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Abstract: We study the current effectiveness of the dynamical decoupling technique on a publicly
accessible IBM quantum computer (IBMQ). This technique, also known as bang-bang decoupling
or dynamical symmetrization, consists of applying sequences of pulses for protecting a qubit from
decoherence by symmetrizing the qubit–environment interactions. Works in the field have studied
sequences with different symmetries and carried out tests on IBMQ devices typically considering
single-qubit states. We show that the simplest universal sequences can be interesting for preserving
two-qubit states on the IBMQ device. For this, we considered a collection of single-qubit and two-
qubit states. The results indicate that a simple dynamical decoupling approach using available IBMQ
pulses is not enough for protecting a general single-qubit state without further care. Nevertheless, the
technique is beneficial for the Bell states. This encouraged us to study logical qubit encodings such
as {|0〉L ≡ |01〉, |1〉L ≡ |10〉}, where a quantum state has the form |ψab〉 = a|0〉L + b|1〉L. Thus, we
explored the effectiveness of dynamical decoupling with a large set of two-qubit |ψab〉 states, where a
and b are real amplitudes. With this, we also determined that the |ψab〉 states most benefiting from
this dynamical decoupling approach and slowed down the decay of their survival probability.

Keywords: dynamical decoupling; quantum coherence; quantum information; entanglement;
IBM Quantum

1. Introduction

During the last few years, there has been a notable development of error correction for
quantum computing [1–3]. However, due to the scheduling of the operations in quantum
algorithms and protocols, it is usual to find time intervals when a qubit may remain inactive.
During these wait periods, decoherence is an important factor to consider, as it causes the
loss of the quantum information stored in the qubits. The interaction with the environment
is the main driver of this phenomenon [1].

An interesting and simple way of mitigating the effects of the environmental noise
is dynamical decoupling [4,5], also known as bang-bang decoupling or dynamical sym-
metrization. This is a quantum control technique that consists of applying tailored se-
quences of pulses to the considered quantum system in order to cancel (or average out) the
interaction with the environment [4]. This is achieved by replacing the system–environment
interaction Hamiltonian by a sequence of pulse-generated Hamiltonians, which are sym-
metrized so that their total average is canceled [6]. This can be beneficial for complex
quantum information algorithms, as demonstrated in [7], and communication protocols,
such as the one explained in [8] requiring wait times.

A large collection of dynamical decoupling pulse sequences has been studied [5,6,9,10].
These sequences differ from each other, for example in the type of electromagnetic pulses
being used, the time intervals between pulses, and the pulse ordering. These characteristics
allow creating a large catalog of sequences with different symmetries and performances. In
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the ideal theoretical case, this quantum control technique requires very short and strong
pulses separated by the shortest time interval possible. There are sequences that only
cancel out some components of the qubit–environment interaction Hamiltonian, and there
are also sequences that cancel all the interaction components. The latter are known as
universal decoupling sequences [5]. Some simple examples of universal sequences in the
theoretical case are the XYXY, XZXZ, and YZYZ sequences, where X, Y, and Z represent
the Pauli gates.

However, in reality, the pulses will have a given time duration and finite amplitude,
which may leave uncorrected environment noise or introduce further errors [5]. Thus, the
design of the adequate dynamical decoupling sequences is an important task, and symmetry
considerations play a key role [5,11]. The idea of using sequences of frequent, short, and
intense pulses is similar to the approach described by the quantum Zeno effect [12]. This
highlights the importance of the pulse duration, as in the worst case scenario, it may induce
“anti-Zeno-like” effects, doing further damage to the system.

Nevertheless, it can be very interesting to combine dynamical decoupling with logical
qubit encodings in decoherence-free subspaces such as, for example, {|0〉L ≡ |01〉, |1〉L ≡
|10〉} [5,13,14]. Logical qubit encodings are a known tool for fighting against noise errors,
but physical superconducting qubits such as the ones from IBM are influenced by the
effects of thermal relaxation [15], which can destroy the logical encoding. For example, the
aforementioned |0〉L ≡ |01〉 and |1〉L ≡ |10〉 states naturally tend to relax to the physical
ground state |00〉. Therefore, dynamical decoupling can be useful for preserving the qubit
encoding and to avoid thermal relaxation, dephasing, or qubit crosstalk errors [16]. This
may improve the quality of quantum-error-correcting codes, where dynamical decoupling
would be useful during the undesired wait times in the circuit gate layers to preserve
information and to fight against undesired crosstalk or interactions with the environment
[16,17].

In this work, we tested the current effectiveness of simple dynamical decoupling
on a public IBM quantum computer experimentally. The sequences considered were the
universal XYXY, XZXZ, and YZYZ sequences. We started by using dynamical decoupling
in an attempt to protect the basic single-qubit states |0〉 and |1〉 from decoherence. We did
the same with the four two-qubit Bell states. Following [18], these states are denoted as:

|β00〉 =
1√
2
(|00〉+ |11〉) , |β01〉 =

1√
2
(|01〉+ |10〉) ,

|β10〉 =
1√
2
(|00〉 − |11〉) , |β11〉 =

1√
2
(|01〉 − |10〉) .

(1)

Although the results indicate that this simple approach to the technique cannot fully
protect an unknown state, we observed that dynamical decoupling is beneficial for Bell
states: their survival probability decay can be slowed down within the times considered.
|β01〉 and |β11〉 are included in the set of states with the form |ψab〉 = a|01〉+ b|10〉, where
a and b are real values. Thus, we performed further tests by considering the set of states
|ψab〉, which also included the aforementioned |0〉L ≡ |01〉 and |1〉L ≡ |10〉 states. With
this, we indicate the |ψab〉 states most benefiting from dynamical decoupling in the IBM
five-qubit quantum computer.

2. Materials and Methods

To carry out the experiments, we employed the ibmq_lima device from IBM, which
makes use of superconducting qubit technology. The computer has a 5-qubit Falcon r4T
quantum processing unit with quantum volume 8 and Version Number 1.0.39 [19]. It is
publicly accessible with the help of the IBM Quantum cloud services [19] and Qiskit [20].

This device uses the following gate basis: {I, Rz,
√

X, X, CNOT}, where I is the identity
gate implemented as a wait interval and Rz(θ) are general rotations of angle θ about the z
axis of the Bloch sphere implemented virtually [15,20,21]. The different types of gates are
implemented as a combination of the elements of this basis.
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We selected the qubit with Index 4 from the quantum processing unit for carrying out
the single-qubit tests, as it has the lowest coherence times (∼ 20 µs [19]), in order to test the
effectiveness of dynamical decoupling on a relatively fragile qubit. In a similar fashion, for
the two-qubit tests, we selected Qubits 3 and 4, where Qubit 3 was selected because it is the
one that has direct connectivity with Qubit 4 [19].

The experiment circuits can be divided into four main parts: state preparation, dynam-
ical decoupling, state decoding, and measurement. We denote the state preparation step
with the gate U, which will have a form that will depend on the state being prepared. The
state decoding step will consist of applying U−1, the inverse of the preparation gate. For
the single-qubit tests, we considered the states |0〉 and |1〉. In this case, U will be U = X
for the |1〉 state, while no U gate will be required for the |0〉 state. The circuits used for
carrying out the single-qubit experiments are shown schematically in Figure 1.

Figure 1. Circuits used for the single-qubit state experiments. The q4 tag indicates that Qubit 4 is
being used. The qubit starts in the |0〉 state, and the U gate represents the preparation step. A and B
correspond to the unitary gates that form the sequence, and the number of AB pairs must be even.
For example, A = X and B = Y for the XYXY sequence.

In said figure, the U−1 gate theoretically returns the qubit back to the |0〉 state. With
it, if we obtain the |0〉 state at the measurement part, we know that the state has been
successfully protected. Therefore, we will consider the following fidelity metric for the
single-qubit experiments:

Fsq =
C0

Ns
, (2)

where Ns is the number of shots (i.e., the number of times that the circuit is executed) and
C0 is the number of those shots in which we measure the |0〉 state (i.e., the |0〉 counts). This
can be interpreted as Fsq representing the survival probability of the state.

It is important to note that, in Figure 1, we do not introduce any time interval between
the sequence gates. This was done in order to stay as close as possible to the ideal conditions
of dynamical decoupling, which requires frequent pulses. In addition, free evolution is
equivalent to the A = B = I case (an IIII sequence), as the identity gate is implemented as
a waiting time interval in which nothing is done to the qubit.

Visualizing the pulse schedule of the circuits with Qiskit [20], we can check that there
is indeed no undesired wait time between the sequence pulses, unless explicitly specified.
Thus, the sequence duration will be given by the duration of all the gates. As the number
of AB gate pairs must be even, we used 4 gate blocks of the form ABAB to build the
dynamical decoupling parts. To construct the circuits, we set a given sequence time τ.
Considering that τb = 2(τA + τB) is the time duration of a 4-gate block, with τA and τB
being the duration of the A and B gates, respectively, the number Nb of blocks to be put in
the circuit will be given by the following expression:

Nb =

⌊
τ

τb

⌋
. (3)

The resulting sequence may have a total duration different than τ, due to the floor rounding
operation in Equation (3). Thus, we calculate the real sequence time τs used when plotting
the results as

τs = Nbτb . (4)
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All of this is performed in order to compare results from different gate sequences at similar
points in time, as different types of gates may have different durations. The duration of the
gates used for the sequences is shown in Table 1, including the duration of the identity gate
I used for building the free evolution circuits.

Table 1. Duration of the identity gate I and the different Pauli gates used for building the circuit
sequences. Here, dt = 2/9 ns is the finest time resolution of the pulses and the cycle time of the
system [19,20]. The duration in nanoseconds is rounded to two decimal places.

Gate Name Duration in dt Units Duration in Nanoseconds

I 160 35.56√
X 160 35.56

X 160 35.56
Y 320 71.11
Z 0 0

In Table 1, the duration of the Y gate corresponds to its raw decomposition into native
basis gates:

Y = Rz

(π

2

)√
XRz(2π)

√
XRz

(
7π

2

)
, (5)

which is applied from left to right and is the form used in the circuit sequences. As
the Z gate is implemented virtually as an offset added to pulsed gates such as the X
or
√

X gates [21], it has an effective duration of 0 ns [15,19–21]. It is decomposed into
native gates as Z = Rz(−π) [20]. In addition, it is also important to note that sequences
consisting only of virtual Z gates and optional wait intervals would not be effective for
dynamical decoupling. This is because these virtual gates are not implemented natively
as a microwave pulse as dynamical decoupling requires. A sequence of offsets applied to
the wave generator would not produce any effect on the physical qubits if no subsequent
pulses are sent to them.

In the two-qubit tests, we followed the same circuit building approach. We started
by considering the maximally entangled Bell states

∣∣βij
〉

previously shown in Equation (1).
The circuits used for carrying out dynamical decoupling tests with them are presented in
Figure 2.

Figure 2. Circuits used for the two-qubit state experiments with Bell states. The i, j = 0, 1 powers on
the X gates correspond to the indexes of the |βij〉 state being prepared, and H is the Hadamard gate.
The general structure of the circuit is the same as the one shown in Figure 1.

The fidelity metric considered for this case is very similar to the one used in the
single-qubit case. The difference is that, this time, its expression depends on the |00〉 state
counts denoted as C00. Thus, the two-qubit fidelity will be

Ftq =
C00

Ns
. (6)

In addition to the Bell states, we considered the more general case with states of
the form

|ψab〉 = a|01〉+ b|10〉 . (7)
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The real probability amplitudes a and b are related through the normalization condition
a2 + b2 = 1. Therefore, we took a as the independent parameter and considered equidistant
values in the [0, 1] and [−1, 0] intervals. b will always remain positive.

These states can be prepared with the help of the Ry(θ) gates, which are rotations of
angle θ about the y axis of the Bloch sphere and are implemented as [20]

Ry(θ) =

(
cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)
. (8)

The decomposition of the Ry(θ) gate into native basis gates can be obtained using Qiskit [20].
The decomposition, as the one of the Y gate, follows the general SU(2) form presented
in [21], and it is

Ry(θ) = Rz(0)
√

XRz(π − θ)
√

XRz(3π) . (9)

Having that

Ry(θ)|0〉 =
(

cos(θ/2) − sin(θ/2)

sin(θ/2) cos(θ/2)

)(
1

0

)
= cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
|1〉 , (10)

we considered a = cos(θ/2) and b = sin(θ/2). This way, a and b are real and satisfy
a2 + b2 = 1. To obtain the circuits used, we considered a as the independent parameter and
generated a set of 30 evenly spaced values of a between a = 0 and a = 1, as previously
mentioned. From this, we obtained the θ values by using θ = 2 arccos(a). Then, we
repeated the process with the case where a and b have opposite signs with −1 ≤ a ≤ 0.

It is important to mention the ket ordering convention used by Qiskit. For example,
considering Qubits 3 (q3) and 4 (q4), with the former being in the |1〉 state and the latter in
the |0〉 state, the notation of the Qiskit ket would be |q4q3〉 = |01〉. That is, the state label of
Qubit 4 is written first inside the ket. In Equation (7), we used the convention followed in
the classical textbook [18], where we would have |q3q4〉 = |10〉 with the state label of Qubit
3 written first. As we worked with Qiskit, we used its ket ordering convention. Thus, the
a = 1 case would correspond to |ψab〉 = |10〉 using the ket ordering from Qiskit.

With this in mind, we can write the U gate that prepares the |ψab〉 state and build the
circuits as shown in Figure 3. For these experiments we also considered the two-qubit
fidelity expression shown in Equation (6).

Figure 3. Circuits used for the two-qubit state experiments with the |ψab〉 states. The circuit is
analogous to the one shown in Figure 2, but with a different preparation gate U.

In all the circuits from the three situations mentioned above (single-qubit, Bell states,
and |ψab〉 states), we used Ns = 213 = 8192 shots for running each circuit and repeated
each experiment 10 times to obtain an idea of the variability of the results. From the values
obtained during the repetitions, we set the maximum and minimum values as the error bar
limits, and the plotted points represent the average values obtained in the repetitions. In
the case of the |ψab〉 states, the results are shown in the form of heat map landscapes. In said
heat maps, the error bars cannot be directly shown as in the other plots. Thus, we show the
“fidelity error amplitude” obtained as the difference between the upper and lower limits of
the respective error bar. This was done to keep track of the variability of the results.
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3. Results and Discussions

We begin the Results Section by presenting the single-qubit case, following with the
Bell two-qubit case, and lastly, with the more general |ψab〉 two-qubit case. In the two
former cases and with the |10〉 and |01〉 states, we performed exponential decay fits of the
data. These fits have the form

F(τ) = e−τ/T + C , (11)

where τ is the duration of the sequence (sequence time), T is the time scale of the decay,
and C is a fitting constant. The values of all the fit parameters are available in Appendix A.

The results of the single-qubit experiments are shown in Figure 4. In this figure, we
see that applying the dynamical decoupling sequences on the ground state |0〉 induces a
fidelity decay in comparison with the free evolution given by the I-only sequence. This alone
would already mean that the experimental pulses are not suitable for this particular simple
dynamical decoupling approach, as an unknown state would not be able to be protected
without taking further care. With the |1〉 state, the decoherence process is so quick that
the application of the sequences slows down the process, even with the experimental
imperfections of the pulses. It can also be noted that the evolution under the XYXY
sequence seems to be equivalent in both states. This may be due to the |0〉 and |1〉 states’
continuous flipping on the Bloch sphere, as both states travel between the poles of the
Bloch sphere during the execution of the sequences.

Figure 4. Results of the single-qubit case. Here, the fidelity data are shown as a function of the
duration of the dynamical decoupling sequences (sequence time). Each state considered is indicated
as the title of the respective subplot. Free evolution is represented by the I-only sequence.

The results with the ground state |0〉 seen in Figure 4 are consistent with the results
of previous works on the subject [10]. In [10], it is indicated that dynamical decoupling is
worse than free evolution for states close to the ground state in this kind of device. This
means that the application of dynamical decoupling pulse sequences is not useful at all for
preserving the ground state |0〉 in time.

In addition, it has been demonstrated that the quantum Zeno effect is equivalent to
“bang-bang” decoupling (i.e., dynamical decoupling) [12]. Thus, a possible hypothesis
would be that the induced decay obtained for the |0〉 state is the product of different
factors. These factors may be the accumulation of pulse errors, the magnitude of the noise
components uncorrected by the real pulse sequences, and an “anti-Zeno-like” effect due to
the pulses not being short enough. The trajectory of the state on the Bloch sphere during
the execution of the sequences is another of these factors, as states closer to the ground
state |0〉 are naturally more stable than the ones closer to the excited state |1〉 [6,10], which
is susceptible to thermal relaxation.
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All of this indicates that simple dynamical decoupling cannot be applied in the device
in order to fully protect an unknown state without further care for the sequence design.
However, we observed that dynamical decoupling is able to slow down the fidelity decay
of other states considered.

In Figure 5, the results with the Bell states are presented. In said figure, we performed
an additional fit of the free evolution data. This fit follows a damped cosine expression
such as

Ffree(τ) = e−τ/T cos(2π f τ + φ) + C , (12)

where τ, T, and C have the same meaning as in Equation (11) and f and φ are also fitting
parameters representing a frequency and a phase, respectively. We can note that, for long
sequence times, the dynamical decoupling pulses will not be better than free evolution. In
this large sequence time region, it can be noted that the free evolution dynamics shows
non-Markovian behavior, as the fidelity points do not adjust well to the exponential decay
behavior. This makes the damped cosine fit a better choice than the exponential decay
fit to describe the data. We obtained that the dynamical decoupling sequences mitigate
the non-Markovian component of the two-qubit evolution dynamics, as observed in [10],
for single-qubit states in an IBMQ device. This was achieved at least within the sequence
times considered. In [22], it is discussed that these non-Markovian effects may arise from
different sources, such as: noise from the external pulse controls, residual Hamiltonian
terms, slow environmental fluctuations, undesired qubit crosstalk, or coupling to magnetic
impurities. However, for short times, there is a clear benefit in using the sequences with
these maximally entangled states. It can also be observed that, with all four states, the
XYXY sequence is the best among the three.

Figure 5. Results of the two-qubit case with Bell states using Qubits 3 and 4 of the ibmq_lima
quantum processing unit. The fidelity data are shown as a function of the duration of the sequences.
An additional damped cosine fit of the data, indicated in black color, was performed in the free
evolution case (I-only sequence).
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Lastly, in Figures 6–8, the results from the more general case with the two-qubit |ψab〉
states are presented. In Figure 6, we can see the results considering |10〉 and |01〉 as initial
states. These kets are written using the Qiskit ket ordering notation [20]. The |10〉 state
would correspond to the a = 0 case, while |01〉 would correspond to a = 1. We can observe
that, for these separable quantum states, there seems to be no clear advantage in using
dynamical decoupling with respect to free evolution. However, for the |01〉 state, the decay
slightly slows down with the XYXY sequence.

Figure 6. Results of the two-qubit case with the |10〉 and |01〉 states. Fidelity data are shown as a
function of the duration of the dynamical decoupling sequences. Exponential decay fits of the data
are also shown. The states are noted following the Qiskit ket ordering notation, as mentioned in the
Section 2 (i.e., |q4q3〉). |10〉 corresponds to a = 0 and |01〉 to a = 1.

In Figures 7 and 8, the |β01〉 and |β11〉 states would correspond to the a = 1/
√

2 ≈ 0.71
and a = −1/

√
2 ≈ −0.71 values, respectively. At the top row of the subplots of these

figures, the fidelity data represented using color are shown as a function of the a parameter
and the sequence time. At the bottom row of the subplots, the figures show the amplitude
of the error bars, named “fidelity error amplitude”, as explained at the end of the Section 2.
In both figures, we used the same limits for the color bars of the “fidelity” plots. That is,
the maximum and minimum values were taken considering the fidelity data from both
positive a and negative a situations for comparison purposes. The contours on the figures
are shown qualitatively, in order to make the reading of the data easier. It is also important
to mention that the results in Figures 7 and 8 will depend on factors such as the device, the
qubits used, and their robustness against environmental noise.

The first thing that we can note from these results is that the XYXY sequence is
generally more beneficial than the other sequences and free evolution. However, we
can observe that free evolution is better than dynamical decoupling for sates close to the
a ≈ 0 states. Nevertheless, roughly speaking, the states most benefiting from this simple
decoupling approach are the ones with a values approximately in the ±[1/4, 1] intervals
with the XYXY sequence.

The largest variability of the results (i.e., fidelity error amplitude) was obtained for
the positive a free evolution case (Figure 7), for states with 0 ≤ a . 1/2. In Figure 7, with
the XZXZ and YZYZ sequences, the larger variability is localized in regions with centers
close to the a = 0, a = 1/4, a ≈ 0.45, and a = 3/4 states. In Figure 8, we can still observe
some traces of these higher variability regions. In this case, they appear mainly around the
a ≈ −0.45 and a = −3/4 points. Generally and with respect to free evolution, we can note
that the sequences reduce the variability.
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Figure 7. Results of the |ψab〉 tests using Qubits 3 and 4 of the ibmq_lima quantum processing unit
and positive values of the a parameter. At the top row of the subplots, the fidelity data represented in
color are shown as a function of the sequence time and the a parameter defining |ψab〉. At the bottom
row, the amplitude of the error bars (denoted as “fidelity error amplitude”) of the top row subplots is
shown. The qualitative contour lines are shown to facilitate reading the values of the plots.
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Figure 8. Analogous to Figure 7, but considering negative values of a. Both figures share the same
color bar limits in the fidelity subplots. These limits were taken from the minimum and maximum
values of the combined fidelity data. This was performed to facilitate the comparison of the fidelity
results from both figures.
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4. Conclusions

We tested the effectiveness of different sequences of native IBMQ quantum gates for
dynamical decoupling. It was also shown that the XYXY gate sequence is generally the best
one among the three universal sequences that we applied on the ibmq_lima device from
IBMQ [19]: XYXY, XZXZ, and YZYZ. This XYXY sequence in general slows down the decay
of the survival probability (i.e., the fidelity metric) of a large subset of the states considered.

No perfect quantum control against decoherence has been achieved experimentally,
so an unknown quantum state will not be able to be completely protected without taking
further care in the sequence design. The results show that the IBMQ native gates are
currently not ideal for their use in dynamical decoupling (as can be noted, for example,
with the |0〉 state), or at least for how the technique is implemented in the present work. We
hypothesize that one of the reasons for this is the duration of the gate pulses. Furthermore,
a relatively long duration of the pulsed gates used as bang-bang operations may serve as an
open door for the influence of an “anti-Zeno-like” effect [12]. Thermal relaxation happening
during the execution of the sequences is an important factor to consider. The large amount
of gate pulses used in order to achieve long wait times may also introduce additional errors
due to the accumulation of the imperfections of individual pulses.

We explored the effectiveness of the three dynamical decoupling sequences considered
with a relatively large collection of two-qubit states, which includes the maximally entan-
gled Bell states and the |ψab〉 = a|10〉+ b|01〉 states (using Qiskit’s ket ordering convention)
with real a and b parameters. These results are of interest for logical qubit encodings such
as {|0〉L ≡ |01〉, |1〉L ≡ |10〉}, which may tend to be broken due to thermal relaxation to
the physical |00〉 state and where the states may have the form of |ψab〉. With the device
and qubits used, we observed that, for states near the a ≈ 0 region, dynamical decoupling
is not useful in comparison to free evolution. Nevertheless, we also showed that states
approximately in the a ∈ ±[1/4, 1] intervals are clearly the most benefiting from the XYXY
sequence, which is generally the sequence with the best performance in our case.
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Appendix A. Fit Parameters

In this Appendix, the parameters obtained from fitting the data from Figures 4–6
to the expressions shown in Equations (11) and (12) are shown. The fit parameters and
their standard deviation errors were obtained using the LMFIT library from the Python
programming language [23].

https://github.com/artmenlope/protectability-qubits-dynamical-decoupling
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Table A1. Parameters resulting from fitting the data in Figure 4 to exponential decays of the form
e−τ/T + C, where τ corresponds to the sequence time data and T is in µs units. Uncertainty rounding
was performed to present the data in the table.

Sequence Parameter |0〉 |1〉

XYXY T 71.8± 1.2 70.7± 1.2
C −0.014± 0.002 −0.018± 0.002

XZXZ T 36.9± 0.7 39.9± 0.8
C −0.006± 0.003 −0.013± 0.003

YZYZ T 30.0± 0.4 35.8± 0.6
C 0.001± 0.003 −0.010± 0.003

I only T 14000± 3000 18.70± 0.14
C −0.00863± 0.00013 −0.007± 0.002

Table A2. Parameters obtained from fitting the data in Figure 5 to an exponential decay function
e−τ/T + C and in the free evolution case (I-only sequence) to a damped cosine function of the form
e−τ/T cos(2π f τ + φ) + C. Uncertainty rounding was performed to present the data in the table.

Exponential Decay Fit Parameters.

Sequence Parameter |β00〉 |β01〉 |β10〉 |β11〉

XYXY T 31.3± 0.9 33.2± 0.3 31.7± 0.4 28.9± 0.5
C −0.113± 0.005 −0.088± 0.002 −0.091± 0.003 −0.080± 0.003

XZXZ T 25.0± 1.1 14.7± 1.4 14.6± 1.2 27.3± 1.1
C −0.12± 0.01 −0.10± 0.03 −0.08± 0.02 −0.103± 0.008

YZYZ T 13± 2 21.8± 1.1 22.0± 0.9 12.9± 1.4
C −0.11± 0.04 −0.100± 0.012 −0.095± 0.009 −0.08± 0.03

I only T 17± 4 19± 4 16± 4 18± 4
C −0.21± 0.07 −0.21± 0.06 −0.18± 0.06 −0.21± 0.06

Damped Cosine Fit Parameters. I-only Sequence.

T (µs) C f (1/µs) φ

|β00〉 12± 4 0.68± 0.13 0.958± 0.001 1.31± 0.14
|β01〉 10± 3 0.6± 0.1 0.957± 0.001 1.24± 0.12
|β10〉 14± 4 0.73± 0.13 0.9568± 0.0007 1.36± 0.14
|β11〉 11± 3 0.66± 0.11 0.9575± 0.0008 1.29± 0.12

Table A3. Parameters resulting from fitting the data in Figure 6 to exponential decays of the form
e−τ/T + C. T is in µs units. Uncertainty rounding was performed to present the data in the table.

Sequence Parameter |10〉 |01〉

XYXY T 20± 1 22.5± 1.4
C −0.013± 0.012 −0.040± 0.014

XZXZ T 18.6± 1.1 19± 2
C −0.04± 0.02 −0.08± 0.02

YZYZ T 12.7± 0.5 14± 2
C −0.011± 0.013 −0.07± 0.04

I only T 36.1± 0.7 22.19± 0.14
C −0.033± 0.003 −0.068± 0.002
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