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Abstract: A general sampling problem can be described by an Ellsberg urn, which is a mathematical
model that assumes that balls are randomly drawn from an urn with an uncertain numbers of
colored balls. This means that the Ellsberg urn is essentially an intricate model with simultaneous
randomness and epistemic uncertainty, and this is the core problem discussed in this paper. Since
practical sampling is usually processed in an intricate environment, the solution for an equivalent
mathematical problem is necessary. Suppose an Ellsberg urn contains three unknown numbers
of colored balls (i.e., a two-degrees-of-freedom Ellsberg urn), and three balls are randomly drawn
from the urn. Compared to the published papers, this paper first constructs a chance space with
two-dimensional uncertainty space and three-dimensional probability space to rigorously calculate
the color distributions for those drawn balls by uncertainty theory, probability theory, and chance
theory. Moreover, it is interesting to find that all cases of the drawn balls are symmetric in such a
specific situation of a sample problem with epistemic uncertainty.

Keywords: sampling problem; Ellsberg urn; uncertainty theory; probability theory; chance theory

1. Introduction

In 1923, Eggenberger and Pólya [1] proposed a famous urn problem, which is currently
called the Pólya urn problem. Essentially, a Pólya urn is a kind of known urn problem
because each number of colored balls is given. However, for the urn presented by Ells-
berg [2], it is assumed that it has unknown numbers of colored balls. A scientific problem
is how to calculate the likelihood of all cases existing in the Ellsberg urn by a mathematical
formula, rather than through psychological experiments. In fact, getting a colored ball from
an Ellsberg urn is equivalent to obtaining a sample from a population. This means that
the formula for an Ellsberg urn can also be applied to a sampling problem, and this is an
innovative method for sampling problems with epistemic uncertainty. Some new aspects
for handling epistemic uncertainty can be found in [3,4].

As an axiomatical mathematical tool to deal with epistemic uncertainty, uncertainty
theory was proposed by Liu [5] in 2007 and perfected by Liu [6] in 2009. Recently, many
scholars have shown that uncertainty theory is more suitable to model indeterminacy than
probability theory in some situations, including COVID-19 spread (Chen et al. [7], Jia and
Chen [8], Lio and Liu [9], Liu [10], Ye and Yang [11]), circuit systems (Liu [12]), chemical
reactions (Tang and Yang [13]), exchange rates (Ye and Liu [14]), stock prices (Liu and
Liu [15]), and birth rates (Ye and Zheng [16]).

Roughly speaking, probability theory is suitable for randomness and frequencies,
and uncertainty theory is suitable for (epistemic) uncertainty and degrees of human belief
(Liu [17]). Moreover, an intricate system usually contains randomness and (epistemic)
uncertainty. To handle such a system, Liu [18] founded chance theory and proposed
the concepts of the chance measure, uncertain random variable, and chance distribution.
Uncertain random programming is one of the important applications of chance theory, and
its developments can be found in the works by Zhou et al. [19], Qin [20], and Ke et al. [21].
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Liu [22] demonstrated that the unknown numbers of the colored balls in an Ellsberg
urn are uncertain variables, and it is clear that the randomly drawn colored balls are
random variables. This means that the Ellsberg urn problem is an uncertain random system
and should be handled by chance theory. To discriminate between the Ellsberg urn based
on the axiomatical mathematical method and the traditional psychological methods, the
urn problem discussed in this paper is also called an uncertain urn problem. The first work
about the uncertain urn problem was completed by Liu [22]. After that, Lio and Cheng [23]
developed the uncertain urn problem with the assumption that three numbers of colored
balls are unknown in the urn, suggesting an uncertain urn problem with two degrees of
freedom. As the most general case of Ellsberg urn, Ye and Jia [24] evaluated the color
distribution for the uncertain urn problem with k degrees of freedom.

For an Ellsberg urn with multiple drawn balls, Lio and Cheng [25] first used a three-
dimensional probability space to characterize the case when three colored balls are ran-
domly drawn, but their method can only solve the one-degree-of-freedom uncertain urn
problem. This means that none of the existing works can solve an uncertain urn problem,
which is one that has multiple drawn balls and multiple degrees of freedom simultaneously.
Therefore, this paper is the first work to provide formulas for the color distributions of
three drawn balls from the uncertain urn problem with two degrees of freedom, and it
is interesting to find that such an urn problem is equivalent to a symmetric sampling
problem. The rest of the paper is organized as follows: Section 2 introduces preliminaries
for chance theory to solve the uncertain urn problem. Section 3 constructs a chance space
with two-dimensional uncertainty space and three-dimensional probability space to model
the uncertain urn problem. From Sections 4–6, results for ten cases of drawn colored balls
are obtained based on their chance measures, and the symmetry of the sampling problem
is shown. Finally, a brief conclusion is provided in Section 7.

2. Preliminaries

To model an intricate system that contains both uncertainty and randomness, Liu [18]
founded chance theory in 2013 and Liu [26] further verified the operational law for the
uncertain random system. Some basic definitions and theorems of chance theory are
introduced in this section.

Let Γ and Ω be nonempty sets. Let L and F be σ-algebras over Γ and Ω, respectively.
Let M be an uncertain measure, and Pr be a probability measure. Then, (Γ,L,M) is an
uncertainty space, (Ω,F, Pr) is a probability space, and

(Γ,L,M)× (Ω,F, Pr) = (Γ×Ω,L× F,M× Pr)

is a chance space. The concept of the chance measure (Liu [18]) is defined by

Ch{Θ} =
∫ 1

0
Pr{ω ∈ Ω |M{γ ∈ Γ|(γ, ω) ∈ Θ} ≥ x}dx (1)

where Θ is any event in the product σ-algebra L × F. The chance measure is proven
to satisfy

Ch{Γ×Ω} = 1. (2)

In addition, for any event Θ, it is a monotone increasing function with respect to Θ, and
self-dual holds, that is,

Ch{Θ}+ Ch{Θc} = 1. (3)

After that, Hou [27] proved that chance measure satisfies the property of subadditivity, that
is, for every countable sequence of events Θ1, Θ2, · · · , the formula

Ch

{
∞⋃

i=1

Θi

}
≤

∞

∑
i=1

Ch{Θi} (4)
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holds. Based on the chance measure, the concept of uncertain random variable (Liu [18])
can be defined. Essentially, the uncertain random variable is a measurable function defined
on chance space (Γ,L,M) × (Ω,F, Pr) and takes a value in the set of real numbers. To
describe an uncertain random variable ξ, the concept of chance distribution (Liu [18]) is
defined as Φ(x) = Ch{ξ ≤ x}, ∀x ∈ <, and its inverse function Φ−1(α), ∀α ∈ (0, 1) is
called an inverse chance distribution.

For the operational law (Liu [26]) of chance theory, suppose η1, η2, · · · , ηm are indepen-
dent random variables that have probability distributions Ψ1, Ψ2, · · · , Ψm, respectively, and
τ1, τ2, · · · , τn are independent uncertain variables that have regular uncertainty distribu-
tions Υ1, Υ2, · · · Υn, respectively. For a strictly monotone function f that is increasing with
respect to τ1, · · · , τk and decreasing with respect to τk+1, · · · , τn, the chance distribution of
uncertain random variable ξ = f (η1, · · · , ηm, τ1, · · · , τn) can be calculated by

Φ(x) =
∫
<m

g(x; y1, · · ·, ym)dΨ1(y1) · · ·dΨm(ym) (5)

where g(x; y1, · · · , ym) represents the root α of

f (y1, · · · , ym, Υ−1
1 (α), · · · , Υ−1

k (α), Υ−1
k+1(1− α), · · · , Υ−1

n (1− α)) = x.

For the expected value (Liu [18]) of an uncertain random variable ξ, it is determined by

E[ξ] =
∫ +∞

0
Ch{ξ ≥ x}dx−

∫ 0

−∞
Ch{ξ ≤ x}dx (6)

if at least one of the above integrals is finite. Moreover, for the uncertain random variable ξ,
which has inverse uncertainty distribution Φ−1(α), the expected value can be calculated by

E[ξ] =
∫ 1

0
Φ−1(α)dα. (7)

3. Problem Description and Formulation

For an uncertain urn problem that includes 100 balls that are either red, black, or
yellow, the colored balls are marked from 1 to 100, respectively. Without loss of generality,
the order of the balls in the above Ellsberg urn is assumed to be first black, then yellow,
and finally red. Then, we draw three balls from the urn, and the core problem is the color
distribution of the drawn balls.

To solve this problem, an uncertainty space (Γ,L,M) is assumed to be

Γ = {(γ1, γ2) | γ1, γ2 ∈ {1, 2, · · · , 100}, γ1 + γ2 ≤ 100}

with power set, and the uncertain measure satisfies

M{Λ} = |Λ|
C2

102

where Λ is an event, and |Λ| represents its cardinality. Therefore, the number of black balls
is an uncertain variable

τ1(γ1, γ2) = γ1 (8)

and the number of yellow balls is an uncertain variable

τ2(γ1, γ2) = γ2. (9)

Since the remaining balls should be red, the number of red balls is an uncertain variable

τ3(γ1, γ2) = 100− γ1 − γ2. (10)
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According to the above assumption for the order of balls, the black balls should be marked
from 1 to γ1, the yellow balls should be marked from γ1 + 1 to γ1 + γ2, and the red balls
should be marked from γ1 + γ2 + 1 to 100.

Since the balls are drawn from an uncertain urn, this is a random method to obtain
three drawn balls. To describe the randomly drawn balls, a probability space (Ω,F, Pr) is
assumed to be

Ω = {(ω1, ω2, ω3) | ω1, ω2, ω3 ∈ {1, 2, · · · , 100}, ω1 6= ω2, ω2 6= ω3, ω1 6= ω3}

with power set, and the probability measure satisfies

Pr{Λ} = |Λ|
100× 99× 98

where Λ is an event and |Λ| represents its cardinality. This means that the uncertain urn
problem discussed in this paper should be handled by probability theory (randomly drawn
balls) and uncertainty theory (unknown numbers of colored balls), and the events for three
drawn balls come from the chance space (Γ,L,M)× (Ω,F, Pr).

4. Three Cases with the Same Color

This section calculates the color distributions of the cases in which the drawn balls are
all the same color, that is, drawing three black balls, three yellow balls, and three red balls.

4.1. Three Drawn Black Balls

This subsection considers the case that there are three black balls drawn from the un-
certain urn. The result will show the symmetry of the urn problem discussed in this paper.

Let us represent the event that three black balls are drawn from the uncertain urn by

“3b” = {(γ1, γ2, ω1, ω2, ω3) ∈ Γ×Ω | ω1, ω2, ω3 ≤ γ1}. (11)

Then, we calculate the chance measure of event “3b”,

Ch{“3b”}

=
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |M{(γ1, γ2) ∈ Γ | (γ1, γ2, ω1, ω2, ω3) ∈ “3b”} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |M{(γ1, γ2) ∈ Γ | ω1 < ω2 < ω3 ≤ γ1} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω | (102−ω3)(101−ω3)

2C2
102

≥ x, ω1 < ω2 < ω3}dx

= 6
97

∑
j=0

∫ (j+1)(j+2)

2C2
102

(j+1)j

2C2
102

Pr{(ω1, ω2, ω3) ∈ Ω | ω3 ≤ 100− j}dx

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

Pr{(ω1, ω2, ω3) ∈ Ω | ω1 = k + 1, ω3 ≤ 100− j}

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

(99− j− k)(98− j− k)
2

1
100× 99× 98

=
1

10
.

4.2. Three Drawn Yellow Balls

This subsection considers the case that there are three yellow balls drawn from the
uncertain urn. The result still shows the symmetry of the discussed urn problem.
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Let us represent the event that three yellow balls are drawn from the uncertain urn by

“3y” = {(γ1, γ2, ω1, ω2, ω3) ∈ Γ×Ω | γ1 < ω1, ω2, ω3 ≤ γ1 + γ2}. (12)

Then, we calculate the chance measure of event “3y”,

Ch{“3y”}

=
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |M{(γ1, γ2) ∈ Γ | (γ1, γ2, ω1, ω2, ω3) ∈ “3y”} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |

M{(γ1, γ2) ∈ Γ | γ1 < ω1 < ω2 < ω3 ≤ γ1 + γ2} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω | ω1(101−ω3)

C2
102

≥ x, ω1 < ω2 < ω3}dx

= 6
97

∑
j=0

97−j

∑
k=0

∫ (j+1)(k+1)

C2
102

(j+1)k

C2
102

Pr{(ω1, ω2, ω3) ∈ Ω | ω1 = j + 1, ω3 ≤ 100− k}dx

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

Pr{(ω1, ω2, ω3) ∈ Ω | ω1 = j + 1, ω3 ≤ 100− k}

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

(99− j− k)(98− j− k)
2

1
100× 99× 98

=
1

10
.

This means that the chance measure of the event that three yellow balls are drawn is
equal to the chance measure of the event that three black balls are drawn.

4.3. Three Drawn Red Balls

This subsection considers the case that there are three red balls drawn from the
uncertain urn. The symmetry of the urn problem holds in this situation.

Let us represent the event that three red balls are drawn from the uncertain urn by

“3r” = {(γ1, γ2, ω1, ω2, ω3) ∈ Γ×Ω | ω1, ω2, ω3 > γ1 + γ2}. (13)



Symmetry 2022, 14, 1790 6 of 13

Then, we calculate the chance measure of event “3r”,

Ch{“3r”}

=
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |M{(γ1, γ2) ∈ Γ | (γ1, γ2, ω1, ω2, ω3) ∈ “3r”} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |M{(γ1, γ2) ∈ Γ | γ1 + γ2 < ω1 < ω2 < ω3} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω | ω1(ω1 + 1)

2C2
102

≥ x, ω1 < ω2 < ω3}dx

= 6
97

∑
j=0

∫ (j+1)(j+2)

2C2
102

(j+1)j

2C2
102

Pr{(ω1, ω2, ω3) ∈ Ω | ω1 ≥ j + 1}dx

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

Pr{(ω1, ω2, ω3) ∈ Ω | ω1 ≥ j + 1, ω3 = 100− k}

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

(99− j− k)(98− j− k)
2

1
100× 99× 98

=
1
10

.

It can be concluded that the calculations for drawing three black balls, yellow balls,
and red balls are symmetric, and the result is consistent with our intuition.

5. Six Cases with Two Different Colors

This section calculates the color distributions of the cases where the drawn balls are of
two different colors, that is, drawing one black ball and two yellow balls, two black balls
and one yellow ball, one black ball and two red balls, two black balls and one red ball, one
yellow ball and two red balls, and two yellow balls and one red ball.

5.1. One Drawn Black Ball and Two Drawn Yellow Balls

This subsection considers the case where one black ball and two yellow balls are
drawn from the uncertain urn. It is interesting that the symmetry of the urn problem still
holds, even in this case.

Let us represent the event that one black ball and two yellow balls are drawn from the
uncertain urn by

“b2y” =
⋃

i 6=j 6=k, i,j,k∈{1,2,3}
{(γ1, γ2, ω1, ω2, ω3) ∈ Γ×Ω | ωi ≤ γ1 < ωj < ωk ≤ γ1 + γ2}. (14)
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Then, we calculate the chance measure of event “b2y”,

Ch{“b2y”}

=
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |M{(γ1, γ2) ∈ Γ | (γ1, γ2, ω1, ω2, ω3) ∈ “b2y”} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |

M{(γ1, γ2) ∈ Γ | ω1 ≤ γ1 < ω2 < ω3 ≤ γ1 + γ2} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω | (101−ω3)(ω2 −ω1)

C2
102

≥ x, ω1 < ω2 < ω3}dx

= 6
97

∑
j=0

97−j

∑
k=0

∫ (j+1)(k+1)

C2
102

(j+1)k

C2
102

Pr{(ω1, ω2, ω3) ∈ Ω | ω2 = ω1 + j + 1, 101−ω3 ≥ k + 1}dx

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

Pr{(ω1, ω2, ω3) ∈ Ω | ω2 = ω1 + j + 1, 101−ω3 ≥ k + 1}

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

(99− j− k)(98− j− k)
2

1
100× 99× 98

=
1
10

.

This means that the chance measure of the event that one black ball and two yel-
low balls are drawn is equal to the chance measure of the event that three black balls,
three yellow balls, or three red balls are drawn. This may be a result that should be
further illustrated.

5.2. Two Drawn Black Balls and One Drawn Yellow Ball

This subsection considers the case in which two black balls and one yellow ball are
drawn from the uncertain urn. This result and the chance measure of the event that one
black ball and two yellow balls are drawn should be symmetric.

Let us represent the event that two black balls and one yellow ball are drawn from the
uncertain urn by

“2by” =
⋃

i 6=j 6=k, i,j,k∈{1,2,3}
{(γ1, γ2, ω1, ω2, ω3) ∈ Γ×Ω | ωi < ωj ≤ γ1 < ωk ≤ γ1 + γ2}. (15)
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Then, we calculate the chance measure of event “2by”,

Ch{“2by”}

=
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |M{(γ1, γ2) ∈ Γ | (γ1, γ2, ω1, ω2, ω3) ∈ “2by”} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |

M{(γ1, γ2) ∈ Γ | ω1 < ω2 ≤ γ1 < ω3 ≤ γ1 + γ2} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω | (101−ω3)(ω3 −ω2)

C2
102

≥ x, ω1 < ω2 < ω3}dx

= 6
97

∑
j=0

97−j

∑
k=0

∫ (j+1)(k+1)

C2
102

(j+1)k

C2
102

Pr{(ω1, ω2, ω3) ∈ Ω | ω3 = ω2 + j + 1, 101−ω3 ≥ k + 1}dx

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

Pr{(ω1, ω2, ω3) ∈ Ω | ω3 = ω2 + j + 1, 101−ω3 ≥ k + 1}

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

(99− j− k)(98− j− k)
2

1
100× 99× 98

=
1
10

.

5.3. One Drawn Black Ball and Two Drawn Red Balls

This subsection considers the case in which one black ball and two red balls are drawn
from the uncertain urn. This result and the chance measure of the event that one black ball
and two yellow balls are drawn should also be symmetric.

Let us represent the event that one black ball and two red balls are drawn from the
uncertain urn by

“b2r” =
⋃

i 6=j 6=k, i,j,k∈{1,2,3}
{(γ1, γ2, ω1, ω2, ω3) ∈ Γ×Ω | ωi ≤ γ1 ≤ γ1 + γ2 < ωj < ωk}. (16)

Then, we calculate the chance measure of event “b2r”,

Ch{“b2r”}

=
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |M{(γ1, γ2) ∈ Γ | (γ1, γ2, ω1, ω2, ω3) ∈ “b2r”} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |

M{(γ1, γ2) ∈ Γ | ω1 ≤ γ1 ≤ γ1 + γ2 < ω2 < ω3} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω | (ω2 −ω1 + 1)(ω2 −ω1)

2C2
102

≥ x, ω1 < ω2 < ω3}dx

= 6
97

∑
j=0

∫ (j+1)(j+2)

2C2
102

0
Pr{(ω1, ω2, ω3) ∈ Ω | ω2 = ω1 + j + 1}dx

=
3

C2
102

97

∑
j=0

(j + 1)(j + 2)Pr{(ω1, ω2, ω3) ∈ Ω | ω2 = ω1 + j + 1}

=
3

C2
102

97

∑
j=0

(j + 1)(j + 2)
(99− j)(98− j)

2
1

100× 99× 98

=
1

10
.
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5.4. Two Drawn Black Balls and One Drawn Red Ball

This subsection considers the case in which two black balls and one red ball are drawn
from the uncertain urn. This result and the chance measure of the event that one black ball
and two red balls are drawn should be symmetric.

Let us represent the event that two black balls and one red ball are drawn from the
uncertain urn by

“2br” =
⋃

i 6=j 6=k, i,j,k∈{1,2,3}
{(γ1, γ2, ω1, ω2, ω3) ∈ Γ×Ω | ωi < ωj ≤ γ1 ≤ γ1 + γ2 < ωk}. (17)

Then, we calculate the chance measure of event “2br”,

Ch{“2br”}

=
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |M{(γ1, γ2) ∈ Γ | (γ1, γ2, ω1, ω2, ω3) ∈ “2br”} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |

M{(γ1, γ2) ∈ Γ | ω1 < ω2 ≤ γ1 ≤ γ1 + γ2 < ω3} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω | (ω3 −ω2 + 1)(ω3 −ω2)

2C2
102

≥ x, ω1 < ω2 < ω3}dx

= 6
97

∑
j=0

∫ (j+1)(j+2)

2C2
102

0
Pr{(ω1, ω2, ω3) ∈ Ω | ω3 = ω2 + j + 1}dx

=
3

C2
102

97

∑
j=0

(j + 1)(j + 2)Pr{(ω1, ω2, ω3) ∈ Ω | ω3 = ω2 + j + 1}

=
3

C2
102

97

∑
j=0

(j + 1)(j + 2)
(99− j)(98− j)

2
1

100× 99× 98

=
1

10
.

5.5. One Drawn Yellow Ball and Two Drawn Red Balls

This subsection considers the case in which one yellow ball and two red balls are
drawn from the uncertain urn. Similarly, it should be another symmetric case for the
uncertain urn problem.

Let us represent the event that one yellow ball and two red balls are drawn from the
uncertain urn by

“y2r” =
⋃

i 6=j 6=k, i,j,k∈{1,2,3}
{(γ1, γ2, ω1, ω2, ω3) ∈ Γ×Ω | γ1 < ωi ≤ γ1 + γ2 < ωj < ωk}. (18)
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Then, we calculate the chance measure of event “y2r”,

Ch{“y2r”}

=
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |M{(γ1, γ2) ∈ Γ | (γ1, γ2, ω1, ω2, ω3) ∈ “y2r”} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |

M{(γ1, γ2) ∈ Γ | γ1 < ω1 ≤ γ1 + γ2 < ω2 < ω3} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω | ω1(ω2 −ω1)

C2
102

≥ x, ω1 < ω2 < ω3}dx

= 6
97

∑
j=0

97−j

∑
k=0

∫ (j+1)(k+1)

C2
102

(j+1)k

C2
102

Pr{(ω1, ω2, ω3) ∈ Ω | ω2 = ω1 + j + 1, ω1 ≥ k + 1}dx

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

Pr{(ω1, ω2, ω3) ∈ Ω | ω2 = ω1 + j + 1, ω1 ≥ k + 1}

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

(99− j− k)(98− j− k)
2

1
100× 99× 98

=
1

10
.

5.6. Two Drawn Yellow Balls and One Drawn Red Ball

This subsection considers the case in which two yellow balls and one red ball are
drawn from the uncertain urn. This result and the chance measure of the event that one
yellow ball and two red balls are drawn should be symmetric.

Let us represent the event that two yellow balls and one red ball are drawn from the
uncertain urn by

“2yr” =
⋃

i 6=j 6=k, i,j,k∈{1,2,3}
{(γ1, γ2, ω1, ω2, ω3) ∈ Γ×Ω | γ1 < ωi < ωj ≤ γ1 + γ2 < ωk}. (19)

Then, we calculate the chance measure of event “2yr”,

Ch{“2yr”}

=
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |M{(γ1, γ2) ∈ Γ | (γ1, γ2, ω1, ω2, ω3) ∈ “2yr”} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |

M{(γ1, γ2) ∈ Γ | γ1 < ω1 < ω2 ≤ γ1 + γ2 < ω3} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω | ω1(ω3 −ω2)

C2
102

≥ x, ω1 < ω2 < ω3}dx

= 6
97

∑
j=0

97−j

∑
k=0

∫ (j+1)(k+1)

C2
102

(j+1)k

C2
102

Pr{(ω1, ω2, ω3) ∈ Ω | ω3 = ω2 + j + 1, ω1 ≥ k + 1}dx

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

Pr{(ω1, ω2, ω3) ∈ Ω | ω3 = ω2 + j + 1, ω1 ≥ k + 1}

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

(99− j− k)(98− j− k)
2

1
100× 99× 98

=
1

10
.
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6. The Case with One Drawn Black Ball, Yellow Ball, and Red Ball

This section calculates the color distribution of the remaining case, that is, drawing
one black ball, one yellow ball, and one red ball. This should be a special situation, but by
the duality, it is interesting that the chance measure of the event that one black ball, one
yellow ball, and one red ball are drawn and all the other cases are symmetric.

Let us represent the event that one black ball, one yellow ball, and one red ball are
drawn from the uncertain urn by

“byr” =
⋃

i 6=j 6=k, i,j,k∈{1,2,3}
{(γ1, γ2, ω1, ω2, ω3) ∈ Γ×Ω | ωi ≤ γ1 < ωj ≤ γ1 + γ2 < ωk}. (20)

Then, we calculate the chance measure of event “byr”,

Ch{“byr”}

=
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |M{(γ1, γ2) ∈ Γ | (γ1, γ2, ω1, ω2, ω3) ∈ “byr”} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω |

M{(γ1, γ2) ∈ Γ | ω1 ≤ γ1 < ω2 ≤ γ1 + γ2 < ω3} ≥ x}dx

= 6
∫ 1

0
Pr{(ω1, ω2, ω3) ∈ Ω | (ω3 −ω2)(ω2 −ω1)

C2
102

≥ x, ω1 < ω2 < ω3}dx

= 6
97

∑
j=0

97−j

∑
k=0

∫ (j+1)(k+1)

C2
102

(j+1)k

C2
102

Pr{(ω1, ω2, ω3) ∈ Ω | ω2 = ω1 + j + 1, ω3 −ω2 ≥ k + 1}dx

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

Pr{(ω1, ω2, ω3) ∈ Ω | ω2 = ω1 + j + 1, ω3 −ω2 ≥ k + 1}

=
6

C2
102

97

∑
j=0

(j + 1)
97−j

∑
k=0

(99− j− k)(98− j− k)
2

1
100× 99× 98

=
1

10
.

This means that all chance measures of the ten cases are equal, and the results are
symmetric. These counter-intuitive results are caused by the consideration that the numbers
of black balls, yellow balls, and red balls are approximately equal. However, in the practical
case, since the colored balls in an Ellsberg urn are completely unknown and depend on
the human beings who placed the balls inside, it is possible that the urn contains 100 black
balls. In this situation, drawing three black balls must be much more possible than any
other cases. The results reveal that the measures of the ten cases are symmetric in the sense
of the “average”.

Actually, the numbers of black balls, yellow balls, and red balls in the uncertain
urn are usually not equal (the above distribution is used because we do not have any
other information). It was shown by Liu [22] that probability theory leads to a disastrous
decision for the unknown numbers of colored balls in an Ellsberg urn if the practical color
distribution is far away from the estimated color distribution. The result obtained by
Liu [22] is a special case of the phenomenon described in this paper when two numbers
of the colored balls (say black balls and yellow balls) are unknown and one ball is drawn
from the uncertain urn.

7. Conclusions

This paper constructed a chance space with two-dimensional uncertainty space and
three-dimensional probability space to characterize a two-degrees-of-freedom Ellsberg
urn with three randomly drawn balls. Furthermore, by separating the drawn balls into
ten cases, a rigorous proof was provided to demonstrate that all the cases have the same
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chance measure. This result represents a symmetric situation of a sample problem with
epistemic uncertainty.

There was a lack of axiomatical mathematical methods in the traditional works on
the Ellsberg urn. Recently, uncertainty theory, probability theory, and chance theory have
been proposed to solve the Ellsberg urn problem mathematically. However, all the existing
works fail to calculate the color distribution when there are multiple drawn balls and
unknown numbers of the colored balls. The most important contribution of this paper
is the symmetric result for the case with three drawn balls and two degrees of freedom.
Unfortunately, we still cannot assure that the result can be extended to high-dimensional
cases, such as an urn problem with four drawn balls or three degrees of freedom. This
disadvantage leads to a limitation for the obtained color distribution, and future research
for the general case (i.e., j drawn balls and k degrees of freedom) should be carried out
based on the results provided in this paper. Furthermore, useful future research directions
include practical applications for the calculated color distributions of the drawn balls
according to data analysis methods such as uncertain regression, uncertain time series, and
uncertain differential equation.
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