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Abstract: The linear temporal stability of the Poiseuille flow through a rectangular duct is considered.
The effect of the duct aspect ratio on the transient growth of disturbances, which causes the so-called
subcritical laminar–turbulent transition, is studied numerically. In particular, it is shown that an
increase in the aspect ratio promotes the subcritical transition in almost the entire considered range
of the duct aspect ratios except a relatively narrow range, where the increase suppresses the transient
growth of disturbances. Such peculiarity is qualitatively explained by considering the nonmodal
stability of more simplified plane channel flow.

Keywords: linear hydrodynamic stability; nonmodal instability; optimal disturbances; symmetries
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1. Introduction

Viscous incompressible fluid flows in ducts and pipes are encountered in many en-
gineering and biotechnology applications. Therefore, it is of great interest to study the
influence of various factors on the stability of such flows in order to develop methods for
passive control of their stability characteristics. One of such factors is the ratio the flow geo-
metric scales in the cross–flow plane. For example, for the Poiseuille flow in a rectangular
duct, the dependence of the linear critical Reynolds number, ReL, which determines the
boundary of the asymptotic Lyapunov stability [1] of a given basic flow, on the duct aspect
ratio A is computed [2] and qualitatively explained [3]. In particular, it is shown that this
flow is linearly stable at A < Ac ≈ 3.2, that is ReL = ∞. With further increase in A, the flow
became linearly unstable with ReL tending to ReL ≈ 5772 [4] for the plane Poiseuille flow.
For the Poiseuille flow in a pipe of axially uniform elliptic cross-section the dependence
ReL(A) is qualitatively similar to that in the rectangular duct, though with Ac ≈ 10.4 [5].
In addition, later it has been shown for this flow that the energy-critical Reynolds number,
ReE, which is the lower limit of the Reynolds numbers enabling the growth of disturbance
kinetic energy, noticeably depends on A [6] as well.

At the Reynolds numbers, Re, larger than ReL, flows are usually turbulized due to
the growth in time (temporal instability) or in space (spatial instability) of individual
unstable modes (modal instability). Nevertheless, flows may also lose their stability at
ReE < Re < ReL due to the significant transient growth of the kinetic energy of distur-
bances (nonmodal instability) [7,8]. From the mathematical point of view, such growth
of disturbance kinetic energy is possible if the amplitudes of the modes comprising the
disturbance are non-orthogonal, i.e., the operator of the linearized equations for disturbance
amplitudes is non-normal [9–13]. The maximum amplification of the kinetic energy of
disturbances is achieved by the so-called optimal disturbances, which are a superposition
of a large number of essentially non-orthogonal modes. A comprehensive description of
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the theory of nonmodal instability, as well as a review of known results, can be found
in [7,8,14,15].

In this paper, the Poiseuille flow in an infinite duct of streamwise-uniform rectangular
cross-section is considered. The linear nonmodal instability of this flow is numerically
investigated in the temporal framework (in contrast to works [2,3] studying the modal
temporal instability of this flow). In particular, the influence of the duct aspect ratio on
the maximum amplification of the kinetic energy of disturbances as well as on the form
of the optimal disturbances is examined. This study is carried out taking into account
possible symmetries with respect to the cross-section axes, which are possessed by solutions
of the linearized equations for disturbance amplitudes. Accounting for the symmetries
significantly reduces computational costs and memory requirements for the computa-
tion of stability characteristics as well as facilitates the analysis and interpretation of the
obtained results.

The present study provides a better understanding of the effect of ratio of flow geo-
metric scales in the cross-flow direction on the nonmodal instability of shear flows in ducts
and pipes, which usually manifests itself as the subcritical laminar–turbulent transition.
In addition, the problem under consideration deserves attention as the rectangular ducts
are typical requisites for heat exchangers and heating, ventilation and air-conditioning
systems [16–18]. The heat and mass transfer of such flows depends significantly on whether
the flow is laminar or turbulent. According to the specific application, it may be preferred
either to suppress the flow instabilities to reduce vorticity (thereby reducing hydraulic
drag [19,20] and enhancing mass transfer) or to advance the transition to turbulence to
enhance mixing and heat transfer. Thus, the results of present study may be useful in the
design of these engineering devices.

Note that a limitation of the this study is the adoption of the temporal framework
(when a disturbance is given at an initial moment in the entire duct and the temporal evo-
lution of this disturbance is investigated) instead of the spatial one (when the disturbance
is given in some cross-section of the duct and the downstream propagation of this distur-
bance is investigated). The latter is more realistic, but the results of Criminale et al. [21]
and Lasseigne et al. [22] suggest the existence of a transform relating temporal transient
with the spatial one (see, e.g., discussion of the Formulas (26)–(28) in [21]). Therefore it is
expected that the spatial stability analysis provides qualitatively the same results.

This paper has the following structure. Section 2.1 formulates the problem of the non-
modal stability, including the linearized equations for disturbance amplitudes. Section 2.2
describes the differential-algebraic system arising after the spatial approximation of these
equations by a spectral collocation method. Then, the algebraic reduction of this system,
proposed and justified in [23,24], is discussed. It allows one to reduce the system to an
equivalent system of ordinary differential equations of approximately half the algebraic
dimension. In addition, this section describes accounting for the symmetries of distur-
bances at the matrix level. Section 3 presents the results of the study. Section 4 summarizes
the paper.

2. Materials and Methods
2.1. Problem Formulation

In Cartesian coordinates (x, y, z), let us consider the Poiseuille flow in an infinite duct
of streamwise-uniform rectangular cross-section Σ = {(y, z) : −1 < y < 1,−A < z < A},
where A ≥ 1 is the duct aspect ratio. The study of nonmodal temporal stability of this flow,
which we will call basic, is reduced [7,8] to the analysis of solutions of the following form:

v′(x, y, z, t) = v(y, z, t)eiαx, p′(x, y, z, t) = p(y, z, t)eiαx, (1)

where i is the imaginary unit, α ≥ 0 is the streamwise wavenumber, t is the time and
v = (u, v, w)T and p are complex-valued amplitudes of the velocity and the pressure
disturbances, respectively. These amplitudes satisfy the equations
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∂v
∂t

= −(V · ∇)v− (v · ∇0)V−∇p +
1

Re
∇2v, ∇ · v = 0 (2)

in the domain Σ with no-slip (zero) boundary conditions for the velocity components. It is
assumed that the initial condition for that system is a non-trivial, sufficiently smooth and
divergence-free vector function, satisfying the no-slip boundary conditions. The system (2)
is derived by substituting disturbances of the form (1) into the linearized (around the basic
flow) equations of motion of a viscous incompressible fluid. Here, ∇ = (iα, ∂/∂y, ∂/∂z)T ,
∇0 = (0, ∂/∂y, ∂/∂z)T , Re is the Reynolds number determined based on the duct half-
height and the maximum velocity of the basic flow (the maximum being reached at the
center of the cross-section), V = (U, 0, 0)T is the velocity vector of the basic flow with
normalized profile U(y, z). It can be computed by solving the Poisson equation ∇2

0U = −1
in the domain Σ with the no-slip conditions at the boundary and normalizing the solution
to U(0, 0) [3,23].

Let us define the average kinetic energy density of the velocity disturbance (1) through
its amplitude v as follows:

E(v′) = α

16Aπ

π/α∫
−π/α

∫
Σ

v′ · v̄′dxdydz =
1

8A

∫
Σ

v · v̄dydz = E(v), (3)

where the upper bar denotes the complex conjugation. When α = 0, the disturbance ampli-
tudes (1) are real, and when α > 0 they are complex, but their real parts, Realv′ = (v′ + v̄′)/2,
have physical meaning. It can be shown that E(Realv′) = E(v)/2 when α > 0.

Given (3), the maximum amplification of the average kinetic energy density of velocity
disturbances of the form (1) for the linearized Equations (2) at fixed A, α and Re is the value

ΓAα
Re = sup

E(v(t))
E(v(0)) ,

where the supremum is taken over all t ≥ 0 and all admissible initial disturbance am-
plitudes (i.e., nonzero, sufficiently smooth, divergence-free and satisfying the no-slip
conditions on the duct wall). The initial disturbance displaying the maximum amplification
ΓAα

Re is called optimal. We will assume E(v(0)) = 1, since for the linearized equations ΓAα
Re

does not depend on the amplitude of initial disturbance [7].
For an arbitrary function f (y, z) given in Σ, let us define functions of the form

f�◦(y, z) =
f (y, z) ◦ f (y,−z)

4
� f (−y, z) ◦ f (−y,−z)

4
,

where � and ◦ stand for + or −. That is, for example, the function f−+ is odd in y and even
in z. Given that U(y, z) is even [3] in y and z, it can be shown that if (u, v, w, p) is a solution
to the system (2) at given A, α and Re, then the following four sets of functions:

I (u−+, v++, w−−, p−+), II (u++, v−+, w+−, p++),

III (u−−, v+−, w−+, p−−), IV (u+−, v−−, w++, p+−),
(4)

also satisfy this system. Thus, the solution of the system (2) can be reduced to a separate
search for solutions possessing one of the four symmetries (4). It will be shown below that
taking into account the symmetries (4) allows one to reduce the computation of the solution
to the system (2) to computations in a quarter of the domain Σ. Note that in the square duct
the solutions of symmetry I pass to those of symmetry IV if the duct is rotated through π/2
about its streamwise axis.
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2.2. Computation Technique

Using the collocation method based on Legendre polynomials [25], we approximate
the system (2) in space as in the work [3] with the Gauss–Lobatto nodes for the velocity
and the Gauss nodes for the pressure. As a result, we obtain the system

dv
dt

= Jv + Gp, Fv = 0 (5)

with matrices J ∈ Cnv×nv , G ∈ Cnv×np , F ∈ Cnp×nv , where nv = 3nynz, np = (ny + 1)(nz + 1),
and ny and nz are the numbers of internal nodes for approximating the velocity components
in the directions y and z, respectively. In addition, v is the nv-component column vector,
which contains values of the velocity components in the internal Gauss–Lobatto nodes,
and p is the np-component column vector, which contains values of the pressure in the
Gauss nodes.

Using the Gauss–Lobatto quadratures [25], the discrete analog of the functional (3) can
be written in the form: E(v) = (E2v, v), where E = Kz ⊗ Ky, and Kz and Ky are diagonal
matrices, containing the square roots of the Gauss–Lobatto weights in the y and z directions,
respectively (⊗ denotes the Kronecker product). Let us change the variables v := Ev/

√
8A,

p := Epp/
√

8A, J := EJE−1, G := EGE−1
p , F := EpFE−1, where Ep = Kpz ⊗ Kpy, and Kpz

and Kpy are diagonal matrices containing the square roots of Gauss weights [25] in y and
z, respectively. As a result, E(v) = ‖v‖2

2 and the matrices J, G and F will [3] satisfy the
conditions J = J∗ < 0 and F = G∗. Therefore, the system (5) can be written as follows:

dv
dt

= Jv + Gp, G∗v = 0. (6)

The system (6) preserves at the discrete level the well-known property [3] of the
equations of motion of viscous incompressible fluid , namely, the possibility to exclude
the pressure using the continuity equation. Therefore, following the works [23,24], we
orthogonally project the system onto a subspace of divergence-free grid functions. To this
end, we need a rectangular unitary matrix Q of size nv × (nv − np), whose columns form
an orthonormal basis in the kernel of the matrix G∗. The arbitrary vector v satisfying the
second equation in (6) can be uniquely represented as v = Qu, where u = Q∗v. Multiplying
the first equation in (6) by Q∗, we obtain an equivalent to (6) system of ordinary differential
equations

du
dt

= Hu, (7)

with matrix H = Q∗ JQ of order n = nv − np, i.e., approximately half the algebraic di-
mension of the system (6). Note that the matrix Q can be computed based on the QR-
decomposition [26] of the matrix G.

Let v(t, v0) be the solution to the Cauchy problem for the system (6) for fixed A, α
and Re with an initial condition v0. We will assume asymptotic Lyapunov stability of this
system, that is, ‖v(t, v0)‖2 → 0 at t→ ∞. A vector v0 is called the optimal disturbance if
max{E(v(t, v0)) : t ≥ 0, G∗v0 = 0, E(v0) = 1} is the largest among all admissible v0. We
will restrict ourselves to optimal disturbances on which this maximum is achieved at the
smallest t, i.e., at

topt = min arg max
t≥0

ΓAα
Re (t),

where ΓAα
Re (t) = max{E(v(t; v0)) : G∗v0 = 0, E(v0) = 1} is the maximum amplification of

the average kinetic energy density of disturbances at given t, A, α, Re and arg max stand
for the argument of the maximum (i.e., the values of t at which ΓAα

Re (t) is maximized). One
can show [23] that E(v(t; v0)) = ‖ exp{tH}u0‖2

2, where u0 = Q∗v0. Thus,

ΓAα
Re (t) = ‖ exp{tH}‖2

2, ΓAα
Re = ΓAα

Re (topt).
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Hence, the computation of topt and the optimal disturbance is reduced to computing
the norm of the matrix exponential at various t. To this end, we will use the original
algorithm [27]. Then, v0

opt =
√

8AE−1Qu0
opt is the sought optimal disturbance, where

u0
opt ∈ arg max

u0∈Cn
‖ exp{toptH}u0‖2, ‖u0‖2 = 1

is the right normalized singular vector [26] of the matrix exp{toptH} corresponding to the
maximum singular value. To compute this vector, the SVD-decomposition [26] of matrix
exp{toptH} is used.

It can be shown that the chosen approximation method and the subsequent transfor-
mations preserve the symmetries (4) of the solutions to the system (2). Let us describe
their accounting for the symmetries. For simplicity, we assume that ny and nz are even.
Let the vectors v̂ ∈ Cn̂v and p̂ ∈ Cn̂p contain values of v and p at nodes with y ≤ 0
and z ≤ 0, so n̂v = nv/4, and n̂p = ny/2(nz/2 + 1), (ny/2 + 1)(nz/2 + 1), nynz/4 and
(ny/2 + 1)nz/2 for symmetries I–IV, respectively. For each symmetry, we define a rectangu-
lar block-diagonal matrix S with the blocks being matrices of the form S�◦ = Sz

◦ ⊗ Sy
� and

the rectangular matrix Sp = Sz
p◦ ⊗ Sy

p�, where � and ◦ stand for + or − and are chosen ac-
cording to (4). For example, S = diag(S−+, S++, S−−) and Sp = Sz

p+ ⊗ Sy
p− for symmetry

I; furthermore, e.g.,

Sy
� =

[
Iny/2
�I′ny/2

]
, Sy

p+ =

 Iny/2 0
0 1

I′ny/2 0

, Sy
p− =

 Iny/2
0

−I′ny/2

,

where In and I′n are the identity matrix and anti-diagonal identity matrix of order n,
respectively, and 0 is a zero matrix of appropriate dimension. Hence, v = Sv̂ and p = Spp̂.
Then, by scaling the symmetry matrices S := S/2 (after which the matrix S is orthogonal),
Sp := Sp/2, we perform the change of variables J := ST JS, G := STGSp, p̂ := 2p̂. As a
result, we obtain four independent systems of the form (6) with respect to v̂ and p̂, whose
solutions will be pairwise orthogonal. Further, these systems can be reduced to that of
the form (7). Considering that the algorithm [27] used to compute the norm of the matrix
exponential requires about O(n3) floating-point operations, then taking symmetries into
account allows one to reduce the number of operations by a factor of about 64. It should
be also noted that one of the advantages of the described numerical model is the use of
standard matrix algorithms (like QR or SVD decompositions) implemented in LAPACK
library and bundled, e.g., with MATLAB.

3. Results

The following ranges of values of the configuration parameters were considered: the
aspect ratio, 1 ≤ A ≤ 8, the streamwise wavenumber, 0 ≤ α ≤ 1.0, the Reynolds number,
1000 ≤ Re ≤ 4000 < ReL(A), where the dependence ReL(A) of the linear critical Reynolds
number on A can be found in [2,3]. The computations were performed taking into account
the disturbance symmetries on grids with ny = 20 and 40, and nz = bAnyc, where bac
denotes the integer part of the number a. The grid 20×b20Ac provided grid convergence of
the results with sufficient accuracy, so the results obtained on this grid are presented below.

For given A and Re, we define the maximum amplification of the average kinetic
energy density of disturbances as follows:

ΓA
Re = max

0≤α≤1
ΓAα

Re .

Figure 1 shows the isoines of ΓA
Re. Analysis of these data shows that ΓA

Re grows
monotonically at a fixed A with increasing Re and non-monotonically at a fixed Re with
increasing A. The optimal disturbances displaying ΓA

Re possess symmetry II at A = 1 (while
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the disturbances of symmetries I and IV show almost the same maximum amplification)
and symmetries I or III alternately at A > 1.

Isolines of ΓA
Re

Figure 1. Isolines of ΓA
Re equally spaced by 500. The optimal disturbances possess α = 0, symmetry II

for A = 1 and I or III alternately for A > 1.

Figure 2 shows a typical view of the dependence ΓA
Re at a fixed Re for disturbances

of each symmetry. It can be seen that the non-monotonicity of the maximum possible
amplification is related, on the one hand, to the change of the symmetry of the optimal
disturbance from I to III and vice versa (in particular, at A ≈ 1.9, 2.8, and 3.5). On the other
hand, the dependences ΓA

Re for symmetries I, II, and IV are non-monotonic themselves,
at least at relatively small A. To explain this, the corresponding optimal disturbances of
each symmetry were studied. The computations have shown that such disturbances are
streamwise uniform counter-rotating vortices; i.e., they have α = 0. Below, we discuss the
projections of real parts of the initial amplitudes v0

opt of the optimal disturbances (hereafter,
for brevity, optimal disturbances) onto the duct cross-section.

ΓA
Re for each symmetry

Figure 2. Dependences ΓA
Re for each symmetry (I is red, II is green, III is blue, IV is purple); Re = 3000.

The optimal disturbances possess α = 0 for all symmetries. Dashed lines correspond to the maximum
amplification for the plane Poiseuille flow at Re = 3000 for symmetries (8): the upper line corresponds
to symmetry I; the lower line corresponds to symmetry II.
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Figure 3 shows a typical view of the optimal disturbances of all four symmetries. Let
us discuss their features at A = 1. The optimal disturbances of symmetries I and IV consist
of two vortices. Such disturbances coincide if the duct is rotated through π/2 about its
streamwise axis, so they display the same amplifications ΓA

Re. The optimal disturbances
of symmetries II and III consist of four vortices: in the former the vortices are located
in each quarter of the cross-section, and in the latter they are located at the cross-section
axes. The optimal disturbances of symmetry II show a noticeably larger amplification
ΓA

Re. Apparently, this is because a sufficiently intense vortex motion, which mixes different
layers of the fluid and, thereby, causes a growth of the disturbance streamwise velocity
(the so-called lift-up effect [28,29]), occurs almost in the entire cross-section for the optimal
disturbances of symmetry II, while for that of symmetry III such motion occurs only near
the cross-section axes.

Optimal disturbances for each symmetry

   
 

 

 

 

 

   
 

 

 

  

 
   

 

 

 

   
 

 

 

 

 

Figure 3. Optimal disturbances at t = 0 for A = 1, 2 and 3 (rows 1–3), possessing symmetries I–IV
(columns from left to right).

The growth of A is accompanied, first, by a change in the shape of the vortices
comprising the optimal disturbances. In particular, the vortex width grows, which we
denote by Ã. Second, by a change in the number of vortices. For symmetries I, II and IV,
this number grows, remaining even. For symmetry III, the optimal disturbance consists
of four vortices at A = 1, but as A grows, the upper and lower vortices merge initially
(thereby the number became odd), and then the number of vortices increases, remaining
odd. The optimal disturbances of symmetries I and III (at A & 2) consist of one row of
vortices, and those of symmetries II and IV consist of two rows. This, apparently, explains
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the tendency of ΓA
Re values for symmetries I and III and symmetries II and IV, respectively,

to converge to each other with increasing A (see Figure 2).
It turns out that an increase in the number of vortices of the optimal disturbance means

that instead of a disturbance that was optimal at some A, another disturbance consisting
of a larger number of vortices becomes optimal with increasing A. Let us illustrate this
for disturbances of symmetry I. At A = 2, in addition to the optimal disturbance (1 in
Figure 4) consisting of two vortices, there are disturbances that exhibit lower energy
amplification and consist of more vortices. For example, disturbance 2 in Figure 4 contains
four vortices, although two of them are relatively weakly developed, and is optimal at
t ≈ 187 < topt ≈ 240. However, when A = 2.2, such disturbance becomes optimal.

Increase in the number of vortices of the optimal disturbance

Figure 4. Dependence ΓAα
Re (t) for A = 2 (black line) and 2.2 (dashed black line) and also the

amplification of kinetic energy of the corresponding optimal disturbances (1 and 3, red) and of the
disturbance 2, gray), which is optimal at A = 2 and t ≈ 187; α = 0, Re = 3000, symmetry I.

It follows from the obtained results that the change in the symmetry of the optimal
disturbance observed with increasing A is a consequence of an increase in the number of
vortices that comprise the disturbance (an even number is substituted by an odd number
and, accordingly, symmetry I is substituted by symmetry III). In addition, the computations
have shown that the increase in the number of vortices of the optimal disturbance first
occurs at A ≈ 2.1 and further at A ≈ 3.7 for symmetry I, at A ≈ 2.1 and 3.2 for symmetry
II, at A ≈ 2.9 and 4.4 for symmetry III, at A ≈ 1.4 and 2.6 for symmetry IV. That is,
the changes in the behavior of ΓA

Re for a given symmetry (see Figure 2: for symmetries I, II
and IV, the decrease of ΓA

Re is substituted by an increase, and for symmetry III, the growth
rate of ΓA

Re increases) are also associated with the increase in the number of vortices.
Therefore, to explain the dependence ΓA

Re, it remains to understand how A affects the
amplification of the optimal disturbance with α = 0 consisting of a fixed number of vortices.
To this end, we additionally consider optimal disturbances of the plane Poiseuille flow with
α = 0 and β > 0, where β is the transverse wavenumber. Such disturbances also consist of
streamwise counter-rotating vortices (see [7,8,30]). It is natural to assume that the effect of
A on the amplification of the above-mentioned optimal disturbance in a rectangular duct
should be qualitatively the same as the effect of the transverse wavelength 2π/β of the
optimal disturbance on its amplification in a plane channel, since both of these parameters
determine the width of the disturbance vortices.

Figure 5 shows the isolines of the maximum amplification Γβ
Re of the average kinetic

energy density of disturbances of the plane Poiseuille flow. The computations were per-
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formed for 0 ≤ α ≤ 1, 0 ≤ β ≤ 4 and 1000 ≤ Re ≤ 4000 based on the present model, taking
into account two possible symmetries of disturbances with respect to the horizontal axis:

I (u−, v+, w−, p−), II (u+, v−, w+, p+). (8)

It turns out that for each symmetry Γβ
Re has a maximum that is achieved on the optimal

disturbances (see Figure 6) with α = 0 and some Re-independent wavenumber β = β∞ > 0,
where β∞ ≈ 2.0 for symmetry I and 2.6 for symmetry II. In other words, for a given
symmetry, the maximum amplification is displayed by the optimal disturbances with the
transverse wavelength of 2π/β∞, i.e., consisting of vortices of width

Ã∞ = π/β∞, (9)

since the wavelength of these disturbances contains two vortices or two pairs of vortices.

Isolines of Γβ
Re

Figure 5. Isolines of Γβ
Re for the plane Poiseuille flow equally spaced by 100 for symmetry I (left)

and II (right). The optimal disturbances possess α = 0. The maximum of Γβ
Re is achieved at β = β∞,

where β∞ = 2.044 for symmetry I and 2.6 for symmetry II.

Optimal disturbances for the plane Poiseuille flow

Figure 6. Optimal disturbances of symmetry I (left) and II (right) for the plane Poiseuille flow (one
period of disturbances is shown), displaying the maximum of Γβ

Re shown in Figure 5.

Thus, in a rectangular duct, the optimal disturbance with α = 0 consisting of a certain
number of vortices will display the largest amplification at a certain aspect ratio A∗, which
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depends on the number of vortices. Any deviation (oversizing or undersizing) of A from
A∗ will decrease the amplification of such disturbance just as Γβ

Re decreases in the plane
channel when the transverse wavelength of the disturbance deviates from the value 2π/β∞.
Thus, for a given symmetry, the non-monotonicity of ΓA

Re arises, apparently, only when the
further increase in the number of vortices of the optimal disturbance occurs at A > A∗.

For sufficiently small values of A, the optimal disturbance of any symmetry, excluding
III (for which at 1 ≤ A . 2 the vortices merge), consists of the minimum possible number
of vortices, which, like in the optimal disturbances in the plane channel, have the same
width. Therefore, it can be assumed that for such a disturbance

A∗ ≈ NÃ∞/2, (10)

where N is the number of vortices of the disturbance of symmetry I or the number of
vertical pairs of vortices of the disturbance of symmetry II or IV, and Ã∞ is calculated
by the formula (9) using the corresponding value of β∞. Given that the vortices of the
optimal disturbance of symmetry I in the rectangular duct tend in shape and size with
increasing A to the vortices of the optimal disturbance of symmetry I in the plane channel,
then Ã∞ ≈ 1.5 for them in (10). The same is true for the disturbances of symmetries II and
IV in the rectangular duct and symmetry II in the plane channel, i.e., Ã∞ ≈ 1.2 for them.

Let us examine how the values of A∗ estimated by (10) agree with the locations of
the local maxima of the dependence ΓA

Re (Figure 2) for disturbances of symmetries I, II
and IV (Figure 3). The optimal disturbance of symmetry I consists at 1 ≤ A . 2.1 of
two vortices, i.e., N = 2, so A∗ ≈ 1.5. This value agrees reasonably well with the computed
value of A ≈ 1.7, at which a local maximum of ΓA

Re is observed. The optimal disturbance of
symmetry II consists at 1 ≤ A . 2.1 of two pairs of vortices, i.e., N = 2, so A∗ ≈ 1.2. This
value also agrees reasonably well with the computed value A ≈ 1.4. Finally, the optimal
disturbance of symmetry IV consists at 1 ≤ A . 1.4 of one pair of vortices, that is, N = 1,
so A∗ ≈ 0.6. Consequently, increasing A in the range 1 ≤ A . 1.4 should lead to the
decrease of the amplification up to A ≈ 1.4, at which the number of vortices of the optimal
disturbance increases, which is in good agreement with the obtained results.

For sufficiently large A, the estimate (10) will be rougher. This is due to the fact that
it is based on the assumption that all vortices of the optimal disturbance have the same
width Ã∞. However, after the number of vortices of the optimal disturbance has been
increased, their widths turn out to be unequal. This is clearly visible for disturbances of
all symmetries, e.g., when A = 3. Nevertheless, this estimate still predicts an increase
in ΓA

Re for disturbances of symmetries I, II and IV, which is observed (Figure 2) starting
from values A ≈ 2.1, 2.1 and 1.4, respectively, at which the increase in the number of their
vortices occurred, since A∗ for these disturbances exceeds the indicated values of A and is
approximately equal to 3.1, 2.4 and 1.8, respectively.

4. Conclusions

The Poiseuille flow in an infinite duct of streamwise-uniform rectangular cross-section
is considered in this paper. The results of numerical parametric analysis of the temporal
nonmodal stability of this flow are presented. In particular, the dependence of the maximum
amplification ΓA

Re of the average kinetic energy density of disturbances on the aspect ratio
1 ≤ A ≤ 8 and the Reynolds number 1000 ≤ Re ≤ 4000, as well as the optimal disturbances
by which ΓA

Re is achieved, are computed. All computations have been performed taking into
account four possible symmetries with respect to the cross-section axes that are allowed
by the solutions of the linearized equations for the disturbance amplitudes. The following
conclusions can be drawn on the basis of the obtained results.

The value of ΓA
Re grows significantly both with increasing Re and with increasing

A and in the latter case non-monotonically. Namely, ΓA
Re increases with A in the entire

considered range of A except 1.7 . A . 1.9. That is, the increase in the aspect ratio
promotes the subcritical laminar–turbulent transition in almost the entire considered range
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of A. Therefore, an increase in the aspect ratio is necessary if an enhancement of the flow
vorticity is preferable and vice versa.

The optimal disturbances by which ΓA
Re is achieved are streamwiseuniform counter-

rotating vortices. An increase in A is accompanied, first, by a change in the shape of
the vortices. In particular, their width grows. Second, by an increase in the number of
vortices. The latter means that instead of the disturbance, which was optimal at some
A, another disturbance consisting of a larger number of vortices becomes optimal with
increasing A. Along with the increase of the number of vortices, the symmetry of the
optimal disturbance changes.

As a result, the explanation of the dependence of ΓA
Re on A is reduced to that of the

influence of A on the amplification of the optimal disturbance consisting of some fixed
number of vortices. It is assumed in the paper that this influence of A should be qualitatively
the same as the influence of the transverse wavelength of the optimal disturbance on its
amplification in the plane channel flow, since both these parameters determine the width
of the disturbance vortices. Based on this assumption, a qualitative explanation of the
dependence of ΓA

Re on A is proposed.
Concluding, it is worth noting that further research that can be carried out on this

subject is manifold. In particular, an extension to consider effects of heating/cooling of the
duct walls (typical, e.g., for heat exchangers) that often ccurs in practice, or nanoparticle
additives on the nonmodal stability of the basic flow, is reasonable.
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