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Abstract: The research presented in this paper deals with analytic p-valent functions related to the
generalized probability distribution in the open unit disk U. Using the Hadamard product or convolu-
tion, function fs(z) is defined as involving an analytic p-valent function and generalized distribution
expressed in terms of analytic p-valent functions. Neighborhood properties for functions fs(z) are
established. Further, by applying a previously introduced linear transformation to fs(z) and using
an extended Libera integral operator, a new generalized Libera-type operator is defined. Moreover,
using the same linear transformation, subclasses of starlike, convex, close-to-convex and spiralike
functions are defined and investigated in order to obtain geometrical properties that characterize the
new generalized Libera-type operator. Symmetry properties are due to the involvement of the Libera
integral operator and convolution transform.

Keywords: p-valent function; starlike function; convex function; close-to-convex function; spiralike
function; generalized distribution; neighborhood; Libera operator
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1. Introduction

Let A denote the class of all functions of the form:

f (z) = z +
∞

∑
k=2

akzk (1)

which are analytic in the open unit disc U = {z : |z| < 1}.
For brevity, let Ap denote the class of all analytic p-valent functions having the form:

fp(z) = zp +
∞

∑
k=1

ak+pzk+p p ∈ N. (2)

A function having the form given by (2) is said to be p-valent in the open unit disk U
if it is analytic and assumes no value more than p times for |z| < 1. The class Ap, which
is invariant (or symmetric) under rotations, is subject to investigations at the moment
for many researchers, with interesting results related to certain subclasses of p−valent
functions being obtained in correlation to operators. For instance, in [1], applications of a
Salagean operator can be seen in [2], a hypergeometric function is associated with the study,
a generalized differential operator is applied in [3,4] and a Dziok–Srivastava operator is
used in [5].
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In 2018, Porwal [6] introduced and studied a power series whose coefficients are
probabilities of the generalized distribution such that

gs(z) = z +
∞

∑
k=2

bk−1
S

zk p ∈ N, (3)

where S denotes the sum of the convergent series of the form:

S =
∞

∑
k=0

bk

and bk ≥ 0, k ∈ N (see also [7]).
Here, for convenience, (3) is expressed in terms of analytic p-valent functions, such that

gp,s(z) = zp +
∞

∑
k=1

bk+p−1

S
zk+p p ∈ N. (4)

By convolution or Hadamard product of two analytic functions f and h, we mean that

f (z) ∗ h(z) = z +
∞

∑
k=2

akbkzk, (5)

where h(z) = z + ∑∞
k=2 bkzk and f (z) = z + ∑∞

k=2 akzk.
Using the concept defined above using (4) and (5), an analytic function fs(z) is intro-

duced such that

fs(z) = fp(z) ∗ gp,s(z) = zp +
∞

∑
k=1

ak+p
bk+p−1

S
zk+p = gp,s(z) ∗ fp(z) p ∈ N. (6)

Suppose that f ∈ A of the form (1) is given. Then f is called starlike, respectively,
convex of order σ denoted by f ∈ S∗(σ) and f ∈ K(σ), if the following geometric conditions
are satisfied

<
{

z f ′(z)
f (z)

}
> σ, 0 ≤ σ < 1, |z| < 1, (7)

and

<
{

1 +
z f ′′(z)
f ′(z)

}
> σ, 0 ≤ σ < 1, |z| < 1. (8)

Furthermore, let f and g be starlike of order σ, meaning that f , g ∈ S∗(σ). Then f
is said to belong to the class of close-to-convex functions of order ρ type σ, denoted by
f ∈ K(σ, ρ), if the following geometric condition is satisfied:

<
{

z f ′(z)
g(z)

}
> ρ, 0 ≤ ρ < 1, |z| < 1. (9)

Similarly, f is said to belong to the class of spiralike function f ∈ Sp(σ) if the following
condition is satisfied

<
{

eiθ z f ′(z)
f (z)

}
> σ, 0 ≤ σ < 1, |θ| < π

2
, |z| < 1. (10)

The aforementioned geometric conditions (7)–(10) have the following equivalents,
respectively: ∣∣∣∣ z f ′(z)

f (z)
− p

∣∣∣∣ < p− σ, (11)∣∣∣∣1 + z f ′′(z)
f ′(z)

− p
∣∣∣∣ < p− σ, (12)
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∣∣∣∣ f ′(z)
g′(z)

− p
∣∣∣∣ < p− ρ, (13)

and ∣∣∣∣eiθ z f ′(z)
f (z)

− p
∣∣∣∣ < p− σ. (14)

The subclasses that follow have been studied repeatedly by various authors (see [8–14]
among others) from different perspectives, and several interesting results were obtained.

S∗(µ; φ) =

{
f ∈ Γ :

1
1− µ

(
z f ′(z)

f (z)
− µ

)
≺ φ(z), z ∈ U

}
,

C(µ; φ) =

{
f ∈ Γ :

1
1− µ

(
1 +

z f ′′(z)
f ′(z)

− µ

)
≺ φ(z), z ∈ U

}
,

K(µ, ρ; φ, ϕ) =

{
f ∈ Γ :

1
1− ρ

(
z f ′(z)
g(z)

− ρ

)
≺ ϕ(z), z ∈ U, g ∈ S∗(µ; φ)

}
.

Let h be univalent in U and f analytic in U, then f is said to be subordinate to h,
written as f ≺ h, if there exists a Schwartz function ω, which is analytic in U, with ω(0) = 0
and |ω(z)| < 1 for all z ∈ U such that f (z) = h(ω(z)). Further, let h be univalent in U,
then the following equivalent holds true

f ≺ h⇔ f (0) = h(0) and f (U) ⊂ h(U).

Interesting results involving subordination theory can be seen in [13,15–18], among oth-
ers.

Now, let Ω denote the class of all analytic and univalent functions γ in U for which
γ(U) is convex with γ(0) = 1 and <{γ(z)} > 0, z ∈ U. For function f (z) of the form (1),
Makinde [19] defined a linear transformation Tn

β f (z), β ≥ 1, n ≥ 0, such that

T0
β f (z) = f (z)

T1
β f (z) = (1− µ) f (z) + zµ f ′(z)

...

Tn
β f (z) = Tβ(Tn−1

β f (z)),

where

Tn
β f (z) = z +

∞

∑
k=2

β

(
1 + µ(k + β− 2)

1 + µ(β− 1)

)n
akzk, (15)

and
Tn+1

β f (z) = (1− µ)Tn
β f (z) + zµ(Tn

β f (z))′

or
zµ(Tn

β f (z))′ = Tn+1
β f (z)− (1− µ)Tn

β f (z), µ ∈ [0, 1]. (16)

Further, for γ, φ ∈ Ω, ref. [19] introduced and studied the subclasses of starlike, convex
and close-to-convex functions S∗(σ, γ), C(σ, γ) and K(σ, ρ; φ, γ), respectively, as

Sn
β(σ, γ) =

{
f ∈ Γ : Tn

β f (z) ∈ S∗(σ, γ)
}

,

Cn
β(σ, γ) =

{
f ∈ Γ : Tn

β f (z) ∈ C(σ, γ)
}

,

Kn
β(σ, ρ; ψ, γ) =

{
f ∈ Γ : Tn

β f (z) ∈ K(σ, ρ; ψ, γ)
}

.
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In addition to these, we define the spiralike class of analytic function Sp(σ, θ, γ)
such that

Sn
p,β(σ, θ, γ) =

{
f ∈ Γ : Tn

β f (z) ∈ Sp(σ, θ, γ)
}

.

Furthermore, Alexander in [20] introduced and studied an integral operator I(z)
such that

I(z) =
∫ z

0

f (t)
t

dt, (17)

for details, see [8,21,22], among others.
Further, Libera [15] defined an integral operator L(z) such that

L(z) =
2
z

∫ z

0
f (t)dt. (18)

This operator is the solution of the first-order linear differential equation:

2 f ′(z) + f (z) = 2k(z).

Obviously, the Libera integral operator is the convolution of the function f (z) given
by (1), and the functions y(z) = z + ∑∞

k=2
2

k+1 zk. That is,

L(z) = f (z) ∗ y(z) = y(z) ∗ f (z).

Libera integral operator given by (18) maps each of the subclasses of the starlike,
convex and close-to-convex functions into itself, which makes the Libera integral operator
symmetric in nature. Therefore, if f (z) is close-to-convex with respect to the starlike
function g∗(z), L(z) = 2

z
∫ z

0 f (t)dt and G(z) = 2
z
∫ z

0 g∗(t)dt, then L is close-to-convex with
respect to G (see [11]). Libera integral operator preserves the starlike functions of order − 1

2 ,
1
2 and convex functions of order − 1

2 . It has been established that Libera integral operator
converges uniformly, which makes it asymptotic in nature, and coupled with the fact that it
is a bounded operator, it is fractional in nature.

Furthermore, certain aspects regarding the convexity of the Libera integral operator
were proven in [23], and new operators were defined using it in [24,25].

In particular, the operator La(z) (a ≥ 1) is defined as follows:

La(z) =
1 + a

za

∫ z

0
z f (t)ta−1dt. (19)

It is worth noting that the operator La(z), given by (19), generalized the previously
defined Libera operator (see [11,13,16,21,22], among others).

Here, for fs(z) of the form (6), the function Tn
β,p fs(z) is introduced as follows:

Tn
β,p fs(z) = zp +

∞

∑
k=1

β

(
1 + µ(k + β− 2)

1 + µ(β− 1)

)n
ak+p

bk+p−1

S
zk+p. (20)

In Section 3 of the present work, using Equation (20), having considered the extended
Libera operator La

(
Tn

β,p fs(z)
)
, where

La
(
Tn

β,p fs(z)
)
=

p + a
za

∫ z

0
zTn

β,p fs(t)ta−1dt, (21)

we define and study, in terms of the generalized distribution function, the relationship
between the properties of the subclasses of starlike functions Sn

β(σ, φ; s), convex functions
Cn

β(σ, φ; s), close-to-convex functions Kn
β(σ, ρ, φ, ψ; s) and spiralike functions Sn

p(σ, β, φ, θ; s)
such that

Sn
β,p(σ, φ; s) =

{
f ∈ Ω : Tn

β,p fs(z) ∈ S∗(σ, φ; s)
}

,
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Cn
β,p(σ, φ; s) =

{
f ∈ Ω : Tn

β,p fs(z) ∈ C(σ, φ; s)
}

,

Kn
β,p(σ, ρ, φ, ψ; s) =

{
f ∈ Ω : Tn

β,p fs(z) ∈ K(σ, ρ; φ, ψ, s)
}

and
Sn

p(σ, β, θ, φ; s) =
{

f ∈ Ω : Tn
β,p fs(z) ∈ Sp(σ, θ, φ; s)

}
.

At this juncture, the following Lemmas shall be necessary (see [13–15] to mention but
a few).

Lemma 1 ([13]). Let δ1 be convex and univalent in U with δ1(0) = 1 and Re{tδ1(z) + b} >
0, t, b ∈ C. If r is analytic in U with r(0) = 1, then

r(z) +
zr′(z)

tr(z) + b
≺ δ1(z), (z ∈ U),

which implies that
r(z) ≺ δ1(U).

Lemma 2 ([13]). Let δ1 be convex and univalent in U with Re{ω(z)} ≥ 0. If r is analytic in U
with r(0) = δ1(0) = 1, then

r(z) + ω(z)r′(z) ≺ δ1, (z ∈ U),

which implies that
r(z) ≺ δ1(U).

In Section 2 of the paper, neighborhood properties will be discussed involving the
function defined in relation (6). The additional already known results used for the proofs
are given at the beginning of Section 2. Section 3 presents some results involving the concept
of subordination and the extended Libera operator given in relation (21). The theorems
stated there prove the starlikeness, convexity and close-to-convexity characteristics of
this operator.

2. Neighborhood of Analytic P-Valent Function Associated with the
Generalized Distribution

Next, some results on the neighborhood of the analytic p-valent function associated
with the famous generalized probability distribution are presented.

Before proceeding to the main results, the following definitions shall be considered.
Let fs(z), Gs(z) ∈ Ap, then we say that fs(z) is (α, δ, p, s)−neighborhood for Gs(z) if it

satisfies the condition that ∣∣∣ f ′s(z)− eiαG′s(z)
∣∣∣ < δ (22)

for |α| ≤ π, δ > p
√

2(1− cosα) and z ∈ U. It implies that fs(z) ∈ (α, δ, p, s)− N(Gs(z)).
Similarly, we say that fs(z) ∈ (α, δ, p, s)−M(Gs(z)) if it satisfies the condition that∣∣∣ fs(z)

zp − eiα Gs(z)
zp

∣∣∣ < δ. (23)

For recent work in this direction, refer to [17,26,27], among others.

Theorem 1. Let fs(z) ∈ Ap satisfy the inequality

∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣ak+p − eiαck+p

∣∣∣ ≤ δ− p
√

2(1− cosα), (24)

for |α| ≤ π, p ∈ N and δ > p
√

2(1− cosα), then fs(z) ∈ (α, δ, p, s)− N(Gs(z)).
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Proof. From (22), it is observed that∣∣∣ f ′s(z)− eiαG′s(z)
∣∣∣ = ∣∣∣∣p(1− eiα)zp−1 +

∞

∑
k=1

(
k + p

) bk+p−1

S
(
ak+p − eiαck+p

)
zk+p−1

∣∣∣∣
≤ |p(1− eiα)||z|p−1 +

∞

∑
k=1

(k + p)
bk+p−1

S
|ak+p − eiαck+p||z|k+p−1

< p
√

2(1− cosα) +
∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣ak+p − eiαck+p

∣∣∣|z|k+p−1.

Now, suppose that

∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣ak+p − eiαck+p

∣∣∣ ≤ δ− p
√

2(1− cosα),

then we conclude that ∣∣∣ f ′s(z)− eiαG′s(z)
∣∣∣ < δ, z ∈ U.

Therefore, fs(z) ∈ (α, δ, p, s)− N(Gs(z)).

Consider the following example:

Example 1. Given that

fs(z) = zp +
∞

∑
k=1

bk+p−1

S
ak+pzk+p

and

Gs(z) = zp +
∞

∑
k=1

bk+p−1

S
ck+pzk+p

with

ak+p =
peiτ[δ− p

√
2(1− cosα)

](
k + p− 1

)(
k + p

)2 bk+p−1
S

+ eiαck+p,
(
|α| ≤ π, |τ| ≤ π, p ∈ N, k ≥ 1 and z ∈ U

)
.

Then
∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣ak+p − eiαck+p

∣∣∣
=

∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣∣ peiτ[δ− p
√

2(1− cosα)
](

k + p− 1
)(

k + p
)2 bk+p−1

S

+ eiαck+p − eiαck+p

∣∣∣∣
=

∞

∑
k=1

p
∣∣eiτ
∣∣[δ− p

√
2(1− cosα)

](
k + p− 1

)(
k + p

) = p
[
δ− p

√
2(1− cosα)

]
.

∞

∑
k=1

[
1

k + p− 1
− 1

k + p

]

= δ− p
√

2(1− cosα),
(

since
[

1(
k + p− 1

)(
k + p

)]∞

k=1
→ 1

p

)
.

Therefore, fs(z) ∈ (α, δ, p, s)− N(Gs(z)).

Corollary 1. Let fs(z) ∈ A1 = A satisfy the inequality

∞

∑
k=1

(
k + 1

) bk
S

∣∣∣ak+1 − eiαck+1

∣∣∣ ≤ δ−
√

2(1− cosα),

for |α| ≤ π, and δ >
√

2(1− cosα), then fs(z) ∈ (α, δ, 1, s)− N(Gs(z)).
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Corollary 2. Let fs(z) ∈ A1 = A satisfy the inequality

∞

∑
k=1

(
k + 1

) bk
S

∣∣∣ak+1 − ck+1

∣∣∣ ≤ δ,

for δ > 0, then fs(z) ∈ (0, δ, 1, s)− N(Gs(z)).

Corollary 3. Let fs(z) ∈ Ap satisfy the inequality

∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣|ak+p| − |ck+p|
∣∣∣ ≤ δ− p

√
2(1− cosα),

for |α| ≤ π, and δ > p
√

2(1− cosα) and arg ak+p − argck+p = u(k ≥ 1), then fs(z) ∈
(α, δ, p, s)− N(Gs(z)).

Proof. From Theorem 1, we have that fs(z) ∈ (α, δ, p, s)− N(Gs(z)) if

∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣ak+p − eiαck+p

∣∣∣ ≤ δ− p
√

2(1− cosα).

Since arg ap+k − arg cp+k = α, if arg ap+k = θn, then arg cp+k = θn − α.
Then

ak+p − eiαck+p = |ak+p|eiθn − |ck+p|ei(θn−α).eiα

=

(
|ak+p| − |ck+p|

)
eiθ .

Therefore, ∣∣∣∣ak+p − eiαck+p

∣∣∣∣ = ∣∣∣∣|ak+p| − |ck+p|
∣∣∣∣|eiθ |,

and this obviously ends the proof.

Corollary 4. Let fs(z) ∈ A1 = A satisfy the inequality

∞

∑
k=1

(
k + 1

) bk
S

∣∣∣|ak+1| − |ck+1|
∣∣∣ ≤ δ−

√
2(1− cosα),

for |α| ≤ π, and δ >
√

2(1− cosα) and arg ak+1 − argck+1 = u(k ≥ 1), then fs(z) ∈
(α, δ, 1, s)− N(Gs(z)).

Theorem 2. Let fs(z) ∈ Ap satisfy the inequality

∞

∑
k=1

bk+p−1

S

∣∣∣ak+p − eiαck+p

∣∣∣ ≤ δ− p
√

2(1− cosα) (25)

for |α| ≤ π, p ∈ N and δ > p
√

2(1− cosα), then fs(z) ∈ (α, δ, p, s)−M(Gs(z)).

Proof. It is easily seen from (23) that∣∣∣∣ fs(z)
zp − eiα Gs(z)

zp

∣∣∣∣ = ∣∣∣∣(1− eiα)+ ∞

∑
k=1

bk+p−1

S

(
ak+p − eiαck+p

)
zk
∣∣∣∣

≤
∣∣1− eiα∣∣+ ∞

∑
k=1

∣∣∣ bk+p−1

S

∣∣∣∣∣∣ak+p − eiαck+p

∣∣∣|z|k < √2(1− cosα) +
∞

∑
k=1

∣∣∣ bk+p−1

S

∣∣∣∣∣∣ak+p − eiαck+p

∣∣∣.
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Since
∞

∑
k=1

∣∣∣ bk+p−1

S

∣∣∣∣∣∣ak+p − eiαck+p

∣∣∣ ≤ δ−
√

2(1− cosα),

then, we conclude that ∣∣∣∣ fs(z)
zp − eiα Gs(z)

zp

∣∣∣∣ < δ, z ∈ U.

Therefore, fs(z) ∈ (α, δ, p, s)−M(Gs(z)).

Corollary 5. Let fs(z) ∈ A1 = A satisfy the inequality

∞

∑
k=1

bk
S

∣∣∣ak+1 − eiαck+1

∣∣∣ ≤ δ−
√

2(1− cosα),

for |α| ≤ π and δ >
√

2(1− cosα), then fs(z) ∈ (α, δ, 1, s)−M(Gs(z)).

Corollary 6. Let fs(z) ∈ A1 = A satisfy the inequality

∞

∑
k=1

bk+p−1

S

∣∣∣ak+1 − ck+1

∣∣∣ ≤ δ,

for δ > 0, then fs(z) ∈ (0, δ, 1, s)−M(Gs(z)).

Theorem 3. Let fs(z) ∈ (α, δ, p, s) − N(Gs(z)) and arg
(
ak+p − eiαck+p

)
=
(
k + p − 1

)
λ,

(k ≥ 1, p ∈ N). Then

∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣ak+p − eiαck+p

∣∣∣ ≤ λ + pcosα− p. (26)

Proof. Let fs(z) ∈ (α, δ, p, s)− N(Gs(z)), then

∣∣∣ f ′s(z)− eiαG′s(z)
∣∣∣ = ∣∣∣∣p(1− eiα)zp−1 +

∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣ak+p − eiαck+p

∣∣∣ei(k+p−1)λzk+p−1
∣∣∣∣ < λ,

for all z ∈ U. Further, suppose that we consider z such that

argz = −λ.

Then
zk+p−1 =

∣∣zk+p−1∣∣.ei(k+p−1)λ.

We observe that, for this kind of point z ∈ U∣∣∣ f ′s(z)− eiαG′s(z)
∣∣∣ = ∣∣∣∣p(1− eiα)zp−1 +

∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣ak+p − eiαck+p

∣∣∣∣∣zk+p−1∣∣∣∣∣∣
=

∣∣∣∣p− pcosα− ipsinα +
∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣ak+p − eiαck+p

∣∣∣zk+p−1
∣∣∣∣.

It implies that

∣∣∣ f ′s(z)− eiαG′s(z)
∣∣∣ = ([p +

∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣ak+p − eiαck+p

∣∣∣|z|k+p−1 − pcosα
]2

+ p2sin2α

) 1
2

< λ,
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for z ∈ U. That is,

p
(
1− cosα

)
+

∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣ak+p − eiαck+p

∣∣∣|z|k+p−1 < λ.

Letting |z|k+p−1 → 1−, then

∞

∑
k=1

(
k + p

) bk+p−1

S

∣∣∣ak+p − eiαck+p

∣∣∣ ≤ λ + pcosα− p,

and this completes the proof.

3. Some Results on the Application of a Multiplier Transformation to Libera
Integral Operator

Theorem 4. Suppose that a > −p and let γ ∈ S with <{(p− σ)γ(z) + σ + 1−µ
µ } > 0. Further,

let Tn
β,p fs(z) ∈ Sn

β,p(σ, φ; s), then La
(
Tn

β,p fs(z)
)
∈ Sn

β,p(σ, φ; s).

Proof. If Tn
β,p fs(z) ∈ Sn

β,p(σ, φ; s), then we have:

(
1

p− σ

)( z(Tn
β,p fs(z))′

Tn
β,p fs(z)

− σ

)
≺ φ(z). (27)

Now, let

r(z) =
(

1
p− σ

)( z(La(Tn
β,p fs(z)))′

La(Tn
β,p fs(z))

− σ

)
, (28)

where r is analytic in U with r(0) = 1.
From (16) and (21), it is observed that

z(La(Tn
β,p fs(z)))′ =

(a + p)Tn
β,p fs(z)− (1− µ)La(Tn

β,p fs(z))

µ
. (29)

With the aid of (28) and (29), we obtain

(a + p)Tn
β,p fs(z)

µLa(Tn
β,p fs(z))

= (p− σ)r(z) + σ +
1− µ

µ
. (30)

Differentiating (30) logarithmically with respect to z and using (28), we have

(Tn
β,p fs(z))′

Tn
β,p fs(z)

=
(p− σ)r(z) + σ

z
+

(p− σ)r′(z)

(p− σ)r(z) + σ + 1−µ
µ

. (31)

Simple computations of (31) yields(
1

p− σ

)( z(Tn
β,p fs(z)′)

Tn
β,p fs(z)

− σ

)
= r(z) +

zr′(z)

(p− σ)r(z) + σ +
(

1−µ
µ

) . (32)

We obtain the desired result by applying Lemma 1 to (32) while taking t = p− σ and
b = 1−µ

µ .

Theorem 5. Suppose that a > −p and let γ ∈ S with <{(p− σ)γ(z) + σ + 1−µ
µ } > 0. Further,

let Tn
β,p fs(z) ∈ Cn

β,p(σ, φ; s), then La
(
Tn

β,p fs(z)
)
∈ Cn

β,p(σ, φ; s).
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Proof. Since Tn
β,p fs(z) ∈ Cn

β,p(σ, φ; s) if and only if z(Tn
β,p fs(z))′ ∈ Sn

β,p(σ, φ; s). Now, let
Tn

β,p fs(z) ∈ Cn
β,p(σ, φ; s), then we obtain:

(
1

p− σ

)( z(z(Tn
β,p fs(z)′))′

Tn
β,p fs(z)

− σ

)
≺ φ(z), z ∈ U. (33)

Suppose that we set

r(z) =
(

1
p− σ

)( z(z(LaTn
β fs(z)′))′

LaTn
β fs(z)

− σ

)
, (34)

with r being analytic in U while r(0) = 1, then relating (16) and (21) with (34), we obtain

(a + p)(Tn
β,p fs(z))′

σ(La(Tn
β,p fs(z)))′

= (p− σ)r(z) + σ +
1− µ

µ
. (35)

Differentiating (35) logarithmically with respect to z yields

((Tn
β,p fs(z))′)′

(Tn
β,p fs(z))′

−
((La(Tn

β,p fs(z)))′)′

(La(Tn
β,p fs(z)))′

=
(1− σ)r′(z)

(p− σ)r(z) + σ + 1−µ
µ

. (36)

Using (34) and (35) we obtain

((Tn
β,p fs(z))′)′

(Tn
β,p fs(z))′

=
(p− σ)r(z) + σ

z
+

(p− σ)r′(z)

(p− σ)r(z) + σ + 1−µ
µ

. (37)

Simple computation of (37) easily yields(
1

p− σ

)( z((Tn
β,p fs(z))′)′

(Tn
β,p fs(z))′

− σ

)
= r(z) +

zr′(z)

(p− σ)r(z) + σ +
(

1−µ
µ

) . (38)

Using (24), (36), Lemma 1, and taking t = 1− σ and b = 1−µ
µ , we have shown that

La
(
Tn

β,p fs(z)
)
∈ Cn

β,p(σ, φ; s) and that completes the proof.

Theorem 6. Let c > −p and let γ, ψ ∈ S with Re{(p− σ)γ(z) + σ + 1−µ
µ } > 0. If Tn

β,p fs(z) ∈
Kn

β,p(σ, ρ, φ, ψ; s), then, La
(
Tn

β,p fs(z)
)
∈ Kn

β,p(σ, ρ, φ, ψ; s).

Proof. Let Tn
β,p fs(z) ∈ Kn

β,p(σ, ρ, φ, ψ; s), then there exist a function Tn
β,p fs(z) ∈ Sn

β,p(σ, φ; s)
such that (

1
p− ρ

)( z(Tn
β,p fs(z)′)

Tn
β,pgs(z)

− ρ

)
≺ ψ(z). (39)

Setting

r(z) =
(

1
p− ρ

)( z(La(Tn
β,p fs(z)))′

La(Tn
β,pgs(z))

− ρ

)
, (40)

while r is analytic in U with r(0) = 1, then using (16) and (21) with (40), we have

(a + p)Tn
β,p fs(z)− (1− µ)La

(
Tn

β,p fs(z)
)

µLa

(
Tn

β,pgs(z)
) = (p− ζ)r(z) + ρ,



Symmetry 2022, 14, 1934 11 of 14

which yields

(a + p)Tn
β,p fs(z)

µLaTn
β,pgs(z)

= (p− ρ)r(z) + ρ +
(1− µ)LaTn

β,p fs(z)

µLaTn
β,pgs(z)

. (41)

(41) can be expressed as

(a + p)Tn
β,p fs(z)

µ
=
[
(p− ρ)r(z) + ρ

]
LaTn

β,pgs(z) +
1− µ

µ
LaTn

β,p fs(z).

It implies that
(a + p)z(Tn

β,p fs(z))′

µ
=

[(p− ρ)zr′(z)]LaTn
β,pgs(z) + [(p− ρ)r(z) + ρ]z(LaTn

β,ngs(z))′ +
1− µ

µ
z(LaTn

β,p fs(z))′. (42)

Since Tn
β,pgs(z) ∈ Sn

β,p(σ, φ; s) implies that La
(
Tn

β,pgs(z)
)
∈ Sn

β,p(σ, φ; s). Then from
Theorem 4 and (16) we can write that

r(z) =
(

1
p− σ

)( z(La(Tn
β,pgs(z)))′

La(Tn
β,pgs(z))

− σ

)
(43)

and

z(La(Tn
β,pgs(z)))′ =

(a + p)Tn
β,pgs(z)− (1− µ)La(Tn

β,pgs(z))

µ
, (44)

respectively.
Now, using (43) in (44) we obtain

(a + p)Tn
β,pgs(z)

µLa

(
Tn

β,pgs(z)
) = (p− σ)r(z) + σ +

1− µ

µ
, (45)

while simple computations from (42) and (45) yields

z(La(Tn
β,p fs(z)))′

La(Tn
β,pgs(z))

=
(p− ρ)zr′(z)

(p− σ)r(z) + σ + 1−µ
µ

+ (p− ρ)r(z) + ρ.

This implies that

1
p− ρ

(
z(La(Tn

β,p fs(z)))′

La(Tn
β,pgs(z))

− ρ

)
= r(z) +

(p− ρ)zr′(z)

(p− σ)r(z) + σ + 1−µ
µ

. (46)

Finally, by taking ω(z) = p−ρ

(p−σ)r(z)+σ+
1−µ

µ

while relating (43) and (46) and applying

Lemma 2, we obtain the desired result.

Theorem 7. Let a > −p and γ ∈ S with <{(p − σ)γ(z) + σ + eiθ 1−µ
µ } > 0. Further, let

Tn
β,p fs(z) ∈ Sn

p(σ, β, θ, φ; s), then La
(
Tn

β,p fs(z)
)
∈ Sn

p(σ, β, θ, φ; s).

Proof. If Tn
β,p fs(z) ∈ Sn

p(σ, β, θ, φ; s), then we have

(
1

p− σ

)(
eiθ

z(Tn
β,p fs(z))′

Tn
β,p fs(z)

− σ

)
≺ φ(z). (47)
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Let

r(z) =
(

1
p− σ

)(
eiθ

z(La(Tn
β,p fs(z)))′

La(Tn
β,p fs(z))

− σ

)
, (48)

where r is analytic in U with r(0) = 1.
Recall that from (16) and (21), we can write that

z(La(Tn
β,p fs(z)))′ =

(a + p)Tn
β,p fs(z)− (1− µ)La(Tn

β,p fs(z))

µ
. (49)

Now, appealing to (48) and (49), we obtain

eiθ
(a + p)Tn

β,p fs(z)

µLa(Tn
β,p fs(z))

= (p− σ)r(z) + σ + eiθ 1− µ

µ
. (50)

Differentiating (50) logarithmically with respect to z yields

(Tn
β,p fs(z))′

Tn
β,p fs(z)

−
(La(Tn

β,p fs(z)))′

La(Tn
β,p fs(z))

=
(p− σ)r′(z)

(p− σ)r(z) + σ + eiθ (1−µ)
µ

. (51)

Multiplying through (51) by eiθ , we have

eiθ
(Tn

β,p fs(z))′

Tn
β,p fs(z)

= eiθ
(La(Tn

β,p fs(z)))′

La(Tn
β,p fs(z))

+ eiθ (p− σ)r′(z)

(p− σ)r(z) + σ + eiθ (1−µ)
µ

. (52)

Applying (48) in (52), we have

(Tn
β,p fs(z))′

Tn
β,p fs(z)

=
(p− σ)r(z) + σ

z
+

(p− σ)r′(z)

(p− σ)r(z) + σ + eiθ (1−µ)
µ

. (53)

It is easily verified from (53) that(
1

p− σ

)(
eiθ

z(Tn
β,p fs(z)′)

Tn
β,p fs(z)

− σ

)
= r(z) +

eiθzr′(z)

(p− σ)r(z) + σ +
(

eiθ (1−µ)
µ

) . (54)

Now, taking t = p− σ and b = eiθ (1−µ)
µ while relating (54) and (48) with Lemma 1,

the desired result follows.

4. Conclusions

The study performed in the present paper is related to the intensely investigated
class of p-valent functions. The tools involved in the study are convolution, generalized
distribution, Libera integral operator and extended forms of this operator, special classes
of univalent functions and the theory of differential subordination. Applying the concept
of Hadamard product or convolution, in relation (6), a new function fs(z) is defined us-
ing the generalized distribution. Using a linear transformation Tn

β f (z) given by (15) and
(16), introduced in [19], the spiralike class of analytic function sp(σ, θ, ϕ) is introduced
following the pattern set in [19] where the classes of starlike, convex and close-to-convex
functions were previously defined. Furthermore, using the same linear transformation
Tn

β f (z) and the previously defined generalized Libera operator given in (19), a new gen-
eralized Libera-type operator is introduced in (21) involving function fs(z) given by (6).
Investigations on neighborhood properties of function fs(z) are conducted in Section 2 of
the paper. The theorems proven have illustrations through corollaries, and an example is
also presented. In Section 3, the new generalized Libera-type operator introduced in (21)
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is investigated, and the theorems prove that under certain conditions, it has starlikeness,
convexity, close-to-convexity and spiralike properties.

In future directions of study, the function defined by (6) could be used related to
other operators, such as the linear transformation Tn

β f (z) and obtain potentially interesting
operators, which could be further used in different studies for obtaining geometrical
properties or for introducing subclasses of univalent functions. Further, the operator given
by (21) can be used for investigations, which could lead to introducing new subclasses of
univalent functions considering the starlikeness, convexity, close-to-convexity and spiralike
properties proven in Section 3.
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