indicated by the liner membership functions µi

(
f̄i(x)

)
, i = 1, 2, · · · , m, defined by the

following equations, as shown in Figures 3 and 4.

fuzzy min µi
(

f̄i(x)
)
=



0, f̄i(x) > f̄ R
i

f̄i(x)− f̄ R
i

f̄ N
i − f̄ R

i
, f̄ N

i ≤ f̄i(x) ≤ f̄ R
i

1, f̄i(x) < f̄ N
i ,

fuzzy max µi
(

f̄i(x)
)
=



0, f̄i(x) < f̄ L
i

f̄i(x)− f̄ L
i

f̄ M
i − f̄ L

i
, f̄ L

i ≤ f̄i(x) ≤ f̄ M
i

1, f̄i(x) > f̄ M
i ,

where f̄ N
i and f̄ L

i are the minimum values of the objective functions f̄i(x) under the given
constraints, f̄ R

i and f̄ M
i are the maximum values of the objective functions f̄i(x) under the

given constraints.

f̄i(x)

µi( f̄i(x))

f̄ R
if̄ N

i

1

Figure 3. Image of fuzzy min membership function.

f̄i(x)

µi( f̄i(x))

f̄ L
i f̄ M

i

1

Figure 4. Image of fuzzy max membership function.
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After eliciting the membership functions µi( f̄i(x)), i = 1, 2, . . . , m from the DM,
model (9) can be replaced by

max
1 ≤ i ≤ m

(µ1( f̄1(x)), µ2( f̄2(x)) · · · , µm( f̄m(x)). (10)

In general, the objectives may conflict with each other. Therefore, we refer to a
more flexible interactive method to obtain the DM’s satisfactory solution founded on their
preference degree for each goal through interaction. To explain clearly, we determine the
preference information µ̄i, i = 1, 2, · · · , m for each fuzzy objective from the DM, called the
reference membership value. Here, the concept of reference member value is defined as
an extended application of reference points proposed by Wierzbicki [37]. Subsequently,
we express the difference between the actual value of the original objective function and
the satisfactory value as the difference between the actual value of the member function
and the reference member value, i.e., µ̄i − µi( f̄i(x)), i = 1, 2, · · · , m, which means that the
satisfactory solution of the DM can be approached by this iterative calculation. According
to the approach, model (10) is interpreted as

min
x∈X

max
1 ≤ i ≤ m

{
µ̄i − µi

(
f̄i(x)

)}
or, equivalent to 

min
v,x∈X

v

subject to:

µ̄1 − µ1
(

f̄1(x)
)
≤ v

...
µ̄m − µm

(
f̄m(x)

)
≤ v.

(11)

4.2. Interactive Algorithm

The preliminary solution can be obtained by calculating model (11), but the result
is not satisfactory for the DM. In order to obtain an approving result, the DM is obliged
to renew the values of µi, by employing the trade-off rate (Sakawa et al. [38]). Denote
the simplex multipliers (Haimes and Chankong [39]) associated with the constraints of
mode (9) as −∂ f̄i(x)/∂ f̄1(x), i = 1, 2, · · · . Then the trade-off rate between f̄i(x) and f̄1(x) is
easily obtained and can be represented by

− ∂ f̄i(x)
∂ f̄1(x)

, i = 2, 3, · · · , m.

The above equation means that under the condition of ensuring that the original
objective function is unchanged, only sacrificing the ith objective function of one unit,
f̄i(x), can realize the improvement of one unit in f̄1(x) of another objective function.
If−∂ f̄i(x)/∂ f̄1(x) = 1, it means that neither of the two objective functions need to be changed.

If 0 < −∂ f̄i(x)/∂ f̄1(x) < 1, we will be willing to change f̄1(x). If −∂ f̄i(x)/∂ f̄1(x) > 1, we will
make more priority changes to f̄i(x) for a better pursuit.

When the DM obtains the trade-off rate, they modify the reference membership
values µ̄i. Subsequently, the DM Changes the reference membership values µ̄i through a
continuous interaction and solving model (11) to obtain a satisfactory solution.

In summary, when we obtain the crisp model, we have to choose the membership
functions for all the objectives. Then we ask the DM to give a reference membership value
for each objective function to solve model (11) by minmax method. At the same time,
the DM can measure whether the result can achieve the expected effect. Then the DM
modifies their reference membership value according to the trade-off rate, and can obtain a
satisfactory solution. The fuzzy interactive algorithm can be summarized in Table 2.
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Table 2. Fuzzy interactive algorithm.

Step 1 Let the DM give the satisficing levels αi, i = 1, 2, · · · , m for each constraint in
model (9).

Step 2 Calculate the individual minimum f̄ min
i and maximum f̄ max

i of each objective
function f̄i(x) under the chance-constrained conditions with satisfying levels.
Elicit a membership function µi

(
f̄i(x)

)
, i = 1, 2, · · · , m, from the DM for each

objective function.
Step 3 Set up the initial reference membership level µ̄i, i = 1, 2, · · · , m, as required

by the DM, and solve the corresponding minmax problem in model (11).
Step 4 Provide the DM with the corresponding trade-off rates −∂ f̄i(x)/∂ f̄1(x), i =

1, 2, · · · , m, between the objective functions. The calculation does not stop
until it can obtain the satisfactory membership function value in the current
stage. Otherwise, please update the reference member level µ̄i by the DM,
by considering the trade-off rate to improve another objective function with
higher priority at the expense of one objective function, and return to step 3.

5. Application to Remanufacture of Old Clothes Problem

To manifest the effectiveness of the fuzzy interactive approach, it will be applied to
the remanufacture of old clothes problem, considering the sustainability development of
remanufactured apparel. The overall process of the fuzzy interactive approach is illustrated
clearly by the experiment, and the result is calculated to present whether this approach
performs well.

5.1. Problem Description

Remanufactured apparel is designed to increase the usable value of textile and apparel
materials. Pao [40] pointed out that the recycling of waste clothing is to recycle and
remanufacture waste materials, so as to save raw materials and reduce the production
of waste, which is of greater significance to the ecological protection of nature. From the
perspective of sustainability, traditional clothing manufacturing uses a large number of
cotton, hemp, polyester and other textiles for production. Riley [41] introduced that
polyester is a high molecular compound, which is not easy to recycle. Secondly, Mason [42]
introduced that due to people’s pursuit of fashion, clothing has become a fast-moving
consumer good, and clothes discarded by people have gradually imposed a burden on
the environment. Therefore, in the process of sustainable manufacturing, the amount of
recycled old clothes and renewable resources used in product production determines the
social and economic benefits of products.

The traditional clothing manufacturing industry generally considers the production
cost, product quality and profits in the manufacturing process. However, Manson [43]
introduced that green sustainable manufacturing pursues the former goal, while consider-
ing resource interest rates and environmental impact. Based on this, this paper is based
on the product manufacturing process, pondering on the affection of the manufacturing
process on the economy, environment and society, and strives to use recycled old clothes
and use environmentally friendly materials to make clothes to reduce emissions in pro-
duction. By establishing a multi-objective planning model, we can weigh the impact of
product manufacturing on the economy, environment and society, and obtain a sustainable
production plan.

In this paper, we suppose that a factory DM will consider expanding production
channels by utilizing uncertain customer demands in the future. They want to maximize
the total profit and minimize the working hours of the machine under the control of the
capital budget and stock limits. The decision variables xi, i = 1, 2, are the number of new
apparel and remanufactured apparel being produced. The process of remanufactured
apparel production includes recycling old apparel, remanufacturing, storage, delivery and
sale, as shown in Figure 5.
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Figure 5. The flow of the remanufacture of old clothes problem.

We will demonstrate the parameters and decision variables applied in the model of
this paper:

− x = (x1, x2)
T : the decision vector of the number of new apparel and remanufactured

apparel;
− α : the predetermined satisfying level of the DM, 0 ≤ α ≤ 1;
− ai : the unit profit of the ith type of product, i = 1, 2;
− bi : the unit machine hours to produce the ith type of product, i = 1, 2;
− ci : the uncertain customer demands that the ith type of product covers, i = 1, 2.

Thus, the remanufacture of old clothes problem can be constructed by a T2-FMOP
model as follows, 

max a1x1 + a2x2

min b1x1 + b2x2

subject to:

30x1 + 40x2 ≤ 50000

x1 + x2 − c1 − c2 ≤ 100

x1, x2 ≥ 0,

(12)

for example, assume that a1 =

(
10 50 90
20 50 80

)
, a2 =

(
10 40 70
20 40 60

)
, b1 =

(
1 3 5
2 3 4

)
,

b2 =

(
3 5 7
4 5 6

)
, c1 =

(
200 500 800
300 500 700

)
, c2 =

(
100 300 500
200 300 400

)
. The first objective

function means to maximize the total profit, and the second function means to minimize
the total machine hours. The first constraint limits the capital budget, and the second
constraint limits the stock. According to the derivation result of model (6), model (12) of
the remanufacture of old clothes problem can be transferred into

max E[a1x1 + a2x2]

min E[b1x1 + b2x2]

subject to:

30x1 + 40x2 ≤ 50000

Cr{x1 + x2 − 100 ≤ T} ≥ α

x1, x2 ≥ 0,

(13)
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where T = c1 + c2 for convenient expression. According to the DM, we set the satisfying
level α = 0.9.

According to Theorem 5, we can transfer the constraint functions, and model (13) can
be written as 

max E[a1x1 + a2x1]

min E[b1x2 + b2x2]

subject to:

30x1 + 40x2 ≤ 50000

x1 + x2 ≥ Φ−1
T (α)

x1, x2 ≥ 0.

(14)

5.2. Problem Solving

Firstly, we can calculate the second constraint limiting the stock, where Φ-1
c1
(α) and

Φ-1
c2
(α) are calculated as

Φ-1
c1
(α) =



1200α + 200, α ∈
[

0,
1

12

)
480α + 260, α ∈

[
1

12
,

11
12

)
1200α− 400, α ∈

[
11
12

, 1
]

,

Φ-1
c2
(α) =



800α + 100, α ∈
[

0,
1
8

)
800
3

α +
500

3
, α ∈

[
1
8

,
7
8

)
800α− 300, α ∈

[
7
8

, 1
]

.

According to Theorem 1, we have

Φ-1
T (α) = Φ-1

c1
(α) + Φ-1

c2
(α)

=



2000α + 300, α ∈
[

0,
1

12

)
1280α + 360, α ∈

[
1

12
,

1
8

)
2240

3
α +

1280
3

, α ∈
[

1
8

,
7
8

)
1280α− 40, α ∈

[
7
8

,
11
12

)
2000α− 700, α ∈

[
11
12

, 1
]

.
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Following that, we obtain the crisp expectations by Theorem 3, and model (14) can be
described as 

max 50x1 + 40x2

min 3x1 + 5x2

subject to:

30x1 + 40x2 ≤ 50000

x1 + x2 ≥ 1212

x1, x2 ≥ 0.

(15)

After obtaining the crisp model (15), we separately calculate the maximum f̄ max
i and

minimum f̄ min
i of each objective function f̄i(x) under the constraints. The results are

derived as  f̄ min
1 = 48480

f̄ max
1 = 83333

 f̄ min
2 = 3636

f̄ max
2 = 6250.

Finally, based on the maximum f̄ max
i and minimum f̄ min

i values of each objective
function, we can quantify the images of the two objective functions of maximizing total
profit and minimizing machine working time (shown in Figures 6 and 7) and calculate the
membership functions as follows,

µ1
(

f̄1(x)
)
=



0, f̄1(x) < 48480

f̄1(x)− 48480
83333− 48480

48480 ≤ f̄1(x) ≤ 83333

1, f̄1(x) > 83333,

and

µ2
(

f̄2(x)
)
=



0, f̄2(x) > 6250

f̄2(x)− 6250
3636− 6250

3636 ≤ f̄2(x) ≤ 6250

1, f̄2(x) < 3636.

f̄1(x)

µ1( f̄1(x))

48,480 83,333

1

Figure 6. Image of fuzzy membership function f̄1(x).
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f̄2(x)

µ1( f̄2(x))

62503636

1

Figure 7. Image of fuzzy membership function f̄2(x).

5.3. Interactive Process

When we obtain the membership functions for each objective function, we need the
DM to give a reference membership value µ̄i for each membership function as a way to
derive satisfactory results through an interactive approach. The process and results of the
interaction are shown in Table 3.

Table 3. Solution of interaction.

Interaction (µ̄1, µ̄2) (µ f̄1
(x), µ f̄2

(x)) − ∂ fi(x)
∂ f1(x)

Non-interactive – (0.3477, 1.0000) –
First (1.0000, 1.0000) (0.7093, 0.7108) 0.1031

Second (0.9500, 0.8000) (0.7925, 0.6442) 0.1031
Third (0.9500, 0.7000) (0.8484, 0.5995) 0.1031

Fourth (0.9000, 0.5500) (0.8986, 0.5593) 0.1031

From the first row in Table 3, we can clearly observe that although the value of µ f̄1
(x) is

too small, the value of µ f̄2
(x) = 1.0000 (means that the DM can not make as much profit as

possible, although the use time of the machine can be minimized), which cannot satisfy the
requirements of the DM. Therefore, we need to interact with the DM to obtain a satisfactory
solution. At the beginning, we set the initial reference membership values µ̄1 = 1.0000,
µ̄2 = 1.0000. The result leaves the DM unsatisfied and the DM hopes to increase the total
profit and reduce the working time of the machine. Then, the trade-off rate is figured out
as −∂ f̄i(x)/∂ f̄1(x) = 0.1031, which signifies that in the second iteration, the second objective
value of 0.1031 units needs to be sacrificed to improve the first objective value. Following that,
they update the reference membership levels to µ̄1 = 0.9500, µ̄2 = 0.8000. We can see from
the third column in Table 3, the value of µ f̄1(x) increases and the value of µ f̄2(x) decreases,
which means that for the purpose of obtaining higher profits, it is supposed to properly
extend the working time of the machine. After the DM completes the second interaction,
they are still dissatisfied with the new solution. Then, the reference membership levels are
updated to µ̄1 = 0.9500, µ̄2 = 0.7000, they remain dissatisfied with the results of µ f̄1 and
µ f̄2 , and therefore move on to the next interaction. In the fourth interaction, let the reference
membership value be µ̄1 = 0.9000, µ̄2 = 0.5500, and the result shows that the DM obtains a
production plan that can achieve both more total profit and less machine working time.

From Table 3, it can be seen that if we only interact with the DM once or not, it
is impossible to acquire a pleased solution. Therefore, we can conclude that for MOP
problem with RSTIT2-FS parameters, the results of interactive approach are usually more
satisfactory for the DM than those without fuzzy interactive approach. It not only achieves
satisfactory solutions for the DM, but also facilitates the application to other MOP problems
under the uncertain environment in production or business activities due to its interactivity
and flexibility.
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In addition, we consider the sensitivity of uncontrollable parameters to the results.
In order to present more obvious results, we assume that all fuzzy parameters increase
and decrease by 10% and 20%. Table 4 shows the calculation results of uncontrollable
parameter disturbance.

Table 4. Impact of item-specific data perturbations on production decisions.

NO. Range Interaction (µ̄1, µ̄2) (µ f̄1
(x), µ f̄2

(x))

1 10%

First (1.0000, 1.0000) (0.7203, 0.7238)
Second (0.9500, 0.8000) (0.8020, 0.6584)
Third (0.9500, 0.7000) (0.8588, 0.6130)

Fourth (0.9000, 0.5500) (0.9005, 0.5797)

2 −10%

First (1.0000, 1.0000) (0.6877, 0.6877)
Second (0.9500, 0.8000) (0.7705, 0.6215)
Third (0.9500, 0.7000) (0.8270, 0.5763)

Fourth (0.9000, 0.5500) (0.8821, 0.5322)

3 20%

First (1.0000, 1.0000) (0.7271, 0.7183)
Second (0.9500, 0.8000) (0.8098, 0.6521)
Third (0.9500, 0.7000) (0.8925, 0.5860)

Fourth (0.9000, 0.5500) (0.9053, 0.5758)

4 −20%

First (1.0000, 1.0000) (0.7092, 0.7109)
Second (0.9500, 0.8000) (0.7925, 0.6443)
Third (0.9500, 0.7000) (0.8484, 0.5995)

Fourth (0.9000, 0.5500) (0.8986, 0.5593)

As shown in Table 4, compared with the final result (0.8986, 0.5593) in Table 3,
the comparison of these four results (0.9005, 0.5797), (0.8821, 0.5322), (0.9053, 0.5758),
(0.8986, 0.5593) shows that although the change of parameters makes the DM change the
production decision of products to a certain extent, the DM can always obtain satisfactory
results through the fuzzy interactive approach.

The results in Table 4 reveal two points: (1) By changing the value of uncontrollable
factors such as the unit profit of the ith type of product, the time required to produce the
product and the uncertainty of customer demand, it is found that their impact on the results
is similar. (2) Considering the uncertainty of the DM to uncontrollable parameters, the fuzzy
interactive approach can maximize the total profit and minimize the total production time
under the constraints of capital budget and inventory constraints.

From the results of the example, it can be observed that the fuzzy interactive solution
of the CCP model with RSTIT2-FS parameters can make the DM directly participate in the
production decision making in practice. Meanwhile, as a garment manufacturing enterprise,
it is a green and sustainable production activity to use the form of recycling old clothes,
which can not only bring economic benefits but also environmental benefits. Consequently,
in the pursuit of sustainable manufacturing, the DM needs to (1) pay attention to product
quality to break consumers’ prejudice against old products and (2) balance machine working
time and material consumption.

Although in this numerical experiment, we use the example of remanufacturing old
clothes to illustrate our proposed method, in fact, it can be extended to multi-objective
programming problems in interval type-2 fuzzy environment where the objective func-
tions and constraint conditions are strictly monotonically increasing or monotonically
decreasing, such as logistics transportation programming, investment decisions and other
programming problems.

6. Conclusions

This paper focused on the crisp transformation of the MOP problem with RSTIT2-FS
parameters and the process of solving it by using the fuzzy interactive approach. Af-
ter proposing the type-2 fuzzy CCP model, we obtained the crisp equivalent model through
crisp transformation. Subsequently, we need to determine the membership function in the
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interactive approach in advance and calculate the EV by constantly updating the reference
membership value, and finally obtain a satisfactory solution for the DM.

The main contributions of this paper are as follows: (1) A two-stage method was
proposed to solve the CCP model with RSTIT2-FS parameters, which provides a useful
theoretical framework for dealing with uncertain programming problems in practice.
(2) A crisp transformation method was proposed to obtain the crisp equivalent model by
defuzzifying objective and constraint functions. (3) The fuzzy interactive approach was
used to solve the remanufacture of old clothes problem. Through a continuous interactive
process, a satisfactory production decision scheme can be obtained for the DM. Meanwhile,
it can also improve the participation of the DM in decision making, and provide an available
measure for the disposal of programming problems in real life.

It is worth mentioning that there are still many limitations in this paper. Firstly, the re-
manufacture of old clothes problem assumed in Section 5 of this paper is a simple MOP
problem. In addition, the objective function and constraint function are linear. Therefore, it
is necessary to consider the nonlinear objective function and constraint function in future
research. Secondly, the fuzzy interactive approach of MOP with RSTIT2-FS parameters
studied in this paper can be extended to a stochastic and some mixed backgrounds of
randomness and uncertainty. Meanwhile, it can be applied to logistics transportation, in-
vestment decision making and other issues. Finally, the research on the production problem
of used clothes remanufacture proposed in this paper is in the preliminary application
stage, and it is used to verify the applicability of the mentioned approach. In future work,
we will further study how to establish a sustainable objective function that is more in line
with the actual production decision and the various constraints in the corresponding model.
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DM decision maker
MOP multi-objective programming
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