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Abstract: We consider algebras of polynomials and analytic functions that are invariant with respect
to semidirect products of groups of bounded operators on Banach spaces with symmetric bases.
In particular, we consider algebras of so-called block-symmetric and double-symmetric analytic
functions on Banach spaces `p(Cn) and the homomorphisms of these algebras. In addition, we
describe an algebraic basis in the algebra of double-symmetric polynomials and discuss a structure of
the spectrum of the algebra of double-symmetric analytic functions on `p(Cn).
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1. Introduction

Let X be a complex Banach space and S a group of bounded operators on X. A function
f on X is said to be S-symmetric if it is invariant with respect to the actions of operators
in S. We denote by PS(X) the algebra of S-symmetric polynomials on X. The algebras
of symmetric polynomials on a finite-dimensional linear space are typical objects of the
Classic Invariant Theory [1] (see also a survey in [2]), where principal results were obtained
for finite groups. In the case of an abstract infinite-dimensional Banach space, we have
different problems arising from the topological structures of Banach spaces, and we need
different methods (and notations). The authors of [3,4] considered discrete and continual
analogues of the group of permutations of variables for abstract Banach spaces with
symmetric structures and obtained representations of algebraic bases in the corresponding
algebras of symmetric polynomials. Symmetric polynomials with respect to the actions
of abstract groups of operators on Banach spaces were investigated in [5–7]. Note that
in the case of Banach spaces, it is natural to investigate algebras of symmetric analytic
functions (as completions of algebras of symmetric polynomials in some suitable topology)
and their spectra.

Algebras of symmetric analytic functions of a bounded type on `p were considered
in [8,9]. These investigations were continued in a number of papers (see, e.g., [10] and the
references therein). A continual group of symmetry and the corresponding algebras of sym-
metric analytic functions on L∞ were investigated in [11–13]. If the algebra of S-symmetric
polynomials PS(X) admits an algebraic basis (Pn), n ∈ N, then any homomorphism F of
PS(X) can be defined by its evaluations on polynomials Pn. In other words, any homo-
morphism can be uniquely determined by the sequence F (Pn), n ∈ N. If it is continuous
with respect to a uniform topology on PS(X), then it can be extended to a corresponding
algebra of symmetric analytic functions. Thus, the first important question concerning an
algebra of symmetric polynomials is about the existence of a countable algebraic basis (or a
generating sequence) of polynomials. The algebras of analytic functions on X, generated
by a countable family of polynomials were systematically studied in [10,14–16].
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In this paper, we consider the case when S is a semidirect product of two groups of
symmetry on a Banach space X. For the case X = `p(Cn), we obtain an algebraic basis of
the algebra of S-symmetric polynomials and apply it for a description of the spectrum of
the algebra of S-symmetric analytic functions of a bounded type on X = `p(Cn).

In Section 2, we give the necessary definitions and preliminary results. Various classes
of symmetric polynomials are considered in Section 3. In Section 4, we consider the question
how to describe generators of S-symmetric polynomials if S is a semidirect product of
two groups acting on X, and we have information about the generators of the symmetric
polynomials related to these groups. In Section 5, we apply the obtained results for the
corresponding algebras of symmetric analytic functions on `p, 1 ≤ p < ∞ and their spectra.

General information on polynomials and analytic functions on Banach spaces can be
found in [17,18].

2. Preliminary Results

Let us denote by H(X) the algebra of all analytic functions on a Banach space X over
the field of complex numbers C. Recall that an entire analytic function f on X can be defined
as a continuous function such that the restriction of f to a y finite-dimensional subspace
of X is analytic. An analytic function fn is an n-homogeneous (continuous) polynomial if
fn(λx) = λn fn(x) for every x ∈ X and λ ∈ C. A finite sum of homogeneous polynomials
is a polynomial. The algebra of all continuous polynomials on X is denoted by P(X). It is
well known that every function f ∈ H(X) can be represented as a series of n-homogeneous
polynomials fn

f (x) =
∞

∑
n=0

fn(x), x ∈ X

which is called the Taylor series of f .
A function f ∈ H(X) is said to be of a bounded type if it is bounded on bounded subsets

of X. The algebra of all the entire functions of a bounded type is denoted by Hb(X). This is
a Fréchet algebra with respect to the metrizable locally convex topology generated by the
following countable family of norms

‖ f ‖r = sup
‖x‖≤r

| f (x)|,

where r goes over positive rational numbers. It is known (see, e.g., [19]) that Hb(X) is a
proper subalgebra of H(X) providing X is infinite-dimensional. A continuous complex-
valued homomorphism ϕ : Hb(X) → C is called a character of Hb(X), and the set of all
characters is the spectrum of Hb(X). The spectrum of Hb(X) was investigated by many
authors [20–27]. In particular, it is known that for every point x ∈ X, the point evaluation
functional δx : f → f (x) is a character on Hb(X). Moreover, for every point z of the second
dual space X′′ of X, we can assign a functional δ̃z( f ) = f̃ (z), where f̃ is the Aron–Berner
extension [28] of f to X′′. In the general case, the functional δ̃z does not exhaust the spectrum
of Hb(X), and it may have a complicated structure. It was a motivation for studying the
spectra of the countable generated subalgebras of Hb(X), in particular, the subalgebras of
symmetric functions (see, e.g., [10]).

Throughout this paper, we use the notations `p for the Banach space absolutely summable
sequences in power p, 1 ≤ p < ∞ and c00 for the linear space of all finite sequences.

3. Classes of Symmetric Polynomials

Let {Pα} be a family of nonzero polynomials in PS(X), where PS(X) is the algebra of
S-symmetric polynomials for a given group S of bounded linear operators on a Banach
space X. We say that {Pα} is algebraically independent if any finite subset {Pα1 , . . . , Pαn} is al-
gebraically independent. That is, if q(t1, . . . , tn) is a nonzero polynomial of n variables, then

q(Pα1(x), . . . , Pαn(x)) 6≡ 0, x ∈ X.
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In other words, any non-trivial algebraic combination of algebraically independent polyno-
mials is nonzero. A family of nonzero polynomials {Pα} ∈ PS(X) is a generating set if every
polynomial P ∈ PS(X) can be represented as an algebraic combination of a finite subset of
{Pα}. An algebraically independent generating set is called an algebraic basis of PS(X). It
is easy to check that any generating set of an algebra of polynomials is an algebraic basis
if and only if every polynomial in this algebra can be uniquely represented as a (finite)
algebraic combination of elements in the generating set.

Let now Y be a Banach space with a (linear) symmetric countable Schauder basis (en),
dim Y ≤ ∞, and let Z be an arbitrary Banach space. Suppose that SY and SZ are groups of
bounded operators on Z and Y, respectively. We denote by X = Y(Z) the space of elements

x = (x1, x2, . . . , xn, . . .), xn ∈ Z,

such that
‖x1‖Ze1 + ‖x2‖Ze2 + · · ·+ ‖xn‖Zen + · · · ∈ Y

with
‖x‖X :=

∥∥(‖x1‖Ze1 + ‖x2‖Ze2 + · · ·+ ‖xn‖Zen + · · · )
∥∥

Y.

We will write, also, the vector x = (x1, x2, . . . , xn, . . .) as a formal sum

x =
dim Y

∑
n=1

xnen

understudying that xn are vectors in Z. Here, dim Y means the topological dimension, that
is, the sum is finite or countable.

The following technical result is probably known.

Remark 1. Let τ be a bounded linear operator from Y to Y,

τ(em) =
dim Y

∑
n=1

bm
n en

for some numbers bm
n . If bm

n ≥ 0, then there exists a bounded linear operator τ̃ : Y(Z)→ Y(Z) by

τ̃(x) = τ̃
( dim Y

∑
n=1

xnen

)
=

dim Y

∑
m=1

dim Y

∑
n=1

xmbm
n en,

and ‖τ‖ = ‖τ̃‖.

Proof. Let

y =
dim Y

∑
n=1

ynen ∈ Y.

Then,

τ(y) =
dim Y

∑
m=1

ym

dim Y

∑
n=1

bm
n en =

dim Y

∑
n=1

( dim Y

∑
m=1

ymbm
n

)
en.

Here, we change the order of summation because the series converges unconditionally,
because (en) is a symmetric basis. Hence,

τ̃(x) =
dim Y

∑
n=1

( dim Y

∑
m=1

xmbm
n

)
en,
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and from the assumption that all bm
n ≥ 0, it follows that

‖τ̃(x)‖X =

∥∥∥∥∥ dim Y

∑
n=1

∥∥∥ dim Y

∑
m=1

xmbm
n

∥∥∥
Z

en

∥∥∥∥∥
Y

≤
∥∥∥∥∥ dim Y

∑
n=1

( dim Y

∑
m=1
‖xm‖Zbm

n

)
en

∥∥∥∥∥
Y

= ‖τ(y)‖,

for y = (‖x1‖Z, ‖x2‖Z, . . . , ). Because for this y, ‖x‖X = ‖y‖Y, it follows that ‖τ̃‖ ≤ ‖τ‖.
On the other hand, because τ̃ is an extension of τ, we have ‖τ̃‖ ≥ ‖τ‖. So ‖τ̃‖ = ‖τ‖.

Using groups SY and SZ, it is possible to construct a group of symmetries on X in
different ways.

Definition 1. A function f on X is called separately SZ-symmetric if for every σ ∈ SZ and
n ≤ dim Y,

f (x1, x2, . . . , σ(xn), . . .) = f (x1, x2, . . . , xn, . . .).

A function f on X is called block SY-symmetric if for every τ ∈ SY, the operator τ̃ is well
defined and continuous on X and f (τ̃(x)) = f (x) for every x ∈ X.

We say that a function f on X is (SY, SZ)-symmetric or double symmetric if it is both
separately SZ-symmetric and block SY-symmetric.

Let us recall the definition of the semidirect product of two groups. For a given group
G, we denote by Aut G the group of automorphisms of G. Let Ψ be a group homomorphism
from a group H to Aut G, that is, Ψ : h→ Ψh ∈ Aut G, h ∈ H. The (outer) semidirect product
G oΨ H = G o H of G and H with respect to Ψ is the direct product G× H endowed with
the group operation

(g1, h1)(g2, h2) = (g1Ψh1(g2), h1h2).

Let S̃Z be the minimal group of operators on X generated by operators

σ̃n = (x1, . . . , xn, . . .) 7→ (x1, . . . , σ(xn), . . .), σ ∈ SZ, n ∈ N.

Proposition 1.

(i) A function f on X = Y(Z) is separately SZ-symmetric if and only if it is S̃Z-symmetric.
(ii) A function f on X is (SY, SZ)-symmetric if and only if it is SY oΨ S̃Z-symmetric, where

Ψ : τ 7→ τ̃.
(iii) A function f on X is block SY-symmetric if and only if it is SY oΨ ĨZ-symmetric, where ĨZ is

a trivial subgroup of S̃Z consisting of the identity map.

Proof. Item (i) follows from the definition of separately SZ-symmetric functions. The
operator Ψ(τ) = Ψτ = τ̃ belongs to the group of automorphisms Aut S̃Z so that Ψτ(σ̃) =
σ̃ ◦ τ̃, σ̃ ∈ S̃Z. By the definition of (SY, SZ)-symmetric functions, f is (SY, SZ)-symmetric if
and only if it is invariant with respect to the action of σ̃ ◦ τ̃ for all σ̃ ∈ S̃Z and τ ∈ SY. Thus,
item (ii) is proved. Finally, item (iii) is a partial case of (ii) if σ is the identity operator.

Example 1. Let X = `p, 1 ≤ p < ∞ and S`p is the group of all permutations of the basis vectors
en = (0, . . . , 0, 1︸ ︷︷ ︸

n

, 0, . . .). In other words, every permutation σ on the set of positive integers N acts

as a linear operator on `p (which we denote by the same symbol σ ∈ S`p ) by

σ(x) = (xσ(1), . . . , xσ(n), . . .) =
∞

∑
n=1

xσ(n)en =
∞

∑
n=1

xneσ−1(n).

It is well known [3,4] that polynomials

Fk =
∞

∑
n=1

xk
n, k ≥ dpe
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form an algebraic basis in the algebra of all S`p -symmetric polynomials on `p (which are called
symmetric polynomials), where dpe is the minimal integer, which is greater than or equal to p. We
denote by Ps(`p) the algebra of the symmetric polynomials on `p.

Example 2. Let X = Lp[0, 1], 1 ≤ p ≤ ∞ and SLp [0,1] is the group of operators on Lp[0, 1]
generated by the measurable automorphisms of [0, 1] that preserve the Lebesgue measure on [0, 1].
That is, if σ : [0, 1]→ [0, 1] is a measure-preserving measurable automorphism, then it acts as an
operator on Lp[0, 1] (which we denote by the same symbol σ ∈ SLp [0,1]) by

σ(x(t)) = x ◦ σ(t), x(t) ∈ Lp[0, 1].

According to [3,11], polynomials

Rk(x) =
∫
[0,1]

(
x(t)

)kdt, k ≤ bpc

form an algebraic basis in the algebra Ps(Lp[0, 1]) of all SLp [0,1]-symmetric polynomials on SLp [0,1].
Here, bpc is the maximal integer that is less than or equal to p. Hence, Ps(Lp[0, 1]) is finitely
generated if p < ∞ and countably generated if p = ∞. Further results about symmetric and
block-symmetric polynomials on L∞ can be found in [29–31] and the cited literature therein.

Example 3. Let Y = `p and Z = Cn. Any element x ∈ X = `p(Cn) = Cn ⊗ `p can be
represented as

x =
(
x(1), . . . , x(n)

)
=

n

∑
k=1

∞

∑
j=1

x(k)j ej,

where ∑∞
j=1 x(k)j ej = (x(k)1 , . . . , x(k)j , . . .) ∈ `p for k = 1, . . . , n. Let SY = S`p be the group of

permutations of the basis vectors in `p and let SZ = Sn be the group of permutations of the basis
vectors in Cn. In [32,33], it is shown that the algebra of the block S`p -symmetric polynomials on X
admits an algebraic basis of the so-called power block-symmetric polynomials

Hk(x) = Hk1,k2,...,kn(x) =
∞

∑
j=1

n

∏
r=1
|k|≥dpe

(
x(r)j
)kr , (1)

where k = (k1, k2, . . . , kn) is a multi-index, |k| = k1 + k2 + · · ·+ kn.
The algebras of block-symmetric polynomials and analytic functions on `p(Cn) were studied,

also, in [34,35].

4. Generators in Algebras of Double-Symmetric Polynomials

The following theorem generalizes a result in [36] about separately symmetric polyno-
mials on `1.

Theorem 1. Let dim Y = m < ∞ and Z be an arbitrary Banach space. Suppose that the algebra
of SZ-symmetric polynomials admits a finite or countable family of generators {Pk}. Then, the
algebra of all separately SZ-symmetric polynomials on X = Y(Z) has a family of generators {P(j)

k },
j = 1, . . . , m, where

P(j)
k (x) = P(j)

k (x1, . . . , xm) = Pk(xj), x = (x1, . . . , xm) ∈ X.

If {Pk} is an algebraic basis, then P(j)
k is an algebraic basis as well.

Proof. If dim Y = 1, then the statement is trivial. Suppose it is true for dim Y = m− 1.
Let P be a separately SZ-symmetric polynomial on X. Then, P(x) = P(x1, . . . , xm) can be
considered as an SZ-symmetric polynomial of xm with coefficients in the field Km−1 of
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separately SZ-symmetric rational functions of (x1, . . . , xm−1). From the Classical Invariant
Theory (see, e.g., p. 12 in [1]), it is known that polynomials {Pk} = {P

(m)
k } form a family of

generators in the algebra of SZ-symmetric polynomials over the field Km−1. That is, P can
be represented in the form

P(x1, . . . , xm) = ∑ ak1 ...kr (x1, . . . , xm−1)
[
P(m)

1 (xm)
]k1 · · ·

[
P(m)

r (xm)
]kr , (2)

where k1 deg P1 + · · · + kr deg Pr ≤ deg P, and ak1 ...kr (x1, . . . , xm−1) are separately SZ-
symmetric rational functions of (x1, . . . , xm−1). But on the left side of Equation (2) there is
a polynomial, so on the right side must be a polynomial too. Because polynomials P(m)

k
do not depend on (x1, . . . , xm−1) and rational functions ak1 ...kr do not depend on (xm),
the functions ak1 ...kr are actually polynomials, and we know that they are separately SZ-
symmetric. By the induction assumption, all polynomials ak1 ...kr can be represented by

algebraic combinations of {P(j)
k }, j = 1, . . . , m− 1.

If {Pk} is an algebraic basis, then by the induction assumption, polynomials ak1 ...kr

have unique representations by {P(j)
k }, j < m. Suppose that

P(x1, . . . , xm) = ∑ bk1 ...kr (x1, . . . , xm−1)
[
P(m)

1 (xm)
]k1 · · ·

[
P(m)

r (xm)
]kr

is another representation of P. Then,

∑(ak1 ...kr − bk1 ...kr )(x1, . . . , xm−1)
[
P(m)

1 (xm)
]k1 · · ·

[
P(m)

r (xm)
]kr ≡ 0.

If there is (y1, . . . , ym−1) such that

∑(ak1 ...kr − bk1 ...kr )(y1, . . . , ym−1)
[
P(m)

1 (xm)
]k1 · · ·

[
P(m)

r (xm)
]kr

is a non-trivial algebraic combination, then it contradicts the algebraic independence of {Pk}.
Thus, ak1 ...kr − bk1 ...kr ≡ 0 for all polynomials ak1 ...kr , and so (2) is a unique representation of

P. Hence, {P(j)
k }, j = 1, . . . , m is an algebraic basis.

Corollary 1. Let X = Y(Z) be as in Example 3. Then, there is an algebraic basis of separately
SZ-symmetric polynomials of the form

F(j)
k (x) = F(j)

k (x(1), . . . , x(n)) = Fk(x(j)) =
∞

∑
i=1

(
x(j)

i
)k, x = (x(1), . . . , x(n)) ∈ X,

for j = 1, . . . , n.

Proof. It is enough to apply Theorem 1 to Example 3, taking into account the algebraic
basis in Example 1.

Let X = `p(Cn) for some 1 ≤ p < ∞. That is, any vector x ∈ X can be represented as

x = (x(1), . . . , x(n)), where x(k) =
(
x(k)1 , . . . , x(k)j , . . .

)
∈ `p, k = 1, . . . , n. The space `p(Cn)

is a Banach space with respect to the norm

‖x‖`p =
( ∞

∑
j=1

n

∑
k=1

∣∣x(k)j

∣∣p)1/p
.

Let us define the following mapping F`p ,n on `p(Cn), F`p ,n = (F (1)
`p ,n, . . . ,F (j)

`p ,n, . . .),
where

F (j)
`p ,n(x) =

(
F1(xj), . . . , Fn(xj)

)
=
( n

∑
i=1

x(i)j , . . . ,
n

∑
i=1

[
x(i)j
]n
)

. (3)
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In other words, we can write

F`p ,n :




x(1)1

x(2)1
· · ·
x(n)1

 · · ·


x(1)j

x(2)j
· · ·
x(n)j

 · · ·
 




F1(x1)
F2(x1)
· · ·

Fn(x1)

 · · ·


F1(xj)
F2(xj)
· · ·

Fn(xj)

 · · ·
.

Proposition 2. The mapping F`p ,n is a continuous polynomial map from `p(Cn) to itself.

Proof. Clearly, F`p ,n is a polynomial. Note that |Fk(xj)| ≤ n‖xj‖k
`p

. Thus, we have

∥∥F`p ,n(x)
∥∥
`p

=
( ∞

∑
j=1

n

∑
k=1
|Fk(xj)|p

)1/p
≤ n

n

∑
k=1
‖x‖k

`p
< ∞.

From here, it follows that F`p ,n(x) ∈ `p(Cn) for every x ∈ `p(Cn). Also, the inequality
shows that F`p ,n is bounded on bounded subsets and so it is continuous.

Let us denote by Pvs(`p(Cn)) the algebra of all block-symmetric (that is, block S`p -
symmetric) polynomials on `p(Cn) and by Pds(`p(Cn)) the algebra of all double-symmetric
(that is, (S`p , Sn)-symmetric) polynomials on `p(Cn), where S`p and Sn are as in Example 3.
The composition operator CF`p ,n(P) = P ◦ F`p ,n is a homomorphism from Pvs(`p(Cn)) to
Pds(`p(Cn)). Indeed, if P is a block-symmetric polynomial, then

P ◦ F`p ,n = P(F (1)
`p ,n(x1), . . . ,F (j)

`p ,n(xj), . . .)

is (S`p , Sn)-symmetric because F`p ,n is Sn-symmetric.
Let us consider the partial case if X = Cm(Cn). Then, we have the mapping Fm,n

instead of F`p ,n,

Fm,n = (F (1)
m,n, . . . ,F (j)

m,n).

Thus, the composition operator CFm,n is a homomorphism from Pvs(Cm(Cn)) to Pds(Cm(Cn)).

Theorem 2. The composition operator CFm,n is an isomorphism of algebras Pvs(Cm(Cn)) and
Pds(Cm(Cn)).

Proof. It is enough to show that CFm,n : Pvs(Cm(Cn))→ Pds(Cm(Cn)) is bijective. Clearly,
if CFm,n(P) = 0, then P = 0, that is, the composition operator is injective. Let Q ∈
Pds(Cm(Cn)), and then Q is separately Sn-symmetric. By Corollary 1, the double-symmetric
polynomial Q can be represented us an algebraic combination of polynomials

F(j)
k (x) = F(j)

k (x1, . . . , xm) = Fk(xj) =
n

∑
i=1

[
x(i)j
]k.

In other words, Q is of the form Q(x) = P
(
Fm,n(x)

)
for some polynomial P. Indeed, let

q(t(1)1 , . . . , t(n)1 , t(1)2 , . . . , t(n)2 , . . . , t(1)m , . . . , t(n)m )

be a polynomial of mn variables such that

Q(x) = q
(

F1(x1), . . . , Fn(x1), F1(x2), . . . , Fn(x2), . . . , F1(xm), . . . , Fn(xm)
)
.

Then, for
P(x) = q(x(1)1 , . . . , x(n)1 , x(1)2 , . . . , x(n)2 , . . . , x(1)m , . . . , x(n)m )
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we have that Q(x) = P
(
Fm,n(x)

)
. Moreover, because Q is also block Sm-symmetric, and for

every j, F (j)
m,n maps Cn onto Cn, it follows that q is invariant with respect to permutations

(x(1)i , . . . , x(n)i ) (x(1)j , . . . , x(n)j ), 1 ≤ i, j ≤ m. Hence, P is block Sm-symmetric. Therefore,
every Q ∈ Pds(Cm(Cn)) is of the form Q = CFm,n(P) for some P ∈ Pvs(Cm(Cn)). Thus,
Fm,n is bijective.

Note that every double-symmetric polynomial is block symmetric but not every block-
symmetric polynomial is double symmetric. That is, Pds(Cm(Cn)) is a proper subalgebra
of Pvs(Cm(Cn)), which is isomorphic to Pvs(Cm(Cn)).

Example 4. Let X = C2(C2). Then, every element x ∈ X can be represented as

x =

(
x1 x2
y1 y2

)
.

Every block-symmetric polynomial is invariant with respect to operator(
x1 x2
y1 y2

)
7→
(

x2 x1
y2 y1

)
.

It is known (see, e.g., [37]) that polynomials

h1 = H1,0 = x1 + x2;

h2 = H0,1 = y1 + y2;

h3 = H2,0 = x2
1 + x2

2; (4)

h4 = H0,2 = y2
1 + y2

2;

h5 = H1,1 = x1y1 + x2y2.

form a minimal generating set that, however, is algebraically dependent. The isomorphism F = F2,2
from Pvs(C2(C2)) to Pds(C2(C2)) is defined as(

x1 x2
y1 y2

)
 

(
x1 + y1 x2 + y2
x2

1 + y2
1 x2

2 + y2
2

)
.

Thus, the generating polynomials in Pds(C2(C2)), Ni,j = Hi,j ◦ F can be written as

N1,0 = x1 + y1 + x2 + y2;

N0,1 = x2
1 + y2

1 + x2
2 + y2

2;

N2,0 = (x1 + y1)
2 + (x2 + y2)

2 = x2
1 + x2

2 + y2
1 + y2

2 + 2(x1y1 + x2y2);

N0,2 = (x2
1 + y2

1)
2 + (x2

2 + y2
2)

2 = x4
1 + x4

2 + y4
1 + y4

2 + 2(x2
1y2

1 + x2
2y2

2);

N1,1 = (x1 + y1)(x2
1 + y2

1) + (x2 + y2)(x2
2 + y2

2) = x3
1 + x3

2 + y3
1 + y3

2 + x2
1y1 + x2

2y2 + x1y2
1 + x2y2

2.

Because every polynomial inPds(C2(C2)) is block symmetric, polynomials Nk1,k2 , 1 ≤ k1 + k2 ≤ 2,
can be represented as an algebraic combination of polynomials (4):

N1,0 = h1 + h2;

N0,1 = h3 + h4;

N2,0 = h3 + h4 + 2h5;
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N0,2 = −1
2
(h1)

4 + (h1)
2h3 +

1
2
(h3)

2 − 1
2
(h2)

4 + (h2)
2h4 +

1
2
(h4)

2 − (h1)
2(h2)

2

+
1
2
(h1)

2h4 + h1h2h5 +
1
2
(h2)

2h3 + (h5)
2,

because, according to [37],

−1
2
(h1)

2h4 + h1h2h5 + h3h4 −
1
2
(h2)

2h3 − (h5)
2 ≡ 0;

N1,1 = −1
2
(h1)

3 +
3
2

h1h3 −
1
2
(h2)

3 +
3
2

h2h4 −
1
2
(h1)

2h2 +
1
2

h3h2 + h5h1 −
1
2
(h2)

2h1 +
1
2

h4h1 + h5h2.

Example 5. Let X = C3(C2). Then, every element x ∈ X can be represented as

x =

(
x1 x2 x3
y1 y2 y3

)
.

Polynomials

H1,0 = x1 + x2 + x3;

H0,1 = y1 + y2 + y3;

H2,0 = x2
1 + x2

2 + x2
3;

H0,2 = y2
1 + y2

2 + y2
3;

H1,1 = x1y1 + x2y2 + x3y3; (5)

H3,0 = x3
1 + x3

2 + x3
3;

H0,3 = y3
1 + y3

2 + y3
3;

H1,2 = x1y2
1 + x2y2

2 + x3y2
3;

H2,1 = x2
1y1 + x2

2y2 + x2
3y3.

form a minimal set of generating polynomials in Pvs(C2(C2)). Let

F = F3,2 :
(

x1 x2 x3
y1 y2 y3

)
 

(
x1 + y1 x2 + y2 x3 + y3
x2

1 + y2
1 x2

2 + y2
2 x2

3 + y2
3

)
.

Thus, combining F and (5), we can represent generating polynomials in Pds(C3(C2)), Ni,j =
Hi,j ◦ F as

N1,0 = x1 + y1 + x2 + y2 + x3 + y3;

N0,1 = x2
1 + y2

1 + x2
2 + y2

2 + x2
3 + y2

3;

N2,0 = x2
1 + x2

2 + x2
3 + y2

1 + y2
2 + y2

3 + 2(x1y1 + x2y2 + x3y3);

N0,2 = x4
1 + x4

2 + x4
3 + y4

1 + y4
2 + y4

3 + 2(x2
1y2

1 + x2
2y2

2 + x2
3y2

3);

N1,1 = x3
1 + x3

2 + x3
3 + y3

1 + y3
2 + y3

3 + x2
1y1 + x2

2y2 + x2
3y3 + x1y2

1 + x2y2
2 + x3y2

3;

N3,0 = x3
1 + x3

2 + x3
3 + y3

1 + y3
2 + y3

3 + 3(x2
1y1 + x2

2y2 + x2
3y3) + 3(x1y2

1 + x2y2
2 + x3y2

3);

N0,3 = x6
1 + x6

2 + x6
3 + y6

1 + y6
2 + y6

3 + 3(x4
1y2

1 + x4
2y2

2 + x4
3y2

3) + 3(x2
1y4

1 + x2
2y4

2 + x2
3y4

3);

N1,2 = x5
1 + x5

2 + x5
3 + y5

1 + y5
2 + y5

3 + x4
1y1 + x4

2y2 + x4
3y3 + x1y4

1

+x2y4
2 + x3y4

3 + 2(x3
1y2

1 + x3
2y2

2 + x3
3y2

3) + 2(x2
1y3

1 + x2
2y3

2 + x2
3y3

3);

N2,1 = x4
1 + x4

2 + x4
3 + y4

1 + y4
2 + y4

3 + 2(x2
1y2

1 + x2
2y2

2 + x2
3y2

3)

+2(x1y3
1 + x2y3

2 + x3y3
3) + 2(x3

1y1 + x3
2y2 + x3

3y3).
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Let us recall that a linear operator A on Ck is a pseudoreflection if it is an invertible
operator such that it is not the identity map, has a finite multiplicative order and the fixed
subspace VA := {x ∈ Ck : A(x) = x} has the dimension k − 1. It is well known [38,39]
that the algebra of G-symmetric polynomials on Ck for a finite group G of linear operators
on Ck has an algebraic basis and is isomorphic to the algebra of all polynomials on Ck if
and only if it is generated by pseudoreflections. Thus, for example, the generators of the
algebra of block-symmetric polynomials on (Cm(Cn)) are algebraically dependent if both
n and m are greater than 1. The situation is different in infinite-dimensional cases. As we
mentioned above, polynomials (1) form an algebraic basis in the algebra of block-symmetric
polynomials on `p(Cn.) Moreover, in Corollary 7 in [32], the following result was obtained.

Theorem 3 ([32]). Let k1, . . . , ks be multi-indexes such that |ks| ≥ 1 for every j ∈ {1, . . . , s}.
Then, there exists m ∈ N such that for every r > m polynomials Hk1 , . . . , Hks as in (1) are
algebraically independent on Cr(Cn).

Theorem 4. The composition operator CF`p ,n(P) = P ◦ F`p ,n is an isomorphism from the alge-
bra Pvs(`p(Cn)) of block-symmetric polynomials on `p(Cn) to the algebra of double-symmetric
polynomials Pds(`p(Cn)) on `p(Cn). Polynomials

Nk = Hk ◦ F`p ,n, |k| ≥ dpe

form an algebraic basis in Pds(`p(Cn)).

Proof. Let us show first that polynomials Nk, |k| ≥ dpe are algebraically independent on
`p(Cn). It is well known (see, e.g., [8]) that the mapping

(t1, . . . , tn) 
( n

∑
i=1

ti,
n

∑
i=1

t2
i , . . . ,

n

∑
i=1

tn
i

)
is a surjection onto Cn. Let us suppose that there is a non-trivial polynomial of a finite
number of variables, q(t1, . . . , ts) such that

q(Nk1(x), . . . , Nks(x)) ≡ 0.

Because q is non-trivial and Hk are algebraically independent on `p(Cn),

q(Hk1(x), . . . , Hks(x)) 6≡ 0.

From the continuity of polynomials Hk, it follows that there is an open set U ⊂ X such that

q(Hk1(y), . . . , Hks(y)) 6= 0

for every y ∈ U. Because the subspace of finite sequences is dense in `p(Cn), we can choose

y = (y1, . . . , yj, . . .) ∈ U, yj = (y(1)j , . . . , y(n)j ) such that yj = 0 for every j that is greater

than a number j0. Let us take (u(1)
j , . . . , u(n)

j ) so that

y(k)j =
n

∑
i=1

[
u(i)

j
]k, j ∈ N, k ∈ {1, . . . , n}.

Thus, the vector u = (u1, . . . , uj, . . .), uj = (u(1)
j , . . . , u(n)

j ) ∈ Cn has only a finite number of
nonzero coordinates and so belongs to `p(Cn). On the other hand, y = F`p ,n(u). Thus,

q(Nk1(u), . . . , Nks(u)) = q(Hk1(y), . . . , Hks(y)) 6= 0.
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A contradiction. Hence, polynomials Nk, |k| ≥ dpe are algebraically independent.
We already observed that CF`p ,n is a homomorphism. Clearly that CF`p ,n is injective.

So, we need to show that it is surjective. Let Q ∈ Pds(`p(Cn)) and deg Q = d. There is a
finite number of polynomials Nk1 , . . . , Nkr such that deg Nki = |ki| ≤ d. Thus, if Q is an
algebraic combination of polynomials Nk, |k| ≥ dpe, then Q is an algebraic combination of
polynomials Nk1 , . . . , Nkr . We denote by Qm the restriction of Q to Cm(Cn). Suppose that m
is large enough so that the restriction of Hk1 , . . . , Hkr to Cm(Cn) ⊂ `p(Cn) is algebraically
independent. Such a number must exist by Theorem 3. Then, the restriction of Nk1 , . . . , Nkr

to Cm(Cn) is algebraically independent as well. By Theorem 2, there exists a polynomial
qm of r variables such that

Qm(x) = qm(Nk1(x), . . . , Nkr (x)), x ∈ Cm(Cn).

Note that if s > m, then qs = qm; otherwise,

Qm(x) = qs(Nk1(x), . . . , Nkr (x)), x ∈ Cm(Cn)

will be a different representation of Qm that contradicts the algebraic independence of
Nk1 , . . . , Nkr on Cm(Cn). Hence, the restriction of Q to the dense subspace

c00(Cn) =
⋃

s≥m
Cm(Cn) ⊂ `p(Cn)

has the representation

Q(x) = qm(Nk1(x), . . . , Nkr (x)), x ∈ c00(Cn).

By the continuity of Q, this representation is true for every x ∈ `p(Cn). Thus, CF`p ,n is sur-
jective. Therefore, it is an isomorphism from Pvs(`p(Cn)) to Pds(`p(Cn)), and polynomials
Nk = Hk ◦ F`p ,n form an algebraic basis in Pds(`p(Cn)).

5. Algebras of Symmetric Analytic Functions and Their Spectra

Proposition 3. The polynomial mapping F`p ,n : `p(Cn) → `p(Cn) is not surjective whenever
n > 1.

Proof. If n = 1, then F`p ,n is just the identity map and so it is surjective. Let n ∈ N, n > 1.
We construct a vector y in `p(Cn), which does not belong to the range of F`p ,n. Set

y =




0
· · ·
0

(−1)n+1

 · · ·


0
· · ·
0

(−1)n+1

j2/p

 · · ·
.

Clearly, y ∈ `p(Cn). Let us suppose that there is a vector u =
(
u(k)

j
)
, k = 1, . . . , n, j ∈ N

such that y = F`p ,n(u). Then, for every j, the coordinates u(k)
j must satisfy equations

[
u(1)

j
]m

+
[
u(2)

j
]m

+ · · ·+
[
u(n)

j
]m

=

{
0 if m ≤ n,

(−1)n+1

j2/p if m = n.

It is easy to check that the set of all roots of the system can be written as{ α0

j2/np , . . . ,
αn−1

j2/np

}
,
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where α0, . . . , αn−1 are roots of 1. Hence, up to permutations of coordinates u(k)
j for every

fixed j, the vector u can be represented as

u =




α0
· · ·

αn−2
αn−1

 · · ·


α0
j2/np

· · ·
αn−2
j2/np
αn−1
j2/np

 · · ·
.

But u /∈ `p(Cn), because ‖u‖`p = ∞ for every n ≥ 2 and 1 ≤ p < ∞. Therefore, F`p ,n is not
surjective because y is not in the range of F`p ,n.

Let us denote by Hbvs(`p(Cn)) the closure of Pvs(`p(Cn)) and by Hbds(`p(Cn)) the clo-
sure of Pds(`p(Cn)) in Hb(`p(Cn)). Thus, both Hbvs(`p(Cn)) and Hbds(`p(Cn)) are Fréchet
algebras with respect to the topology of uniform converges on bounded subsets of `p(Cn).

Theorem 5. The mapping CF`p ,n( f ) = f ◦ F`p ,n, f ∈ Hbvs(`p(Cn)) is a continuous homomor-
phism from Hbvs(`p(Cn)) to Hbds(`p(Cn)) with a dense range.

Proof. By using Theorem 4, the injective homomorphism CF`p ,n is well defined on the
dense subset Pvs(`p(Cn)). It is well known that a composition operator with an analytic
map of a bounded type is a continuous operator from Hb(X) to itself. Moreover, for every
f ∈ Hbvs(`p(Cn)), the range

CF`p ,n( f ) = CF`p ,n

( ∞

∑
i=0

fi

)
=

∞

∑
i=0

CF`p ,n( fi)

belongs to Hbds(`p(Cn)). Thus, CF`p ,n is a continuous homomorphism from Hbvs(`p(Cn)) to
Hbds(`p(Cn)). On the other hand, the range of CF`p ,n contains the dense subset Pds(`p(Cn))

of Hbds(`p(Cn)).

Note that any double-symmetric analytic function is block symmetric as well. Thus,
Hbds(`p(Cn)) is a closed subspace of Hbvs(`p(Cn)).

The spectra of algebras Hbvs(`p(Cn)) were considered in [35]. The situation in the case
Hbds(`p(Cn)) is similar. In particular, for every x ∈ `p(Cn), we can assign a character δx
(so-called a point evaluation functional) on Hbds(`p(Cn)) by

δx( f ) = f (x), f ∈ Hbds(`p(Cn)).

Clearly, δx = δy if and only P(x) = P(y) for every polynomial P ∈ Hbds(`p(Cn)). Also, like
in the symmetric and block-symmetric cases (c.f. [8,9,35]), there are characters that are not
of the form δx.

Example 6. Let p be a positive integer and (v(m)) be a sequence in Hbds(`p(Cn)),

v(m) =




1
m1/p

0
· · ·
0

 · · ·


1
m1/p

0
· · ·
0


︸ ︷︷ ︸

m


0
0
· · ·
0

 · · ·


.

The sequence (v(m)) is bounded and ‖v(m)‖`p = 1. Note that Hbds(`p(Cn)) is a projective limit
of Banach algebras of uniformly continuous double-symmetric analytic functions Huds(Br

`p
) on
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balls in `p, centered at the origin and of a radius r > 0. In other words, Huds(Br
`p
) is the closure of

Hbds(`p(Cn)) with respect to the norm

‖ f ‖r = sup
‖x‖`p≤r

| f (x)|.

Thus, the spectrum of Hbds(`p(Cn)) is the inductive limit of the spectra of Huds(Br
`p
), r > 0,

which are a compact topological space with respect to the Gelfand topology (c.f. [20]). Thus, for
any bounded sequence (xm), the sequence of characters (δxm) has a cluster point in the spectrum.
Let ψ be a cluster point of (δv(m)

) in the spectrum of Hbds(`p(Cn)). Taking a subsequence, if
necessary, we may assume that f (v(m)) → ψ( f ) as m → ∞ for every f ∈ Hbds(`p(Cn)). Let
u(m) = F`p ,n(v(m)). Then,

u(m) =




1

m1/p
1

m2/p

· · ·
1

mn/p

 · · ·


1
m1/p

1
m2/p

· · ·
1

mn/p


︸ ︷︷ ︸

m


0
0
· · ·
0

 · · ·


.

This sequence is bounded by the continuity of the polynomial map F`p ,n. Actually, it is easy to check
that ‖u(m)‖`p ≤ π2/6. For every multi-index k = (k1, . . . , kn), |k| ≥ p, we have

Hk(u(m)) =
m

m
k1+2k2+···+nkn

p

=

{
1 if k = (p, 0, . . . , 0),
tends to 0 as m→ 0 otherwise.

Because u(m) is bounded, the sequence δu(m)
has a cluster point φ, and

φ(Hk) =

{
1 if k = (p, 0, . . . , 0),
0 otherwise.

If there is a point x ∈ `p(Cn) such that ψ = δx, then φ = δy for y = F`p ,n(x). But, according
to [35], such a point y does not exist. Thus, ψ is not a point evaluation functional.

6. Discussion and Conclusions

We considered the analytic functions on a Banach space X that are symmetric with
respect to a semidirect product of groups of operators on X. The main examples are algebras
of polynomials and analytic functions on `p(Cn) such that every function f (x) = f

(
x(k)j

)
is invariant with respect to the permutation of indexes j ∈ N, and for every fixed j, it
is invariant with respect to the permutations of indexes k ∈ {1, . . . , n}. We proved that
the algebra of polynomials Pds(`p(Cn)) is isomorphic to the algebra of block-symmetric
polynomials Pvs(`p(Cn)) for which we do not assume the invariance with respect to
the permutations of indexes k. This result may be considered as an infinite-dimensional
generalization of the fact that the map

P(t1, . . . , tn) P
( n

∑
k=1

tk, . . . ,
n

∑
k=1

tn
k

)
is an isomorphism between the algebra of all polynomials on Cn and symmetric polyno-
mials on Cn. However, we can not extend the isomorphism CF`p ,n of algebras Pvs(`p(Cn))

and Pds(`p(Cn)) to their completions Hbvs(`p(Cn)) and Hbds(`p(Cn)). Moreover, the fact
that F`p ,n is not surjective suggests to us that we start to look for a counterexample.
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Further investigations can be continued in different directions. First, we can try to
replace `p(Cn)) with `p(`q). Note that even for the case p = q = 1, we know almost nothing
about block-symmetric and double-symmetric polynomials. Another direction is the
spectrum of Hbds(`p(Cn)). In this paper, we observed that the spectrum contains characters
that are not point evaluation functionals. But the set of point evaluation functionals is
interesting itself, because it may admit non-trivial algebraic structures (see, e.g., [40]). Note
that in [40], using symmetric polynomials on `1, some applications in Cryptography were
proposed. In [41], possible applications of symmetric and block-symmetric polynomials
on Cm(Cn) in neural networks and blockchain technologies were considered. Our further
investigation will be devoted to a generalization of this approach for the cases of block-
symmetric and double-symmetric polynomials on `p(Cn).
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