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Abstract: A deterministic model for the transmission dynamics of SIRS-type malaria in hosts and SI in
mosquito populations is proposed. The host population is differentiated between naive, primary, and
secondary susceptible individuals. Primary and secondary infected individuals (and also recovered)
are differentiated from each other according to their degree of infectiousness. The impact of changing
the relative susceptibilities of primary and secondary (with respect to naive) susceptible individuals
on the dynamics is investigated. Also, the impact of changing the relative infectiousness of secondary
infected, primary, and secondary recovered individuals (with respect to primary infected) on the
transmission dynamics of malaria is studied.

Keywords: malaria model; equilibria; stability analysis; backward bifurcation; hysteresis phenomena

1. Introduction

Malaria, a mosquito-borne infectious disease caused by the protozoan parasites of the
genus Plasmodium, is transmitted to humans via bites from infected female Anopheles
mosquitoes, which introduce the organisms from its saliva into the host’s circulatory
system, which is potentially fatal. In humans, malaria is caused by Plasmodium falciparum,
Plasmodium malariae, Plasmodium ovale, and Plasmodium vivax, with deaths caused primarily
by P. falciparum and P. vivax, while P. ovale and P. malariae are typically responsible for
milder forms of malaria. Malaria is prevalent around the equator, in tropical and subtropical
regions that include much of Sub-Saharan Africa, Asia, and the Americas. The prevalence of
malaria is tied in to circumstances connected to rainfall and temperature patterns, altitude,
and the availability of appropriate larvae breeding sites (stagnant waters).

Malaria, an ancient disease [1,2], has instigated sustained efforts aimed at ameliorat-
ing its impact on populations using what has been learned from scientific research and
epidemiological studies, which are frequently complemented with the results of analyses
and simulations of mathematical models over the past few decades [3–6].

Malaria mathematical modeling at the population level essentially started with the
work of Sir Ronald Ross [7] and was expanded and applied by Macdonald [8] and many
others, including Dietz [9], Aron and May [10], Torress-Sorando and Rodriguez [11], Koella
and Anita [12], and Filipe et al. [13]. Sir Ronald Ross shared the 1902 Nobel award in
malaria through research that connected the life-cycle of the malaria parasite in hosts
and vectors [14]. His 1911 paper introducing a nonlinear system of differential equations
to study the transmission dynamics of malaria was groundbreaking and arguably the
paper that established the field that is now known as mathematical epidemiology, which
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is tightly connected to the study of host–parasite dynamics, disease evolution, and vector
control [7]. Macdonald extended Ross’s model by adding biological realism, with the aim
of connecting questions to models and models to data [8,15–18]. In an early attempt to
study the theory of eradication of malaria, Macdonald and his collaborators [17] analyzed
the factors affecting the basic reproduction number, R0. Moreover, they discussed the
epidemiology of malaria [18], with special reference to the pattern observed in equatorial
Africa. In [16], Macdonald and Goeckel studied the effect of considering a complete
interruption of transmission on the regular progressive decrease in the falciparum parasite
over a specific period of time. Macdonald and Goeckel also estimated the slowest acceptable
vivax fall-off rate over a 12-month period [16].

Certainly, the research that connected the life cycle of vectors, hosts, and parasites nat-
urally brought exceeding interest to the study of the role of the immune system within hosts
and across vectors and human malaria interactions. How would such interactions within
and between individuals influence the levels of infectiousness, susceptibility, or re-infection
after recovery? The challenges raised in connecting multiple levels of malaria dynamics
and infections were probably addressed first by Dietz et al. [9], when these researchers
incorporated the role of immunity at the population level. The use of malaria models
to study specific questions exploded after the seminal work of Sir Ronald Ross and the
innovative extensions carried out by Macdonald [15–18] and Dietz and his collaborators [9]
(see also [19–22] and the references therein). Some reviews of the mathematical modeling
and analysis of malaria are shown in [3,4,10,23–25]. Recent population-level efforts have
included the role of genetics, with specific research carried out on the role of sickle cell
anemia and the presence of large populations of asymptomatics [26,27]. More studies on
the impact of climatic change and weather on malaria dynamics are shown in [20,28,29].

Ngwa and Shu [22] considered an SEIRS model for the host and SEI for the vector
under the assumption that the population is closed and of varying sizes. It was assumed
that recovered individuals are partially immune and yet still capable of transmitting the
infection. They derived conditions for the existence of endemic equilibria and studied
the global stability of the malaria-free equilibrium for R̃0 < 1, where R̃0 is their basic
reproduction number.

Chitnis et al. [30] considered an SEIRS model for the host and an SEI model for the
vector. The authors considered an open population with recruitment through births and
immigrating (susceptible) individuals. Their model supports the existence of an infection-
free equilibrium that is locally asymptotically stable whenever R0 < 1. In their paper, it
was shown that more than one endemic equilibrium may exist ifR0 > 1. In a special case,
where the malaria-induced mortality rate vanishes, the bifurcation atR0 = 1 is forward.

Niger and Gumel [31] considered a model for malaria transmission dynamics with
repeated exposure. The model has been analyzed and shown to exhibit the existence of
multiple endemic equilibria whenR0 < 1 for certain parameter values, in case of standard
incidence. However, the authors showed that if the repeated exposure is ignored and if
the incidence function is of a mass-action type, the model is reduced to a simple SIRS
model in the host and SI in the vector. The reduced model is shown to not have multiple
endemic equilibria.

This paper uses mathematical models to expand on the role of the human immune
system’s variability in the transmission dynamics of malaria and control. Specifically, we
focus on the interplay between differences in susceptibility, ability by humans to increase
or reduce the ‘health’ of the parasite population, and differential levels of infectiousness;
that is, the ability of humans to harbor effectively limited or large populations of parasites.
The incorporation of heterogenous and variable levels of infectiousness and susceptibility
bring unexpected, possibly unwanted, consequences to the forefront. Models that consider
variation in susceptibility and infectiousness will invariably support multiple endemic
states; that is, they naturally support disease dynamics that depend on initial conditions and
that cannot be characterized by the basic reproduction number, a dimensionless quantity
that has brought simplicity and clarity to those interested in finding ways of characterizing
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effectively simple and direct modes of malaria elimination or prevalence reductions. The
fact is that variation in host susceptibility and infectiousness, the norm in biology, limits the
preponderant role given to the basic reproduction number; the result of the theoretical work
carried out by models that omit variation (a most important pre-requisite for selection).

More specifically, we developed a mathematical model where we differentiate be-
tween individuals who have never experienced the infection (called naive), those who
experienced it only once (called primary), and those who experienced it at least twice
(called secondary). The aim of this paper is to study the impact of changing the relative
susceptibility and infectiousness of primary and secondary individuals on the disease
dynamics in the human population.

The paper is organized as follows. In Section 2, we formulate the model and study
the existence and stability of the malaria-free equilibrium. We further compute the basic
reproduction number and find an equation that defines the endemic equilibrium human
force of infection λh. In Section 3, we study the direction of bifurcation at R0 = 1 and
investigate the possible bifurcation diagrams in the plane (R0, λh). In Section 4, we study
the impact of changing the relative susceptibilities and infectiousness in the population
dynamics of the host and parasites. In Section 5, we study the role of differential mortality.
We end the paper with a summary and conclusion in Section 6.

2. Model Formulation
2.1. Null Model

In this section, we introduce a null model, which allows us to state basic malaria model
results in the absence of variation in infectiousness and susceptibility. It is an SIRS model
for human populations and an SI model for mosquito populations. Here, the total human
population (with size Nh(t)) is subdivided into susceptible, infected, and recovered, whose
size at time t is given by Sh(t), Ih(t), and Rh(t), respectively. The mosquito population
(of size Nv(t)) is subdivided into susceptible Sv(t) and infected Iv(t), see Table 1 for more
detailed description of the physical meaning. Both populations of interaction are assumed
to be homogeneously and symmetrically fully mixed. The dynamics of interaction between
both (human and mosquito) populations is governed by the model

dSh
dt

= Λh − µhSh − pvβhvSh
Iv

Nh
+ νhRh,

dIh
dt

= pvβhvSh
Iv

Nh
− (µh + γh + δh)Ih,

dRh
dt

= γh Ih − (µh + νh)Rh, (1)

dSv

dt
= Λv − µvSv − phβhvSv

(Ih + qRh)

Nh
,

dIv

dt
= phβhvSv

(Ih + qRh)

Nh
− µv Iv

where Λh, Λv, µh, µv, ph, pv and βhv are as defined in Table 2. The per-capita rate γh denotes
the transition from Ih to Rh state, while the transition from Rh to Sh state is denoted by
the per-capita rate νh. The malaria-induced mortality rate (in humans) is denoted by
δh. Recovered individuals are assumed to be weakly infectious. Here, q denotes the
infectiousness reductions for R- with respect to S-individuals. Equation (1) is defined on
the closed set D̃ , where

D̃ = D̃h ∪ D̃v ∈ R3
+ ×R2

+, (2)

D̃h =
{
(Sh, Ih, Rh) ∈ R3

+, 0 ≤ Sh + Ih + Rh ≤ Λh/µh
}

,

D̃v =
{
(Sv, Iv) ∈ R2

+, 0 ≤ Sv + Iv ≤ Λv/µv
}

.
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In the simple case, where deaths due to malaria are neglected (i.e., δh = 0), Equa-
tion (1) supports a malaria-free equilibrium that is stable if and only if the basic reproduction
number for Equation (1) is less than one. Moreover, Equation (1) has a unique endemic
equilibrium that exists only if the basic reproduction number is bigger than one; an equilib-
rium that is stable whenever it exists. On the other hand, whenever human deaths due to
malaria are considered, we see that Equation (1) exhibits backward bifurcation for certain
parameter values. The derivation of these results is deferred to Appendix A.

If we extend the above model by further subdividing the epidemiological classes Sh, Ih
and Rh into naive susceptible representing those who have never experienced the infec-
tion, primary susceptible representing those who experienced it only once, and secondary
susceptible to denote those who experienced malaria at least twice, then the dynamics
supported by the model are enriched; an expected outcome when individuals are differen-
tiated from each other by their susceptibilities. Similarly, infected humans are subdivided
into primary infected, those who experience malaria for the first time, and secondary
infected, those who are infected at least for the second time, with individuals in both classes
supporting different degrees of infectiousness. Also, individuals in the class of recovered
are categorized into primary recovered and secondary recovered. The extended model
is shown in the next section. The aim of this paper is to study the impact of variation
in susceptibility and infectiousness on the dynamics of malaria. (1) Do these extensions
affect endemic behavior? (2) What is the impact of changing the relative susceptibilities of
primary and secondary (with respect to naive) susceptible individuals on the dynamics
and, therefore, on the elimination effort? (3) What is the impact of changing the relative
infectiousness of secondary (with respect to primary) infected individuals? (4) What makes
it possible to support multiple endemic equilibria?

2.2. Extended Model

To study the impact of differential susceptibility, infectiousness, and mortality on the
dynamics of malaria (at the population level), we consider a model of type SIRS for humans
and SI for mosquitoes. In such a model, individuals are epidemiologically asymmetric, but
they are symmetric in their mixing behavior in the sense that they mix homogeneously so
that each mosquito bite has an equal chance of transmitting the virus to susceptible humans
in the population. The total host (human) population at time t, whose size is denoted by
Nh(t), is subdivided into seven mutually exclusive sub-populations: naive susceptible S0(t),
primary infected I1(t), primary recovered R1(t), primary susceptible after experiencing
the infection once before S1(t), secondary infected I2(t), secondary recovered R2(t), and
secondary susceptible S2(t), so that Nh(t) = S0(t) + I1(t) + R1(t) + S1(t) + I2(t) + R2(t) +
S2(t). Naive susceptible human individuals are those who never experienced a malaria
infection, while primary infected human individuals are hosts who acquired a malaria
infection for the first time and are capable of transmitting malaria to susceptible mosquitoes
while the mosquitoes are taking their meals from human individuals. Primary (secondary)
recovered human individuals are human hosts who experienced malaria infection only
once (at least twice) and became immunized, but are still slightly infectious [32]. Primary
(secondary) susceptible individuals are susceptible human hosts who experienced malaria
only once (at least twice) and recovered with partial immunity, in the sense that they are less
susceptible to acquire malaria than naive susceptible ones. Secondary infected individuals
are human individuals who acquired a malaria infection at least twice and are capable of
transmitting it to susceptible mosquitoes, with differential transmissibility of the infection
as opposed to primary infected ones. Table 1 shows briefly the physical meaning of the
model state variables.

Similarly, the total vector (mosquitoes) population at time t, whose size is denoted
by Nv(t), is split into two sub-populations: susceptible mosquitoes Sv(t) and infectious
mosquitoes Iv(t), so that Nv(t) = Sv(t) + Iv(t).

It is supposed that new recruits of the host enter the naive susceptible human sub-
population class with recruitment rate Λh and that deaths occur at the natural death
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per-capita rate µh in all human sub-population classes except those, for primary and
secondary infected sub-populations, where excess deaths due to malaria are included. The
malaria-induced mortality for primary and secondary infected individuals occurs at rates
δ1 and δ2, respectively. Naive susceptible humans either die of natural death (µh) or acquire
a malaria infection with force of infection λh(t), to become primary infected individuals
who either die or recover to be primary recovered individuals with rate γ1. Therefore,
that rate of change in the number of naive susceptible and primary infected humans is
described by two ordinary differential equations

dS0

dt
= Λh − (λh + µh)S0,

dI1

dt
= λhS0 − (µh + γ1 + δ1)I1.

Human individuals are supposed to stay primary recovered for a period of time
1/ν1 before losing their acquired immunity to become primary susceptible, and then die
naturally or become infected with rate r1λh(t) to be secondary infected, where r1 is the
relative susceptibility of primary with respect to naive susceptible individuals. Therefore,
we have the following subsystem of equations

dR1

dt
= γ1 I1 − (µh + ν1)R1,

dS1

dt
= ν1R1 − (r1λh + µh)S1.

It is worth explaining that the parameter r1 (r2) is a rescaling dimensionless parameter
that accounts for the reduction in the susceptibility of individuals due to enhancing their
immunity after experiencing a malaria infection only once (at least twice).

Secondary infected individuals either die or recover with rate γ2 to become secondary
recovered, who are supposed to either die naturally or lose their immunity to become
secondary susceptible. The rate at which secondary recovered individuals lose their immu-
nity is ν2. Finally, secondary susceptible individuals either die or become infected again
with force of infection r2λh(t), where r2 is the relative susceptibility of S2 compartment
individuals with respect to naive susceptible individuals. Therefore, we have the following
sub-dynamical system

dS2

dt
= ν2R2 − (r2λh + µh)S2,

dSv

dt
= Λv − (λv + µv)Sv,

dIv

dt
= λvSv − µv Iv.

On the other hand, susceptible mosquito populations recruit with rate Λv and either
die naturally with rate µv, or become infected with force of infection λv(t), while infected
mosquitoes are assumed to die naturally with the same rate µv. A schematic flow diagram
for the model states is depicted in Figure 1, while a full description for the model vari-
able states and parameters is given in Tables 1 and 2, respectively. Following the same
approaches shown in [31,33], the incidence rates λh and λv are given by

λh = pvβhv
Iv

Nh
, (3)

λv = phβhv
(I1 + q1 I2 + q2R1 + q3R2)

Nh
(4)

where the dimensionless parameters q1, q2 and q3 account for the reduction in the infec-
tiousness of human hosts who, respectively, acquired a malaria infection at least twice,
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recovered primarily from their malaria infection (and are assumed to be asymptomatic
carriers), and recovered after experiencing the infection at least twice (assumed to be an
asymptomatic carrier too), in comparison to individuals who were infected only once.

S0(t) I1(t) R1(t)

S1(t)

Sv(t)Iv(t)

S2(t) R2(t) I2(t)

Λ	ℎ 𝜆ℎ(t) 𝛾1

𝜇ℎ𝜇ℎ + 𝛿1𝜇ℎ

𝜇ℎ +	𝛿2𝜇ℎ𝜇ℎ 𝜇ℎ

𝜇𝑣𝜇𝑣

𝜈1
Λ	𝑣𝜆𝑣(t)

𝑟1𝜆ℎ(t)𝛾2𝜈2

𝑟2𝜆ℎ(t)

Figure 1. A schematic diagram for the interaction and transition between the various states of Equation (5).

Table 1. Description of the state variables of Equation (5).

State Variable Description

S0(t) Number of susceptible humans who never experienced the infection at time t.

I1(t)
Number of primary infected humans (i.e., individuals who experience malaria for the first
time) at time t.

R1(t)
Number of primary recovered (assumed carrier) humans from primary infection at time t,
but are still slightly infectious.

S1(t)
Number of humans who recovered totally from the first infection and become susceptible
again (after experiencing the infection only once) at time t.

I2(t)
Number of secondary infected humans (i.e., human individuals who acquired malaria
infection at least for the second time) at time t.

R2(t) Number of secondary recovered humans (i.e., recovered from secondary infection) at time t.

S2(t)
Number of secondary susceptible humans (i.e., susceptible individuals who have
experienced the infection at least twice before) at time t.

Sv(t) Number of susceptible mosquitoes at time t.
Iv(t) Number of infectious mosquitoes at time t.
Nh(t) Total human population size at time t.
Nv(t) Total mosquito population size at time t.

Table 2. Description of the model parameters and their dimensions.

Parameter Description Dimension

Λh Recruitment rate of humans Time−1

Λv Recruitment rate of mosquitoes Time−1

µh Natural death rate of humans (i.e., deaths due to causes other than malaria) Time−1

µv Natural death rate of mosquitoes Time−1

βhv The number of human bites one mosquito has per unit time Time−1

βvh The number of mosquito bites one human has per unit time Time−1

ph Transmission probability from an infectious human to a susceptible mosquito Dimensionless
pv Transmission probability from an infectious mosquito to a susceptible human Dimensionless
γ1 Rate of acquisition of immunity due to the primary infection Time−1

γ2 Rate of acquisition of immunity due to the secondary infections Time−1

δ1 Malaria-induced mortality rate for humans due to primary infections Time−1

δ2 Malaria-induced mortality rate for humans due to secondary infections Time−1

ν1 Rate of loss of immunity acquired by primary infection Time−1
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Table 2. Cont.

Parameter Description Dimension

ν2 Rate of loss of immunity acquired by secondary infections Time−1

r1
The relative susceptibility of primary susceptible with respect to naive
susceptible individuals Dimensionless

r2
The relative susceptibility of secondary susceptible with respect to naive
susceptible individuals Dimensionless

q1
The relative infectivity of secondary infected with respect to primary infected
individuals Dimensionless

q2
The relative infectivity of primary recovered with respect to primary infected
individuals Dimensionless

q3
The relative infectivity of secondary recovered with respect to primary
infected individuals Dimensionless

Collecting the above formulated equations together, we arrive at the following mathe-
matical model of ordinary differential equations

dS0

dt
= Λh − (λh + µh)S0,

dI1

dt
= λhS0 − (µh + γ1 + δ1)I1,

dR1

dt
= γ1 I1 − (µh + ν1)R1,

dS1

dt
= ν1R1 − (r1λh + µh)S1,

dI2

dt
= λh(r1S1 + r2S2)− (µh + γ2 + δ2)I2, (5)

dR2

dt
= γ2 I2 − (µh + ν2)R2,

dS2

dt
= ν2R2 − (r2λh + µh)S2,

dSv

dt
= Λv − (λv + µv)Sv,

dIv

dt
= λvSv − µv Iv

where λh and λv are given by Equations (3) and (4), respectively. Moreover, all param-
eters are assumed to be strictly positive, with the exception of the parameters δ1 and
δ2, representing the malaria-induced human mortality rates, which are assumed to be
nonnegative.

Following the same approach shown in [33], it can be shown, for Equation (5), that the
closed set

D = Dh ∪ Dv ∈ R7
+ ×R2

+ (6)

where

Dh =
{
(S0, I1, R1, S1, I2, R2, S2, ) ∈ R7

+, 0 ≤ S0 + I1 + R1 + S1 + I2 + R2 + S2 ≤ Λh/µh
}

,

Dv =
{
(Sv, Iv) ∈ R2

+, 0 ≤ Sv + Iv ≤ Λv/µv
}

.

is positively invariant, and the Equation (5) is mathematically and epidemiologically well-
posed, in the sense that solutions starting in D remain in it all the time.

2.3. Existence and Stability of the Infection-Free Equilibrium and the Basic Reproduction Number

To find the equilibria, we put the derivatives in the left-hand side in Equation (5) equal
to zero. The malaria-free equilibrium (MFE) is obtained by setting I1 = I2 = R1 = R2 =
Iv = 0 and solving the resulting system. Therefore, the MFE is

E0 = (Λh/µh, 0, 0, 0, 0, 0, 0, Λv/µv, 0)′,
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where ′ denotes vector transpose.

2.3.1. The Basic Reproduction Number

The basic reproduction number is obtained using the next generation operator method [34].
Accordingly, we evaluate the matrices F (for the new infection terms) and V (for the
transition terms) as

F =


0 0 0 0 pvβhv
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

J92 q2 J92 q1 J92 q3 J92 0

 and V =


D11 0 0 0 0
−γ1 D12 0 0 0

0 0 D21 0 0
0 0 −γ2 D22 0
0 0 0 0 µv


where

• 1/D11 = 1/(δ1 + γ1 + µh) is the time duration spent in the I1 state;
• 1/D12 = 1/(µh + ν1) is the duration of time spent in the R1 state;
• 1/D21 = 1/(δ2 + γ2 + µh) is the duration of time spent in the I2 state;
• 1/D22 = 1/(µh + ν2) is the duration of time spent in the R2 state;
• J92 = phβhv

Λv
µv

µh
Λh

.

It follows then that the basic reproduction number is given by

R0 = ρ(FV−1) = βhv

√
pv phµhΛv(q2γ1 + µh + ν1)

µ2
vΛh(µh + ν1)(µh + δ1 + γ1)

=

√
pvβhv

µv
× phβhv

µh + γ1 + δ1
× Λv/µv

Λh/µh
×
(

1 + q2 ×
γ1

µh + ν1

)
(7)

where ρ is the spectral radius (dominant eigenvalue in magnitude) of the matrix FV−1. It is
clear that the basic reproduction numberR0 depends on the relative infectiousness of secondary
infected (with respect to primary infected) individuals and depends neither on the relative
susceptibilities r1, r2 nor on the relative infectiousness q2, q3 of recovered individuals.

2.3.2. Stability of the Malaria-Free Equilibrium:

To establish the stability of the malaria-free equilibrium, we linearize the model around
it to obtain the Jacobian matrix (evaluated at the infection-free equilibrium) as

J0 =



−µh 0 0 0 0 0 0 0 −βhv pv
0 −D11 0 0 0 0 0 0 βhv pv
0 γ1 −D12 0 0 0 0 0 0
0 0 ν1 −µh 0 0 0 0 0
0 0 0 0 −D21 0 0 0 0
0 0 0 0 γ2 −D22 0 0 0
0 0 0 0 0 ν2 −µh 0 0
0 −J92 −q2 J92 0 −q1 J92 −q3 J92 0 −µv 0
0 J92 q2 J92 0 q1 J92 q3 J92 0 0 −µv


.

Using the columns number one, four, seven, and eight, one may compute four eigen-
values −µh, −µh, −µh, −µv for the Jacobian matrix J0. Then, we use row number five to
obtain an eigenvalue of −D21 = −(δ2 + γ2 + µh). Thereafter, we use row number six to
obtain an eigenvalue of −D22 = −(µh + ν2). All these six eigenvalues are negative. Thus,
the remaining eigenvalues of J0 are those of the sub-matrix

Jsub =

 −D11 0 βhv pv
γ1 −D12 0
J92 q2 J92 −µv

.
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Hence, the stability of the Malaria-free equilibrium E0 is determined by studying the
roots of the characteristic equation of Jsub that is given by

0 = det(ξ I3×3 − Jsub) =

∣∣∣∣∣∣
ξ + D11 0 −pvβhv
−γ1 ξ + D12 0
−J92 −q2 J92 ξ + µv

∣∣∣∣∣∣
= (ξ + D11)(ξ + D12)(ξ + µv)− pvβhv J92

(
q2γ1 + D12

)
where ξ is the eigenvalue of Jsub. On simplifying and collecting terms together, we arrive at
a cubic equation in the form

A3ξ3 + A2ξ2 + A1ξ + A0 = 0 (8)

where

A3 = 1,

A2 = µv + D11 + D12,

A1 = µvD11 + D12(µv + D11)− pvβhv J92,

A0 = µvD11D12 − pvβhv J92(q2γ1 + D12).

To this end, we apply the Routh–Hurwitz criterion [35] . We notice that A3 > 0 and
A2 > 0. Assume now thatR0 < 1. Then,R2

0 < 1, which implies that

pvβhv J92 = pv phβ2
hv

Λv

µv

µh
Λh

<
(µh + ν1)

q2γ1 + µh + ν1
µvD11 < µvD11. (9)

Thus, with the use of Equation (9), we deduce that A1 > 0 and A0 > 0, for R0 < 1.
We further notice that T0 = A3 = 1 > 0, T1 = A2 > 0, T2 = A1 A2 − A0, and T3 = A0T2.
However,

T2 = A1 A2 − A0

= q2γ1 pvβhv J92 + (µv + D11){(µvD11 − pvβhv J92) + D12(µv + D11 + D12)}.

Hence, with the use of Equation (9), we deduce that both T2 and T3 are positive. Hence,
based on the Routh–Hurwitz criterion [35], all roots of Equation (8) have a negative real
part forR0 < 1.

We end this subsection by stating the following proposition on the local stability of
the malaria-free equilibrium.

Proposition 1. The malaria-free equilibrium is locally stable if and only if R0 < 1, while it is
unstable otherwise.

2.4. Endemic Equilibria

Persistent solutions (endemic equilibria) are solutions where the infection is assumed
to persist, in the sense that the prevalence of infection at equilibrium is positive. So, let
us assume that the equilibrium human and vector force of infections λh 6= 0 and λv 6= 0.
Hence, on setting the derivatives in the left hand side of Equation (5) equal zero and solving
the resulting system with respect to the state variables, one can obtain at equilibrium

S0 =
Λh

λh + µh
, (10)

I1 =
Λhλh

D11(λh + µh)
, (11)
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R1 =
Λhγ1λh

D11D12(λh + µh)
, (12)

S1 =
Λhγ1ν1λh

D11D12(λh + µh)(r1λh + µh)
, (13)

I2 =
r1γ1ν1D22Λh(r2λh + µh)λ

2
h

D11D12(λh + µh)(r1λh + µh)[r2λh(D21D22 − γ2ν2) + D21D22µh]
, (14)

R2 =
r1γ1ν1γ2Λh(r2λh + µh)λ

2
h

D11D12(λh + µh)(r1λh + µh)[r2λh(D21D22 − γ2ν2) + D21D22µh]
, (15)

S2 =
r1γ1ν1γ2ν2Λhλ2

h
D11D12(λh + µh)(r1λh + µh)[r2λh(D21D22 − γ2ν2) + D21D22µh]

, (16)

Sv =
Λv

λv + µv
, (17)

Iv =
Λvλv

µv(λv + µv)
(18)

and

Nv =
Λv

µv
,

Nh =
ΛhF1(λh)

µhF2(λh)
, (19)

F1(λh) = r1r2{D12(D11 − δ1)(D21D22 − γ2ν2)− δ2γ1ν1D22}λ3
h

+µh{D12(D11 − δ1)[r1D21D22 + r2(D21D22 − γ2ν2)] +

r1[r2D11D12(D21D22 − γ2ν2)− δ2γ1ν1D22]}λ2
h

+µ2
hD12{D21D22[(1 + r1)D11 − δ1] + r2D11(D21D22 − γ2ν2)}λh

+µ3
hD11D12D21D22,

F2(λh) = D11D12(λh + µh)(r1λh + µh)[r2λh(D21D22 − γ2ν2) + D21D22µh].

On using Equation (18) into Equation (3), we get at equilibrium

λv =
µ2

vNhλh
pvΛvβhv − µvNhλh

. (20)

Now, we use Equation (20) into Equation (4) to get

µ2
vN2

h λh = phβhv[I1 + q1 I2 + q2R1 + q3R2][pvβhvΛv − µvNhλh] (21)

where, with the use of Equations (11), (12), (14), and (15)

I1 + q1 I2 + q2R1 + q3R2 =
λhF3(λh)

F2(λh)
, (22)

F3(λh) = Λh{(q2γ1 + D12)(r1λh + µh)[r2λh(D21D22 − γ2ν2) +

D21D22µh] + r1γ1ν1λh(r2λh + µh)(q1D22 + q3γ2)}.

Thus, on using Equations (19) and (22) in Equation (21), we get

[µvΛhF1(λh)]
2 + phµhβhvF3(λh)[ΛhµvλhF1(λh)− pvΛvµhβhvF2(λh)] = 0. (23)

On simplifying Equation (23), we get a nonlinear algebraic polynomial equation of
degree six in the endemic host’s force of infection λh. Its term-free of λh is

B0 = D11D12D2
21D2

22µ6
h[D11D12Λhµ2

v − pv phΛvµhβ2
hv(q2γ1 + D12)]

= D2
11D2

12D2
21D2

22Λhµ2
vµ6

h(1−R
2
0),
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while the coefficients of the other six terms with λh have very complicated mathematical
expressions.

3. Bifurcation Analysis
3.1. Center Manifold Analysis near the Malaria-Free Equilibrium

The model we study has an endemic equilibrium equation with a polynomial of degree
six in the endemic force of infection λh. This polynomial has six solutions. However, of
interest are only feasible solutions, in the sense that these solutions are real and positive.
Also, it is more interesting if these feasible solutions exist for values of 0 ≤ R0 < 1.

On setting λh = 0 in the equilibrium Equation (23), we get βhv = β0
hv, where

β0
hv =

√
µ2

vΛh(µh + ν1)(µh + γ1 + δ1)

pv phµhΛv(q2γ1 + µh + ν1)
. (24)

This value corresponds toR0 = 1. Thus, in the plane (βhv, λh), there is a bifurcation
point given by (β0

hv, 0), at which we compute the direction of bifurcation. Using the theorem
4.1 of Castillo-Chavez and Song [36], the conditions ensuring the existence of backward
bifurcation have been derived and are shown in Appendix B. The computations show that
Equation (5) undergoes backward bifurcation atR0 = 1 if and only if K > 0, where

K = r1
γ1ν1(q3γ2 + q1(µh + ν2))(δ1 + γ1 + µh)

(µh + ν2)(q2γ1 + ν1 + µh)(δ2 + γ2 + µh)

−
(
−δ1 + γ1 + µh +

√
phΛhµh(q2γ1 + ν1 + µh)(µh + γ1 + δ1)

pvΛv(µh + ν1)

)
. (25)

On performing a sensitivity analysis of the expression K with respect to the parameters
r1, q1, q2, q3, δ1, and δ2, we find that q2, r1 and q3 are the most sensitive parameters. Namely
speaking, q2 is more sensitive than r1, which in turn is more sensitive than q3. Therefore,
the inequality a1 > 0 required for the existence of backward bifurcation is expressed as

r1 >
(µh + ν2)(q2γ1 + ν1 + µh)(δ2 + γ2 + µh)

γ1ν1(q3γ2 + q1(µh + ν2))(δ1 + γ1 + µh)
{−δ1 + γ1 + µh +√

phΛhµh(q2γ1 + ν1 + µh)(µh + γ1 + δ1)

pvΛv(µh + ν1)
} (26)

Figure 2 shows the area in the planes (q2, r1) and (q3, r1) for which the bifurcation is
subcritical (backward) as well as that in which it is supercritical (forward). It shows that
the possibility for the existence of backward bifurcation increases with the increase in q3,
while it decreases as q2 increases. Based on the above analysis, we summarize our results
in the following proposition.

Proposition 2. Equation (5) exhibits backward bifurcation if and only if condition (26) holds.

3.2. Possible Bifurcation Diagrams

Equation (23) could be seen as a function in the contact rate βhv. Since the expressions
F1(λh), F2(λh), and F3(λh) do not depend on βhv, we can rewrite Equation (23) in terms of
βhv as

C̄2(λh)β2
hv − C̄1(λh)βhv − C̄0(λh) = 0 (27)

where

C̄2(λh) = pv phΛvµ2
hF2(λh)F3(λh),

C̄1(λh) = phµvµ2
hλhF1(λh)F3(λh),

C̄0(λh) = [µvΛhF1(λh)]
2.
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Figure 2. The area for backward as well as forward bifurcation. Part (a) shows these regions in the plane
(q2, r1) for several values of q3. It shows that the backward bifurcation region extends with the increase in
the q3 value. However, part (b) shows that, in the plane (q3, r1), the backward bifurcation region shrinks
with the increase in the q2 value. Simulations have been done for the parameter values given in Table 3.

Table 3. Table showing numerical values of parameters used in the numerical manipulations and the
references (when applicable).

Parameter Value Reference Parameter Value Reference

Λh 103/(70× 365) [37] Λv 20.4 [38]
µh 1/(70× 365) [37] µv 1/21 [37]
ph 0.48 [30] pv 0.022 [30]
γ1 0.0476 [30] γ2 0.0476 [30]
δ1 15× 10−5 [30] δ2 10.5× 10−5 assumed
ν1 3.7× 10−3 assumed ν2 3.7× 10−3 assumed
r1 0.8 assumed r2 0.7 assumed
q1 1.2 assumed q2 0.4 assumed
q3 0.2 assumed

It is easy to check that D21D22 − γ2ν2 > 0. Therefore, F3(λh) > 0 and F2(λh) > 0.
Since Nh > 0, then F1(λh) > 0. Thus, all coefficients C̄0(λh), C̄1(λh) and C̄2(λh) are positive.
Hence, Equation (27) has the unique positive solution

βhv =
µvF1(λh){phµhλhF3(λh) +

√
[phµhλhF3(λh)]2 + 4pv phΛvΛ2

hF2(λh)F3(λh)}
2pv phΛvµhF2(λh)F3(λh)

. (28)

Assume now that the equilibrium human force of infection λh is known. In order to
study the possible bifurcation diagrams, we investigate the number of feasible turning
points. By a feasible turning point we mean a turning point that occurs at a positive value
of the force of infection λh. To do so, we study and count the number of possibly feasible
solutions of the equation

dβhv
dλh

= 0. (29)

If Equation (29) has no feasible solution, then the model shows only forward bifur-
cation, Figure 3a. However, if it has a unique feasible solution, then it shows a backward
bifurcation, Figure 3d. If it has two feasible solutions, then the model shows the existence of
hysteresis, in the sense that it shows multiple super- and subcritical endemic states where
the bifurcation curve looks like those shown in Figure 3b,c.
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Figure 3. Bifurcation diagram for q2 = q3 = 0. It shows that with the increase in q1, while fixing
r1, r2 and all other parameters, the model develops forward (a), multiple supercritical (b), multiple
subcritical (c), and backward (d) bifurcations. Simulations have been done for the parameter values
given in Table 3, except for r1 = 0.0194 and q2, q3 as stated above.

Since the functions F1, F2 are polynomials of degree 3, while F3 is a polynomial of
degree 2 in the variable λh, then according to formula (28) the expression under the
square root in (28) would be a polynomial of degree 8. Moreover, this expression is added
and multiplied with other polynomials and the whole thing is divided by some other
polynomials. All of these, along with the Equation (29), lead to a complicated nonlinear
algebraic (with square root function) equation from which we compute the turning points.
It is difficult, if not impossible, to find exact formulae for the turning points and also for
the constraints on model parameters which assure the existence of such feasible points.
Therefore, numerical simulations have been performed.

For our model, extensive simulations have been made and we found out that the
model may show forward, multiple supercritical, multiple subcritical, and backward
bifurcations, as we shall see in the next section, where we study the impact of the relative
susceptibilities r1, r2, relative infectiousness q1, q2, q3, and the differential mortalities δ1 and
δ2 on developing all these kinds of bifurcations.

4. Role of Differential Susceptibility and Infectiousness

Differential susceptibility and differential transmissibility/infectiousness play a key
role not only in the type of bifurcation but also in the shape of the bifurcation curve. In the
following we try to, numerically, figure out the role of changing the relative susceptibilities
r1, r2 as well as the relative infectiousness q1, q2 and q3 in the overall bifurcation dynamical
behavior. This is assessed by letting the parameter of interest have changing values (in
various ways) while fixing the remaining model parameters and noticing the type of
the resulting bifurcation diagram. It is worth mentioning that the bifurcation diagram
gives information on the number of endemic equilibria and the minimum value of the
basic reproduction number under which the malaria infection dies out. In other words, it
gives information about the minimum elimination effort required to eliminate the malaria
infection [39]. We first consider the case that recovered individuals are not capable of
transmitting malaria which, mathematically, means that q2 = q3 = 0.
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4.1. Non-Infectious Recovered Individuals (q2 = q3 = 0)

In this case, the basic reproduction numberR0 reduces to

βhv

√
pv phµhΛv

µ2
vΛh(µh + γ1 + δ1)

=

√
pvβhv

µv
× phβhv

µh + γ1 + δ1
× Λv/µv

Λh/µh
(30)

while the condition (26), on the relative susceptibility of individuals in compartment S1,
with respect to naive susceptible individuals, for backward bifurcation reduces to

r1 >
(ν1 + µh)(δ2 + γ2 + µh)

q1γ1ν1(δ1 + γ1 + µh)
{−δ1 + γ1 + µh +

√
phΛhµh(µh + γ1 + δ1)

pvΛv
} = r̄1

c. (31)

Relation (31) shows that the critical level for backward bifurcation r̄1
c does not depend

on the relative susceptibility (of secondary with respect to naive susceptible human in-
dividuals) r2, but depends on the relative infectiousness (of secondary with respect to
primary infected human individuals) q1 and other model parameters. Thus, for fixed r2,
the backward bifurcation condition (31) is a decreasing function in q1, see Figure 4, while
for fixed q1, it is constant. On the other hand, Equation (23), from which we determine the
equilibrium human force of infection, remains at degree six. Numerical simulations have
been made to detect the progression of the shape of the bifurcation curve with the increase
in one of the relative susceptibilities r1, r2 and the relative infectiousness q1 while fixing the
other two parameters, with the remaining model parameter values as shown in Table 3.
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Figure 4. Bifurcation diagram in the plane (q1, r1), for q2 = q3 = 0 and with parameter values as in
Table 3. High enough values of q1 and r1 exhibits the existence of backward bifurcation.

4.1.1. Impact of the Relative Infectivity Ratio q1

In order to assess the impact of changing the relative infectiousness q1 of secondary
(with respect to primary) infected individuals on the model dynamics during a long-time
run, we let q1 change and fix the other model parameters. In this case, the resulting
bifurcation diagram looks like that shown in Figures 3 and 5. For fixed high-enough values
of the relative susceptibility of primary susceptible with respect to naive susceptible human
individuals r1 < r̄1

c, while increasing q1, the bifurcation curve progresses from the case
where there is exactly one supercritical endemic equilibrium, Figure 5a, to the case where
there are two subcritical endemic equilibria but only one supercritical endemic equilibrium
(i.e., backward bifurcation), Figure 5b. However, if we choose r1 to be small enough (e.g.,
r1 = 0.0194) and letting q1 increase (Figure 3), the shape of the bifurcation curve changes
from a simple forward bifurcation (Figure 3a) to a backward bifurcation (Figure 3d), passing
through the formulation of hysteresis (Figure 3b,c).
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Figure 5. Bifurcation diagram for q2 = q3 = 0. It shows that with the increase in q1, while fixing r1, r2,
and all other parameters, the model develops forward (a) to backward (b) bifurcation. Simulations
have been done for the parameter values given in Table 3, except for r1 = 4.0194 and q2, q3 as
stated above.

4.1.2. Impact of the Relative Susceptibility Ratio r1

On the other hand, if we fix the relative infectiousness ratio (of secondary infected
relative to primary infected human individuals) q1 and let the relative susceptibility ratio
r1 increase, the model shows the following two behaviors concerning the bifurcation curve.
The first is that for a fixed value of q1 = 0.5 in a certain range (e.g., q1 < q̄1), if we let
r1 be small enough ( r1 = 0.00001 < r̄1

c = 2.0267), the bifurcation curve represents the
situation where there is exactly one supercritical endemic equilibrium (i.e., simple forward
bifurcation), Figure 6a. However, if we let r1 increase (r1 = 0.005 < r̄1

c), then the model
exhibits the existence of multiple supercritical endemic equilibria, Figure 6b. If we further
let r1 increase (r1 = 2 < r̄1

c), the model shows again the existence of a unique supercritical
endemic equilibrium, Figure 6c. Also, if we let r1 be bigger than r̄1

c (r1 = 2.5), then a
backward bifurcation appears, Figure 6d.
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Figure 6. Bifurcation diagram for q2 = q3 = 0. It shows that for small q1 = 0.5, while fixing r2 and all
other parameters, but increasing r1, the model develops forward (a–c) to backward (d) bifurcation.
Simulations have been done for the parameter values given in Table 3, except for r2 = 0.7 and q2, q3

as stated above.
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Unlike the above case, if we choose the relative infectiousness q1 to be large, then,
with the increase in the relative susceptibility r1, the bifurcation curve develops from
forward bifurcation (Figure 7a) to forward with multiple supercritical endemic equilibria
(Figure 7b), forward with multiple subcritical endemic equilibria (Figure 7c), and then
backward bifurcation (Figure 7d).
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Figure 7. Bifurcation diagram for q2 = q3 = 0. It shows that for q1 = 1.6 and keeping r2 and all other
parameters fixed, except r1, which is allowed to increase, the model develops forward (a), multiple
supercritical (b), multiple subcritical (c), and backward (d) bifurcation. Simulations have been done
for the parameter values given in Table 3, except for r2 = 0.7 and q2, q3 as stated above.

4.1.3. Impact of the Relative Susceptibility r2

On fixing the relative infectiousness (of secondary infected with respect to primary
infected human individuals) q1, the condition (31) for backward bifurcation says that the
critical level of the relative susceptibility (of primary with respect to naive susceptible
human hosts) r̄1

c is constant. Thus, for any fixed value of the relative infectiousness q1 (e.g.,
q1 = 1.6), then the critical value of the relative susceptibility r1 above which the bifurcation
is backward would be constant (r̄1

c = 0.6333). Here, we have three situations.

• The first one is to consider r1 to be small enough (e.g., r1 = 0.001). Here, if we let r2
increase, then the bifurcation curve would progress as follows. For small values of r2
(e.g., r2 = 0.0001), the bifurcation diagram shows the existence of exactly one supercritical
endemic equilibrium (similar to that shown in Figure 6a). If we increase r2 (e.g., r2 = 0.01),
then we get a bifurcation curve for which a forward bifurcation as well as multiple
supercritical endemic equilibria are exhibited (similar to that shown in Figure 6b). However,
on letting r2 increase further, the bifurcation curve becomes forward with a unique endemic
equilibrium, similar to that shown in Figure 6c. Thus, in this case, multiple subcritical and
supercritical endemic equilibria are impossible to exist.

• The second situation is to consider slightly larger values of r1 (e.g., r1 = 0.0194), but
still less than r̄1

c = 0.6333. In this case, for small values of the relative susceptibility
(of secondary with respect to naive susceptible human individuals) r2 (e.g., r2 = 0.005),
the model shows the existence of a unique endemic equilibrium, Figure 8a. However,
for larger values of r2 (r2 = 0.5), the model exhibits forward as well as multiple
supercritical endemic equilibria, but no subcritical endemic equilibria, Figure 8b. If
r2 is increased further (r2 = 5), the model shows the existence of forward bifurcation
as well as sub- and supercritical endemic equilibria, Figure 8c. If r2 is assumed to
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further increase, then the critical value ofR0 (at the turning point) separating between
nonexistence and existence of endemic equilibria decreases (Figure 8d), which implies
an increase in the effort required to eliminate the malaria infection [39].

• The last situation is to consider values of the relative susceptibility (of primary with
respect to naive susceptible human hosts) r1 > r̄1

c = 0.6333 (e.g., r1 = 0.7). In this
case, the model exhibits backward bifurcation, but what is important is that increasing
the value of the relative susceptibility (of secondary with repect to naive susceptible
human hosts) r2 implies a decrease in the value of the criticalR0 separating between
the nonexistence and existence of endemic equilibria, which in turn increases the
minimum effort required to eliminate malaria, Figure 8e–h.
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Figure 8. Bifurcation diagram for q2 = q3 = 0 and for fixed q1 = 1.6. It shows that for a value of
r1 = 0.0194 < 0.6333 = rc

1, increasing the relative susceptibility r2, while fixing all other parameters,
the model develops forward (a), multiple supercritical (b), and multiple subcritical (c,d) bifurcation,
but it cannot exhibit backward bifurcation. However, for r1 = 0.7 > 0.6333 = rc

1, the model exhibits
backward bifurcation where the critical value ofR0 at which the turning point occurs decreases, (e–h).
This induces an increase in the elimination effort. Simulations have been done for the parameter
values given in Table 3, except for r1 = 0.0194 and q2, q3 as stated above.

We summarize our results as the following: if the infectivity of recovered individuals
is ignored (i.e., q2 = q3 = 0), then,

1. For small enough values of the relative infectiousness q1 (i.e., for values of q1 on the
left of the dotted vertical line in Figure 9), the model undergoes backward bifurcation
as the relative susceptibility r1 increases.

2. If the relative infectiousness q1 of secondary infected individuals is allowed to be
fairly increased (e.g., for values of q1 between the two vertical lines in Figure 9), then
(as r1 increases) the progression of the bifurcation diagram is as follows: a forward
bifurcation (with the existence of a unique endemic equilibrium for R0 > 1) is
exhibited. Then, a forward bifurcation with multiple supercritical endemic equilibria
(hysteresis) is shown. Then, it exhibits again a forward bifurcation with unique
endemic equilibrium forR0 > 1. Finally, it undergoes backward bifurcation.

3. If q1 is further increased (e.g., for values corresponding to higher than that at the
vertical dashed line in Figure 9), then the model shows transcritical bifurcation for
small values of r1, which is followed by forward bifurcation with multiple supercritical
endemic equilibria as r1 increases. If r1 is further increased, then the model shows the
existence of forward with multiple super and subcritical endemic states (hysteresis)
and finally, it undergoes backward bifurcation.
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Figure 9. A schematic bifurcation diagram for the case q2 = q3 = 0 in the plane (q1, r1). The notation:
1 means a forward bifurcation with unique endemic equilibrium for R0 > 1; 2 means backward
bifurcation; 3 means forward bifurcation with multiple supercritical endemic states only (i.e., multiple
equilibria exist only for R0 > 1, but no endemic equilibrium exists for R0 < 1); 4 means forward
bifurcation with multiple super- and subcritical endemic states (i.e., multiple equilibria exist for
R0 < 1 and forR0 > 1).

The interpretation of the appearance of backward bifurcation and hysteresis phenom-
ena is that in some season the mosquitoes are feeding and breeding and therefore their
population size is growing. During such a season (like summer) they live long enough to
cause malaria. This explains the sudden increase in infection levels. However, in other
seasons where the female mosquitoes don’t live enough to cause malaria, we get a sudden
decrease in the level of infection.

4.2. Infectious Recovered Individuals (q2 6= 0, q3 6= 0)

Now, we assess the impact of changing the relative infectiousness parameters of
primary and secondary recovered individuals on the endemic behavior of Equation (5).
Therefore, we consider the general case where none of the model parameters are neglected.
More precisely, we assume that recovered individuals are capable of transmitting the
infection with relative infectiousness q2, q3 > 0.

4.2.1. Impact of the Relative Infectiousness q3

To figure out the role of the relative infectiousness of secondary recovered individuals
(with respect to primary infected human individuals) q3, we assume that q2 as well as the other
model parameters are constant, except q3, which is assumed to be increased, see Figure 10. The
figure shows how the shape of the bifurcation curve can change as the value of q3 increases.
We notice that for small values of q3, the model exhibits forward bifurcation with a unique
endemic equilibrium, Figure 10a. On increasing the value of q3, the model shows the existence
of hysteresis, where there are two turning points, Figure 10b,c. In part (b) of the figure, there
is a forward bifurcation with multiple supercritical, but not subcritical, endemic equilibria.
However, with the increase in q3 we, additionally, get multiple subcritical endemic equilibria,
Figure 10c. If we allow q3 to further increase, the model exhibits backward bifurcation, where
there exist two subcritical endemic equilibria but only one supercritical endemic equilibrium,
Figure 10d. It is clear that the increase in q3 value implies a decrease in the critical basic
reproduction level below which the infection does not persist, and therefore, it implies an
increase in the minimum elimination effort of the malaria infection [39].
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4.2.2. Impact of the Relative Infectiousness q2

Similar to above, if we assume the relative infectiousness (of primary recovered with
respect to primary infected human individuals) q2 changes, and we let all other parameters
be fixed (see the legend of Figure 11 to get to know the parameter values), then the
bifurcation curve progression has a different behavior compared with the case of q3. For
small values of q2, the model shows the existence of backward bifurcation, Figure 11a. On
letting q2 increase, the model exhibits forward bifurcation with multiple supercritical with
(and without) subcritical endemic equilibria. A further increase in q2 values implies the
existence of forward bifurcation, where no subcritical endemic equilibria exist but exactly
one endemic equilibrium does exist. This implies that a reduction in q2 values implies an
increase in the minimum elimination effort of malaria.
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Figure 10. Bifurcation diagram for q2 6= 0, q3 6= 0. It shows that for q2 = 0.5, and keeping all other
parameters fixed, except q3, which is allowed to increase, the model develops forward (a), multiple
supercritical (b), multiple subcritical (c), and backward (d) bifurcation. Simulations have been done
for the parameter values given in Table 3, except for q1 = 1.6, r1 = 0.3 and r2 = 0.7.
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Figure 11. Bifurcation diagram for q2 6= 0, q3 6= 0. It shows that for q3 = 0.7, and keeping all
other parameters fixed, except q2, which is allowed to increase, the model develops backward (a),
multiple subcritical (b), multiple supercritical (c), and forward (d) bifurcation. Simulations have been
performed for the parameter values given in Table 3, except for q1 = 1.6, r1 = 0.3 and r2 = 0.7.
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5. Role of Differential Mortality

In this section, we figure out the dynamics of the model if the infection-induced
mortality rates δ1 and δ2 are neglected. In this case, the equilibrium human population
size is simply Λh/µh. Hence, F1(λh) = F2(λh) and thus the left-hand size of Equation (23)
would be reduced to a polynomial of degree three. If we further assume that recovered
individuals are not capable of transmitting malaria, then the basic reproduction number
reduces to √

pvβhv
µv

× phβhv
γ1 + µh

× Λv/µv

Λh/µh
(32)

while the condition (26) for backward bifurcation reduces to

r1 >
(ν1 + µh)(γ2 + µh)

q1γ1ν1

(
1 +

√
phΛhµh

pvΛv(µh + γ1)

)
. (33)

On the other hand, the Equation (23) from which we determine the equilibrium human
force of infection λh reduces to

H(λh) = C3λ3
h + C2λ2

h + C1λh + C0 (34)

where C0 = C01 −ΛvC02, C1 = C11 −ΛvC12, C2 = C21 −ΛvC22 and

C01 = D̄11D12D̄21D22µ3
hµ2

vΛh,

C02 = pv phD12D̄21D22µ4
hβ2

hv,

C11 = µ2
hµvΛh{D̄11D12µv[r2K1 + (1 + r1)D̄21D22] + phµhD12D̄21D22βhv},

C12 = pv phµ3
hβ2

hv[r2D12K1 + r1D22(q1γ1ν1 + D12D̄21)],

C21 = µhµvΛh{D̄11D12µv[r1D̄21D22 + (1 + r1)r2K1] +

phµhβhv[r2D12K1 + r1D22(q1γ1ν1 + D12D̄21)]},
C22 = r1r2 pv phµ2

hβ2
hvK2,

C3 = r1r2µvΛh[D̄11D12µvK1 + phµhβhvK2]

K1 = D̄21D22 − γ2ν2 > 0,

K2 = D12K1 + q1γ1ν1D22.

and

D̄11 = D11 |δ1=0= µh + γ1, D̄21 = D21 |δ2=0= µh + γ2.

It is clear that the coefficient C3 ≥ 0, while the other three coefficients, namely C0, C1
and C2, can be positive or negative. Thus, Equation (34) could have up to three feasible
solutions depending on the model parameter values, see Figure 12 . This could be verified
by studying the number of possible turning points in the bifurcation curve in the plane
(R0, λh). To this end, Equation (34) is rearranged in a way such that the parameter Λv
(considered as a bifurcation parameter) is written as a function of the equilibrium force
of infection λh, say Λv = H1(λh). The number of feasible solutions for the equation
dH1/dλh = 0 determines the number of turning points. Thus, the equilibrium force of
infection at a turning point satisfies the equation

C3C22λ4
h + 2C3C12λ3

h + (3C3C02 + C21C12 − C11C22)λ
2
h + 2(C02C21 − C01C22)λh

+(C11C02 − C01C12) = 0. (35)
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Figure 12. Bifurcation diagram for δ1 = δ2 = q2 = q3 = 0. The figure is depicted for parameter
values q1 = 1.6 and keeping all other parameters fixed as in Table 3, except r1, which is allowed
to take values 0.9 and 0.6, as shown in the head of the sub-figures. The model develops backward
bifurcation, (a). Moreover, it shows forward bifurcation with the existence of multiple supercritical
and subcritical endemic equilibria, (b).

It is clear that the coefficients of the two terms λ4
h and λ3

h are non-negative, while the
other coefficients can be positive or negative. Thus, the number of sign changes in the
coefficients of Equation (35) determines the number of feasible solutions. On the other
hand, it is easy to check that at R0 = 1, the bifurcation is backwards if and only if the
term-free of λh in Equation (35) is negative. This means C11 < C01C12/C02. Therefore, the
coefficient of λ2

h in Equation (35) is

3C3C02 + C21C12 − C11C22 > 3C3C02 + C21C12 − C22C01C12/C02

= 3C3C02 + C12(C02C21 − C01C22)/C02. (36)

If we assume the coefficient of λh in Equation (35) to be negative, then (irrespective of
the sign of the λ2

h-coefficient) the number of sign changes will be one, and therefore there is
a unique feasible solution of Equation (35). However, if we assume that the λh-coefficient
is positive, then, according to Equation (36), the λ2

h-coefficient will be positive, and thus a
unique solution for Equation (35) exists. Hence, if the bifurcation is backward, then there is
a unique feasible turning point in the bifurcation curve drawn in the (R0, λh) plane.

Similarly, the case of forward bifurcation is argued. In this case, the term-free of λh in
Equation (35) is assumed to be positive. Thus, two feasible solutions for Equation (35) may
exist if either or both coefficients of the λ2

h and λh are negative, while otherwise there is no
solution. We summarize our result in the following proposition.

Proposition 3. If the malaria-induced mortality rates as well as the infectivity of recovered indi-
viduals are neglected, the model exhibits backward bifurcation if and only if the condition (33) holds.
Moreover, it shows the existence of multiple sub- and supercritical (hysteresis) endemic equilibria,
with two turning points at the most.

Simulations have been performed for this case and these show that the model can
show backward bifurcation and hysteresis (the existence of supercritical and subcritical
endemic states) phenomena.

6. Summary and Conclusions

A mathematical model for the transmission dynamics of malaria is proposed. The
model is of type SI in the vector and SIRS in the host. For the host population, it is dif-
ferentiated between individuals who have never experienced the infection (called naive),
individuals who experienced the infection only once (called primary), and those who
experienced it at least twice (called secondary). It is assumed that primary and secondary
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infected individuals have different infectiousness, where the relative infectivity of sec-
ondary (with respect to primary) infected individuals is q1. Also, the susceptibility of
primary and secondary susceptible individuals is different from naive susceptible indi-
viduals (those who have never experienced the infection). The relative susceptibility of
primary and secondary (with respect to naive) susceptible individuals are r1 and r2, respec-
tively. Moreover, it is assumed that recovered individuals have some immunity to malaria.
They do not become clinically ill, but they do harbor low levels of parasites in their blood
streams, and therefore they can pass the infection to mosquitoes. It is further assumed that
the relative infectiousness of primary and secondary recovered (with respect to primary
infected) individuals are q2 and q3, respectively.

The analysis shows that the model has a malaria-free equilibrium, which is proven to
be locally asymptotically stable forR0 < 1, while it is unstable ifR0 > 1. Here,R0 is the
basic reproduction number and is given by Equation (7). Center manifold analysis shows
that the model exhibits backward bifurcation if the expression in Equation (25) is positive.
Local sensitivity analysis for this expression shows that the most sensitive parameters are
q2, r1 and q3. Therefore, the backward bifurcation condition is expressed in the form of
condition (26). This backward bifurcation condition (26) does depend on the parameters
r1, q1, q2, and q3, but it does not depend on the relative susceptibility r2.

The equilibrium human force of infection is shown to be determined from the roots
of a polynomial of degree six, which supports the possible existence of more than two
endemic equilibria for certain model parameter values. However, in the special case
δ1 = δ2 = 0 and q2 = q3 = 0, the analytical results show that the bifurcation diagram
in the plane (R0, λh) can have up to two turning points, which means that the model
shows the existence of forward hysteresis (i.e., the existence of forward bifurcation with
multiple super- and subcritical endemic steady states). On the other hand, in the general
case, numerical simulations have been employed to investigate the impact of changing
the relative susceptibilities r1, r2, the relative infectiousness q1, q2, q3, and the differential
mortalities δ1, δ2 on the development of the bifurcation diagram and therefore on the
persistence of malaria.

The implication of the appearance of multiple super and subcritical endemic states
is that the basic reproduction numberR0 is no longer an indicator in the malaria control
process. This has an effect, especially on the value of the critical threshold value of R0,
below which malaria infection does not persist, especially in the case of multiple subcritical
endemic states. In this case, malaria does persist, even for values ofR0 < 1. Consequently,
the minimum effort required to control (eliminate) malaria is increased. Throughout the
analysis, we came up with the following concluding remarks:

• The higher the value of either or both of the relative susceptibilities r1 (of primary
susceptible) and infectiousness q1 (of secondary infected) is, the higher the effort
needed to eliminate malaria is.

• The higher the value of the relative infectiousness q3 of secondary recovered individu-
als is, the higher the effort required to eliminate malaria is.

• The higher the value of the relative infectiousness q2 of primary recovered individuals
is, the lower the effort required to eliminate malaria is.

It is worth mentioning that our model could be extended to include factors repre-
senting the control of malaria. Among the strategies that could be considered in a future
extended model are the use of insecticide-treated bed nets by the human hosts and studying
the optimization of who should use these treated bed nets.

Limitation of the Work and Probable Future Work

It is worth mentioning that our model neglects various factors that significantly
affect malaria dynamical spread. Among these factors are environmental factors, like
temperature, rainfall, and humidity. These factors impact mosquito and parasite vital rates,
and thus affect the transmission intensity, seasonality, and geographical distribution of
malaria. Also, the latency period of malaria has been neglected and may cause inaccurate
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estimations in the effort needed to control malaria. Other factors include biological and
physiological differences between human males and females. Some or all of these factors
will be considered in a forthcoming work.
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Appendix A. Equilibrium Analysis of Model (1)

Before going into detail on the equilibrium analysis of Equation (1), we assume that

λ̃h = pvβhv
Iv

Nh
, (A1)

λ̃v = phβhv
Ih + qRh

Nh
, (A2)

Γ1 = µh + νh, Γ2 = γh + µh + δh, Γ3 = γh + µh + νh. (A3)

On putting the derivatives in the left hand side of Equation (1) equal zero and solving
the resulting algebraic system in the state variables Sh, Ih, Rh, Sv, Iv, we get

S̃h =
ΛhΓ1Γ2

(λ̃h + µh)Γ1Γ2 − γhνhλ̃h
, (A4)

Ĩh =
ΛhΓ1λ̃h

(λ̃h + µh)Γ1Γ2 − γhνhλ̃h
, (A5)

R̃h =
Λhγhλ̃h

(λ̃h + µh)Γ1Γ2 − γhνhλ̃h
, (A6)

S̃v =
Λv

(λ̃v + µv)
, (A7)

Ĩv =
Λvλ̃v

µv(λ̃v + µv)
, (A8)

Ñh =
Λh

(
Γ1Γ2 + λ̃hΓ3

)
(λ̃h + µh)Γ1Γ2 − γhνhλ̃h

. (A9)

Now, we use Equations (A8) and (A9) in Equation (A1) and solve in terms of λ̃v to get

λ̃v =
µ2

vΛhλ̃h

(
Γ1Γ2 + Γ3λ̃h

)
pvβhvΛv

(
Γ1Γ2(λ̃h + µh)− γhνhλ̃h

)
− µvΛhλ̃h

(
Γ1Γ2 + Γ3λ̃h

) . (A10)

Similarly, we use Equations (A5), (A6) and Equation (A9) in Equation (A2) to get

λ̃v =
phβhv

(
qγh + Γ1

)
λ̃h

Γ1Γ2 + Γ3λ̃h
. (A11)

On omitting λ̃v between Equations (A10) and (A11) and rearranging terms, we have
two scenarios.
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• The first scenario is λ̃h = 0. This implies that λ̃v = 0, and therefore, S̃h = Λh/µh, Ĩh =
0, R̃h = 0, S̃v = Λv/µv and Ĩv = 0. This is the malaria-free equilibrium for Equation (1).

• The second scenario is λ̃h 6= 0. In this case, the rearrangement of the terms results in
the following quadratic equation in the equilibrium force of infection λ̃h

G(βhv, λ̃h) = A2λ̃2
h + A1λ̃h + A0 = 0 (A12)

where

A2 = µvΓ3λ̃h

(
µvΓ3 + phβhv(qγh + Γ1)

)
,

A1 = 2Γ1Γ2Γ3µ2
vΛh + phβhvµvΛh(qγh + Γ1)Γ1Γ2

−pv phβ2
hvΛv(qγh + Γ1)(Γ1Γ2 − γhνh),

A0 = Γ1Γ2

(
µ2

vΛhΓ1Γ2 − pv phβ2
hvΛvµh(qγh + Γ1)

)
.

Once we obtain a feasible solution of (A12), we substitute in (A4)–(A8) to obtain the
corresponding equilibrium. At λ̃h = 0, we may derive the basic reproduction number
R̃0 for Equation (1) as

R̃0 =

√
pvβhv

µv
× phβhv

γh + µh + δh
× Λv/µv

Λh/µh
×
(

1 + q
γh

µh + νh

)
. (A13)

It is noteworthy that Equation (A12) is quadratic in λ̃h and the number of feasible
solutions could be determined by employing the implicit function theorem by fol-
lowing the approach shown in [40]. Moreover, the left hand side of Equation (A12)
could be seen as a bifurcation equation in the equilibrium force of infection λ̃h and
the bifurcation parameter βhv. Moreover, based on the use of the implicit function
theorem, we may have

dλ̃h
dβhv

|R̃0=1,λ̃h=0 = −∂G/∂βhv

∂G/∂λ̃h
|R̃0=1,λ̃h=0. (A14)

At the bifurcation point (1, 0) in the plane (R̃0, λ̃h) we get

∂G
∂η
|R0=1,λ̃h=0 = −2pv phβ0

hvΛvµh(qγh + Γ1) < 0

where

β0
hv = 1

/√
pv

µv
× ph

γh + µh + δh
× Λv/µv

Λh/µh
×
(

1 + q
γh

µh + νh

)
.

Also,

∂G
∂λ̃h
|R0=1,λ̃h=0 =

µvΛhΓ1Γ2

µh
×
(

phµhβ0
hv(qγh + Γ1) + 2µvµhΓ3 + µvγhνh − µvΓ1Γ2

)
,

=
µvΛhΓ1Γ2

µh
×
(

phµhβ0
hv(qγh + Γ1) + µv

(
µhΓ3 − δhΓ1

))
.

Hence

∂G
∂λ̃h
|R̃0=1,λ̃h=0 =

µ2
vΛhΓ2

1Γ2

µh
×
(

phµhβ0
hv(qγh + Γ1)

µvΓ1
+

µhΓ3

Γ1
− δh

)
.
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Thus, Equation (1) exhibits backward bifurcation if and only if

δh >
phµhβ0

hv(qγh + Γ1)

µvΓ1
+

µhΓ3

Γ1
. (A15)

The backward bifurcation condition (A15) implies that two malria-endemic equilibria
do exist for values of R̃0 < 1. However, in the simple case δh = 0, the condition (A15)
does not hold and, consequently, the model has a unique malaria-endemic equilibrium
if and only if R̃0 > 1.
The stability analysis of the malaria-free equilibrium for Equation (1) could be estab-
lished by following the same approach shown in Section 2.3. However, the stability
analysis of the malaria endemic equilibrium of Equation (1) for values of R̃0 > 1 could
be established by following the same approach shown in [33].

Appendix B. Backward Bifurcation Conditions for Model (5)

To compute the direction of bifurcation for Equation (5) at R0 = 1 , we make use of
theorem 4.1 of Castillo-Chavez and Song [36]. It can be checked that the Jacobian J(E0)
evaluated at βhv = β0

hv (i.e.,R0 = 1) has:

• a simple eigenvalue 0, while all other eigenvalues have negative real parts. Therefore,
the center manifold theory can be used to analyze the dynamics of Equation (5),

• a left eigenvector v = (v1, v2, ...., v9) and a right eigenvector w = (w1, w2, ...., w9)
′,

where

v1 = v4 = v7 = v8 = 0,

v2 =
µv

pvβ0
hv

v9,

v3 =
q2 J92

µh + ν1
v9,

v5 =
J92

J55

(
q1 +

q3γ2

µh + ν2

)
v9,

v6 =
q3 J92

µh + ν2
v9,

v9 = pvβ0
hv(µh + ν1)(µh + ν2)J55

and

w5 = w6 = w7 = 0,

w1 = − J22

µh
w2,

w3 =
γ1

µh + ν1
w2,

w4 =
ν1γ1

µh(µh + ν1)
w2,

w8 = − J92

µv
· (q2γ1 + µh + ν1)

µh + ν1
w2,

w9 =
J22

pvβ0
hv

w2.
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Thus, the assumptions of theorem 4.1 of Castillo-Chavez and Song [36] are held.
Accordingly, the dynamics of the model near the malaria-free equilibrium is determined by
the two quantities

a1 =
9

∑
i,j,k=1

viwjwk
∂2 fi

∂xj∂xk
(E0, β0

hv),

b1 =
9

∑
i,j=1

viwj
∂2 fi

∂xj∂φ
(E0, β0

hv)

where x1 = S0, x2 = I1, x3 = R1, x4 = S1, x5 = I2, x6 = R2, x7 = S2, x8 = Sv, x9 = Iv, φ =
βhv and fi(x) = ẋi, i = 1, 2, ..., 9, is the right hand side of Equation (5). On performing some
calculus, we get

a1 =
2β0

hvv9w2
2 phµhΛv(q2γ1 + ν1 + µh)

Λ2
hµv(µh + ν1)

{r1
γ1ν1(q3γ2 + q1(µh + ν2))(δ1 + γ1 + µh)

(µh + ν2)(q2γ1 + ν1 + µh)(δ2 + γ2 + µh)

−
(
−δ1 + γ1 + µh +

√
phΛhµh(q2γ1 + ν1 + µh)(µh + γ1 + δ1)

pvΛv(µh + ν1)

)
}, (A16)

b1 =
2Λvµh phv9w2(q2γ1 + ν1 + µh)

Λhµv(µh + ν1)
> 0. (A17)

As the expression b1 is positive, then according to theorem 4.1 of Castillo-Chavez
and Song [36], the Equation (5) undergoes backward bifurcation at R0 = 1 if and only if
the expression a1 is positive. It is clear that the sign of a1 depends mainly on the sign of
the expression

K = r1
γ1ν1(q3γ2 + q1(µh + ν2))(δ1 + γ1 + µh)

(µh + ν2)(q2γ1 + ν1 + µh)(δ2 + γ2 + µh)

−
(
−δ1 + γ1 + µh +

√
phΛhµh(q2γ1 + ν1 + µh)(µh + γ1 + δ1)

pvΛv(µh + ν1)

)
.

Hence, a1 > 0 if and only if K > 0.
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