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Abstract: In this paper, the solution to a spatially colored stochastic heat equation (SHE) is studied.

This solution is a random function of time and space. For a fixed point in space, the resulting random

function of time has exact, dimension-dependent, global continuity moduli, and laws of the iterated

logarithm (LILs). It is obtained that the set of fast points at which LILs fail in this process, and occur

infinitely often, is a random fractal, the size of which is evaluated by its Hausdorff dimension. These

points of this process are everywhere dense with the power of the continuum almost surely, and their

hitting probabilities are determined by the packing dimension dimP(E) of the target set E.

Keywords: spatially colored stochastic heat equation; space–time white noise; Brownian-time processes;
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1. Introduction

Mathematical modeling, especially through stochastic partial differential equations
(SPDEs), plays a crucial role in understanding systems affected by randomness. These
models are fundamental in various disciplines, including physics (see del Castillo-
Negrete et al. [1]), engineering (see Kou and Xie [2]), finance (see Bayraktar et al. [3]),
and environmental sciences (see Denk et al. [4]). The stochastic heat equation (SHE) is a
mathematical model that considers stochastic and deterministic components to explain how
a random field evolves. It adds a stochastic element to the classical heat equation to account
for random changes in the system regarding heat transport. The spatially colored SHE is
an important class of SHEs. This equation is driven by a spatially colored noise, which
makes it is possible to solve linear and non-linear equations in the space of real-valued
stochastic processes (see Dalang [5]). It has its own importance because it is relevant to the
parabolic Anderson localization (see Hu [6], Mueller and Tribe [7]). It is also related to the
KPZ equation, which is the field theory of many surface growth models, such as the Eden
model, ballistic deposition, and the SOS model (see Bruned et al. [8], Hu [6]).

In this paper, the following d-dimensional SHE is considered:
∂

∂t
uα,d(t, x) =

ϑ

2
∂2

∂x2 uα,d(t, x) + σ(uα,d(t, x))Ẇα,d, t ∈ R+, x ∈ Rd,

uα,d(0, x) = w(x), x ∈ Rd,
(1)

with ϑ > 0 and Gaussian space–time colored noise Wα,d. The noise Wα,d is assumed to have
a particular covariance structure (see Dalang [5]),

E[Wα,d(t, A)Wα,d(s, B)] = (t ∧ s)
∫

A

∫
B

fα,d(x− y)dxdy, t, s ∈ R+, A, B ∈ Bb(Rd), (2)
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where
fα,d(x) = cα,d|x|−d+α, 0 < α < d, (3)

with cα,d = 2d−απd/2Γ((d − α)/2)/Γ(α/2). The initial condition, w(x), is taken to be
bounded and ρ-Hölder continuous. σ is assumed to be Lipschitz continuous; there exists
c0 ≥ 0 such that |σ(x)− σ(y)| ≤ c0|x− y| and |σ(x)| ≤ c0(1 + |x|).

It is known (see Dalang [5], Dalang et al. [9], Khoshnevisan [10], Raluca and Tu-
dor [11], Rippl and Sturm [12], Tudor [13]) that (1) admits a unique mild solution if and
only if d < 2 + α and this mild solution is interpreted as the solution of the following
integral equation:

uα,d(t, x) =
∫
Rd

Gt;x,yuα,d(0, y)dy +
∫ t

0

∫
Rd

Gt−s;x,yσ(uα,d(s, y))Wα,d(ds, dy), (4)

for t ∈ R+, x ∈ Rd, where the above integral is a Wiener integral with respect to the noise
Wα,d (see, e.g., Balan and Tudor [14] for the definition), and G is the Green kernel of the
heat equation given by

Gt;x,y =

(2πϑt)−1/2e−|x−y|2/(2ϑt) if t > 0, x, y ∈ Rd,

0 if t ≤ 0, x, y ∈ Rd.
(5)

Bezdek [15] investigated the weak convergence of probability measures corresponding
to the solution of (1) in d = 1. It was shown that probability measures corresponding to
uα,1 weakly converge to those corresponding to the solution to the SHE with white noise
when α ↑ 1, that is, the solution of (1) converges in the appropriate sense to the solution of the
same equation, but with white noise W instead of colored noise Wα,1 as α ↑ 1. This means
the solution to ∂

∂t u(t, x) = ϑ
2

∂2

∂x2 u(t, x) + σ(u(t, x))Ẇ, t ∈ R+, x ∈ R,

u(0, x) = w(x), x ∈ R,
(6)

where W denotes white noise. SPDEs such as (6) have been studied in Balan and Tudor [14],
Dalang [5], Dalang et al. [9], Pospíšil and Tribe [16], Swanson [17], Tudor [13], and others.

Among others, Tudor and Xiao [18] investigated the exact temporal global continuity
modulus and temporal LIL of the process uα,d in time. In fact, they investigated these
path properties for a wider class, namely, the solution to the linear SHE driven by a
fractional noise in time with a correlated spatial structure. Swanson [17] showed that the
solutions of the SHEs in (6) with ϑ = σ = 1, in time, had infinite quadratic variation and
were not semimartingales, and also investigated central limit theorems for modifications
of the quadratic variations of the solutions of the SHEs with white noise. Pospíšil and
Tribe [16] showed that the quadratic variations of the solutions of the SHEs in (6) with
ϑ = σ = 1, in time, had Gaussian asymptotic distributions. Inspired by Swanson [17]
and Pospíšil and Tribe [16], Wang [19] showed that the realized power variations of the
solutions of the SHEs in (6) with ϑ = σ = 1, in time, had Gaussian asymptotic distributions.
Wang et al. [20] showed that the realized power variations of the solutions of the SHEs
in (1) with spatially colored noise, in time, had infinite quadratic variation and Gaussian
asymptotic distributions.
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For λ ∈ (0, 1] and [a, b] ⊂ R+, the set of λ-fast points for a process X, is defined to be
the set

F(λ) :=
{

t ∈ [a, b] : lim sup
h→0+

φh|X(t + h)− X(t)| ≥ λ
}

, (7)

where φh is an appropriate regularization constant. The set F(λ) is the set of t where the
LILs of the process are X. This kind of set is usually called the fast point set or the exceptional
time set. It is interesting to obtain information about the size of F(λ). One usually does
this by considering their Hausdorff measures. This problem was first studied by Orey and
Taylor [21] on the fast set of Brownian motion. In Orey and Taylor [21], it was shown that
F(λ) is a random fractal with probability 1, dimH (F(λ)) = 1− λ2. See Mattila [22] for the
definition of the Hausdorff dimension. After this famous paper, several papers studied
this problem for general Gaussian processes. Among other things, the fractal nature for
empirical increments and processes with independent increments was studied in Deheuvels
and Mason [23]. The fractal nature for the fast point set of Lp-valued Gaussian processes
was studied in Zhang [24]. Khoshnevisan et al. [25] showed that the packing dimension
was the right index for deciding which sets intersect F(λ). In Khoshnevisan et al. [25], it
was shown that for any α ∈ (0, 1] and any analytic set B ⊂ R+,

P{F(α) ∩ B 6= ∅} =

1, if dimP(B) > α2,

0, if dimP(B) < α2.
(8)

See also Mattila [22] for the definition of packing dimension.
Inspired by the studies of Orey and Taylor [21], Zhang [24], and Khoshnevisan et al. [25],

this paper is devoted to establishing a fractal nature for the set of temporal fast points of
the spatially colored SHE. In particular, in this paper, Hausdorff dimensions for the sets of
temporal fast points of the spatially colored SHE are evaluated, and hitting probabilities of
temporal fast points are obtained by using the packing dimension dimP(E) of the target
set E. On the other hand, the global temporal continuity modulus and temporal LIL for
uα,d(·, x) were obtained in Tudor and Xiao [18]. Tudor and Xiao [18] showed the existence
of regularization constants for the global temporal continuity modulus and the temporal
LIL, but their exact values remain unknown. In this paper, the exact values of these regu-
larization constants are obtained, and the exact, dimension-dependent, global temporal
continuity modulus and the temporal LIL for the spatially colored SHE solution uα,d(t, x)
are established.

Our proofs are based on the method of Orey and Taylor [21], Zhang [24], and Khosh-
nevisan et al. [25]. The pinned string process with respect to uα,d(·, x) is used to obtain
precise estimations of the mean squares of the process uα,d in time and the exact values
of these regularization constants. This work builds upon the recent work on a delicate
analysis of the Green kernel of SHEs driven by space–time white noise.

Throughout this paper, an unspecified positive and finite constant will be denoted by
c, which may not be the same in each occurrence.

2. Main Results

The gamma function is known as a generalization of the factorial function to non-
integer values, and provides a continuous and smooth interpolation between the factorial
values of positive integers. The gamma function is crucial in various branches of mathe-
matics, including complex analysis, number theory, and statistics. It has applications in
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solving definite integrals, evaluating infinite products, and expressing solutions to certain
differential equations. For any α > 0 and α < d < α + 2, let

Kα,d =
ϑ−

d−α
2

2d−1πd/2Γ(d/2)

∫ ∞

0

1

y2− d−α
2
(1− e−y/2)dy, (9)

where Γ(s) =
∫ ∞

0 xs−1e−xdx, s > 0 is the Gamma function. Here, α < d < α + 2 ensures
that the integral in (9) exists.

The global temporal continuity modulus and temporal LIL for the spatially colored
SHE solution are as follows. In fact, Equation (8) below is another form of the global
temporal moduli of continuity of the spatially colored SHE, which is slightly different from
those obtained by Tudor and Xiao [18].

Theorem 1. Let ϑ > 0 and x ∈ Rd be fixed. Assume that w = 0 and σ = 1 in (1), and 0 < α <

d < α + 2. Then, with probability 1, for any interval [a, b] ⊂ R̊+ = (0, ∞),

lim
h→0+

sup
s,t∈[a,b],|t−s|<h

φ−1
α,d,h|uα,d(t, x)− uα,d(s, x)| = 1, (10)

where φα,d,h = h
1
2−

d−α
4
√

2Kα,d log(1/h), and for any fixed t0 ∈ R̊+,

lim sup
h→0+

sup
|t0−s|<h

φ̂−1
α,d,h|uα,d(t0, x)− uα,d(s, x)| = 1, (11)

where φ̂α,d,h = h
1
2−

d−α
4
√

2Kα,d log log(1/h). Here Kα,d is given in (9).

Remark 1. For the above theorem, it is worth remarking that:

(1). Equation (10) is another form of the global temporal modulus of continuity of the spatially colored
SHEs, which is slightly different from that obtained by Tudor and Xiao [18]. Equation (10) with
c(α,d)

3 |t− s| 12− d−α
4
√

log(1/|t− s|) taking the place of φα,d,h was established in Proposition 1 of

Tudor and Xiao [18], and Equation (11) with c(α,d)
4 h

1
2−

d−α
4
√

log log(1/h) taking the place of

φ̂α,d,h was established in Proposition 2 of Tudor and Xiao [18], where c(α,d)
3 > 0 and c(α,d)

4 > 0
are dimension-dependent constants, independent of x, whose exact values remain unknown. Here,
in Equations (10) and (11), the exact constants for the global temporal modulus of continuity and
temporal LIL of the spatially colored SHEs are obtained. Moreover, by using Lemma 4 below, it
is easy to obtain c(α,d)

3 = c(α,d)
4 =

√
2Kα,d in Tudor and Xiao [18]. In this sense, the results of

Theorem 1 generalize those in Tudor and Xiao [18].
(2). Equation (10) describes the size of the global maximal temporal oscillation of the spatially

colored SHE solution uα,d(·, x) over the interval [a, b] is φα,d,h. Equation (11) describes the size
of the local temporal oscillation of the spatially colored SHE solution uα,d(·, x) at a prescribed
time t0 ∈ R̊ is φ̂α,d,h. It is interesting to compare Equations (10) and (11). The latter one
states that, at some given point, the LIL of uα,d(·, x) for any fixed x is not more than φ̂α,d,h.
On the other hand, the former tells us that the global continuity modulus of uα,d(·, x) can be
much larger, namely φα,d,h.

(3). By Equation (11), an application of Fubini’s theorem shows that the random time set

Fα,d,x,+ :=
{

t ∈ [a, b] : lim sup
h→0+

φ̂−1
α,d,h|uα,d(t + h, x)− uα,d(t, x)| > 1

}
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almost surely has Lebesgue measure zero for any [a, b] ⊂ R̊. However, Fα,d,x,+ is not empty:
in fact, the set of t satisfying the much stronger growth condition (12) below is almost surely
everywhere dense with the power of the continuum.

Fix x ∈ Rd. For λ ∈ (0, 1] and [a, b] ⊂ R̊, the set of temporal λ-fast points for the
spatially colored SHE, defined by

Fα,d,x(λ; a, b) :=
{

t ∈ [a, b] : lim sup
h→0+

φ−1
α,d,h|uα,d(t + h, x)− uα,d(t, x)| ≥ λ

}
, (12)

where φα,d,h is given in (10).
The following theorem obtains the Hausdorff dimension of the set of temporal fast

points of the spatially colored SHEs.

Theorem 2. Let ϑ > 0 and x ∈ Rd be fixed. Assume that w = 0 and σ = 1 in (1), and 0 < α <

d < α + 2. Then, for any λ ∈ [0, 1] and any 0 < a < b < ∞, with probability 1,

dimH (Fα,d,x(λ; a, b)) = 1− λ2. (13)

The next theorem shows that the packing dimension is the right index for deciding
which sets intersect Fα,d,x(λ; a, b).

Theorem 3. Let ϑ > 0 and x ∈ Rd be fixed. Assume that w = 0 and σ = 1 in (1) and
0 < α < d < α + 2. Then, for any λ ∈ [0, 1], 0 < a < b < ∞ and any analytic set
E ⊂ Ra,+ = [a, ∞),

P{Fα,d,x(λ; a, b) ∩ E 6= ∅} =

1, if dimP(E) > λ2,

0, if dimP(E) < λ2.
(14)

Remark 2. Let a ∈ R̊. It is easy to see that Equation (14) is equivalent to that, with probability 1,
for any analytic set E ⊂ Ra,+,

sup
t∈E

lim sup
h→0+

φα,d,h|uα,d(t + h, x)− uα,d(t, x)| = (dimP(E))1/2. (15)

Therefore, Equation (15) can be viewed as a probabilistic interpretation of the packing dimension of
an analytic set E ⊂ Ra,+ in the sense of spatially colored SHEs.

Remark 3. Let a ∈ R̊. Do as in Khoshnevisan et al. [25]; by reversing the order of sup and lim sup
in Equation (15), the following probabilistic interpretations of the upper and lower Minkowski
dimensions of E ⊂ Ra,+, denoted by dimM (E) and dim

M
(E), are obtained, respectively; see

Mattila [22] for definitions. For any analytic set E ⊂ Ra,+, with probability 1,

lim sup
h→0+

sup
t∈E

φα,d,h|uα,d(t + h, x)− uα,d(t, x)| = (dimM (E))1/2 (16)

and
lim inf
h→0+

sup
t∈E

φα,d,h|uα,d(t + h, x)− uα,d(t, x)| = (dim
M
(E))1/2. (17)
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3. Auxiliary Lemmas

To derive some needed estimations on the variance function of increments of some aux-
iliary Gaussian random fields, the following pinned string process in time {Uα,d(t), t ≥ 0}
is introduced:

Uα,d(t) =
∫ t

0

∫
Rd

Gt−r;x,yWα,d(dr, dy) +
∫ 0

−∞

∫
Rd
(Gt−r;x,y −G−r;x,y)Wα,d(dr, dy), (18)

where x ∈ Rd is fixed. Note that Uα,d(0) = 0 and Uα,d(t) can be expressed as

Uα,d(t) =
∫
R

∫
Rd
(G(t−r)+ ;x,y −G(−r)+ ;x,y)Wα,d(dr, dy). (19)

In the above, z+ = max(z, 0). Now, for all t ≥ 0, one has the following decomposition:

uα,d(t) = Uα,d(t)−Vα,d(t), (20)

where

Vα,d(t) =
∫ 0

−∞

∫
Rd
(Gt−r;x,y −G−r;x,y)Wα,d(dr, dy). (21)

Lemma 1. Let ϑ > 0 and x ∈ Rd be fixed. Assume that w = 0 and σ = 1 in (1), and 0 < α <

d < α + 2. Then, for all s, t ∈ R+,

E[(Uα,d(t, x)−Uα,d(s, x))2] = Kα,d|t− s|1−
d−α

2 , (22)

where Kα,d is given in (9). Consequently, Uα,d(·, x) coincides in distribution with K1/2
α,d BH(·) with

H := 1
2 −

d−α
4 , where BH is a fractional Brownian motion with Hurst parameter H.

Proof. Denote by µ(dξ) = |ξ|−αdξ the tempered non-negative measure on Rd, and ϕ̂(ξ) =∫
Rd ϕ(r) e−i〈ξ,r〉dr the Fourier transform of the function r 7→ ϕ(r), and f the Riesz kernel

defined in (3). Then, for any ϕ, ψ ∈ S(Rd) (see, e.g., Tudor [13], Tudor and Xiao [18]),∫
Rd

∫
Rd

ϕ(r) f (r− y)ψ(y)drdy = (2π)−d
∫
Rd

ϕ̂(ξ)ψ̂(ξ)µ(dξ). (23)

It follows from (23) that, for any 0 ≤ s < t,

E[|Uα,d(t)−Uα,d(s)|2]

= E
[( ∫

R

∫
Rd
(Gt−r;x,yI{t>r} −Gs−r;x,yI{s>r})Wα,d(dr, dy)

)2]
=
∫
R

dr
∫
Rd

∫
Rd
(Gt−r;x,yI{t>r} −Gs−r;x,yI{s>r}) f (y− y′)

×(Gt−r;x,y′I{t>r} −Gs−r;x,y′I{s>r})dydy′

= (2π)−d
∫
R

dr
∫
Rd
(Ĝt−r;x,·I{t>r} − Ĝs−r;x,·I{s>r})(ξ)

×(Ĝt−r;x,·I{t>r} − Ĝs−r;x,·I{s>r})(ξ)µ(dξ).

(24)

Since the Fourier transform of the Green kernel

Ĝt;x,·(ξ) = e−iϑ〈x,ξ〉 exp
(
− tϑ|ξ|2

2

)
, (25)
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Equation (24) becomes

E[|Uα,d(t)−Uα,d(s)|2]

= (2π)−d
∫
Rd

µ(dξ)
∫
R
(e−(t−r)ϑ|ξ|2/2I{t>r} − e−(s−r)ϑ|ξ|2/2I{s>r})

2dr

= (2π)−d
∫
Rd
|ξ|−αdξ

∫
R
(e−(t−r)ϑ|ξ|2I{t>r} + e−(s−r)ϑ|ξ|2I{s>r} − 2e−(t+s−2r)ϑ|ξ|2/2I{s>r})dr

= (2π)−d
∫
Rd

2
ϑ|ξ|2+α

(1− e−(t−s)ϑ|ξ|2/2)dξ

= 2(2π)−d(t− s)1− d−α
2 ϑ−

d−α
2

∫
Rd

1
|ζ|2+α

(1− e−|ζ|
2/2)dζ,

(26)

where the last equality follows from the change of variable ξ 7→ ζ : ζ =
√
(t− s)ϑξ. By the

following integral formula (see Corollary on page 23 in Fang et al. [26]):

∫
Rd

f
( d

∑
i=1

x2
i

)
dx1 · · · dxd =

πd/2

Γ(d/2)

∫ ∞

0
yd/2−1 f (y)dy, (27)

Equation (26) becomes

E[|Uα,d(t)−Uα,d(s)|2]

= (t− s)1− d−α
2

ϑ−
d−α

2

2d−1πd/2Γ(d/2)

∫ ∞

0

1

y2− d−α
2
(1− e−y/2)dy.

(28)

This completes the proof.

Lemma 2. Let ϑ > 0 and x ∈ Rd be fixed. Assume that w = 0 and σ = 1 in (1), and 0 < α <

d < α + 2. Then, for any s, t ∈ Ra,+ with some a > 0, there exists a constant c = c(α, d, ϑ, a) > 0,
independent of s, t and x, such that

E[(Vα,d(t, x)−Vα,d(s, x))2] ≤ c|t− s|2. (29)

Proof. It follows from (23) and (25) that, for any 0 ≤ s < t,

E[|Vα,d(t)−Vα,d(s)|2]

= E
[( ∫

R

∫
Rd
(Gt−r;x,yI{0>r} −Gs−r;x,yI{0>r})Wα,d(dr, dy)

)2]
=
∫ ∞

0
dr
∫
Rd

∫
Rd
(Gt+r;x,y −Gs+r;x,yI{0>r}) f (y− y′)

×(Gt+r;x,y′ −Gs+r;x,y′)dydy′

= (2π)−d
∫ ∞

0
dr
∫
Rd
(Ĝt+r;x,· − Ĝs+r;x,·)(ξ)(Ĝt+r;x,· − Ĝs+r;x,·)(ξ)µ(dξ)

=
1

4(2π)d

∫
Rd
|ξ|−αdξ

∫ ∞

0
(e−(t+r)ϑ|ξ|2/2 − e−(s+r)ϑ|ξ|2/2)2dr

=
1

4(2π)d

∫
Rd
|ξ|−αdξ

∫ ∞

0
e−(s+r)ϑ|ξ|2(e−(t−s)ϑ|ξ|2/2 − 1)2dr

=
1

4ϑ(2π)d

∫
Rd
|ξ|−2−αe−sϑ|ξ|2(e−(t−s)ϑ|ξ|2/2 − 1)2dξ.

(30)
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Since |1− e−z| ≤ 2z for all z ≥ 0, by (27), one has for all a ≤ s < t,

E[|Vα,d(t)−Vα,d(s)|2]

≤ ϑ

4(2π)d (t− s)2
∫
Rd
|ξ|2−αe−aϑ|ξ|2 dξ

=
ϑ

4(2π)d
πd/2

Γ(d/2)
(t− s)2

∫ ∞

0
y(d−α)/2e−aϑydy

= c(t− s)2.

(31)

The proof is completed.

The following exact large deviation estimation for spatially colored SHEs is needed.

Lemma 3. Let ϑ > 0 and x ∈ Rd be fixed. Assume that w = 0 and σ = 1 in (1), and 0 < α <

d < α + 2. Then, for any t ∈ Ra,+ with some a > 0, there exists a constant h0 = h0(α, d, ϑ, a) > 0
such that for any 0 < h < h0,

lim
z→∞

z−2 logP
(
|uα,d(t + h, x)− uα,d(t, x)| ≥ zK1/2

α,d h
1
2−

d−α
4

)
= −1

2
. (32)

Proof. Since u and V are independent, by Lemmas 1 and 2,

E[(uα,d(t + h, x)− uα,d(t, x))2]

= E[(Uα,d(t + h, x)−Uα,d(t, x))2]−E[(Vα,d(t + h, x)−Vα,d(t, x))2]

= (Kα,d + o(1))h1−(d−α)/2.

Thus, by the well known estimation (cf., e.g., Csörgő and Révész [27], p.23),

1√
2π

(1
y
− 1

y3

)
e−y2/2 ≤ 1−Φ(y) ≤ 1√

2πy
e−y2/2, ∀y > 0, (33)

(32) is obtained immediately, where Φ(y) is the standard normal distribution function.
The proof is completed.

The following Fernique-type inequality for spatially colored SHEs is also needed.

Lemma 4. Let ϑ > 0 and x ∈ Rd be fixed. Assume that w = 0 and σ = 1 in (1), and 0 < α <

d < α + 2. Then for any ε > 0 and a > 0, there exist constants h0 = h0(α, d, ϑ, a, ε) > 0 and
c = c(α, d, ϑ, a, ε) > 0, independent of x, such that, for any T > 0, 0 < h < h0 and z > 0,

P
(

sup
a≤t≤a+T

sup
0≤s≤h

|uα,d(t + s, x)− uα,d(t, x)| ≥ zK1/2
α,d h

1
2−

d−α
4

)
≤ cT

h
e−

z2
2+ε . (34)

Proof. By using Lemma 3, following the same lines as the proof of Proposition 3.3 in
Meerschaert et al. [28], (34) is obtained. This completes the proof.

4. Proofs

Proof of Theorem 1. By using (34), following the same lines as the proof of Theorems 1.4
and 1.7 in Tudor and Xiao [18], (10) and (11) are obtained. This completes the proof.
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Proof of Theorem 2. By Remark 2, it suffices to show (15). By using Lemma 4 and follow-
ing the same lines in the proof of Theorem 2 of Orey and Taylor [21], p. 180, it is easy to
show that, with probability 1,

∀λ ∈ [0, 1], dimH (Fα,d,x(λ; a, b)) ≤ 1− λ2. (35)

That is, the upper bound of Equation (15) is validated.
It now turns to the proof of the opposite inequality. It suffices to show that, with

probability 1,
∀λ ∈ [0, 1], dimH (Fα,d,x(λ; a, b)) ≥ 1− λ2. (36)

The method of proof is similar to those of Theorem 2 of Orey and Taylor [21] and
Theorem 1.1 of Zhang [24], but is more complicated in our SHE with the spatially colored
noise case.

This time, 0 < λ < 1 is assumed, as otherwise there is nothing to prove. For each
fixed 0 < λ0 < λ < 1, it suffices to show that Fα,d,x(λ; a, b) contains a Cantor-like subset of
dimension at least η − 2ε, where 0 < ε < η/2 < 1 and η = 1− λ2

0. The result then follows
by taking a sequence of values of λ0 converging to λ and ε converging to 0. The proof
is devoted to the construction of this Cantor-like subset and was inspired by, and is an
accurate generalized version of, the arguments in the proofs of Zhang [24] and Orey and
Taylor [21].

The following lemma is required in the proof (see Zhang [24]).

Lemma 5. Suppose that g : [a, b] → [0, ∞) is a continuous function. Let F ⊂ [a, b] be such
that F = ∩∞

m=1Fm, where F1 ⊃ · · · ⊃ Fm · · · for m = 1, 2, . . ., and Fm = ∪Nm
k=1 Im,i with

{Im,i : 1 ≤ i ≤ Nm} being, for each m ≥ 1, a collection of disjoint closed subintervals of [a, b].
Then, if there exist two constants δ > 0 and C > 0 such that, for every interval I ⊂ [a, b] with
|I| ≤ δ there is a constant m(I) such that for all m ≥ m(I),

Nm(I) =: #{Im,i ⊂ I; 1 ≤ i ≤ Nm} ≤ Cg(|I|)Nm, (37)

it holds that µg(F) > 0.

Let T denote the collection of intervals [s, t] ⊂ [a, b] such that

uα,d(t, x)− uα,d(s, x) ≥ λφ|t−s|.

The modulus of continuity (10) tells us that

|uα,d(t, x)− uα,d(s, x)| ≤
√

2φ|t−s| (38)

for all s, t ∈ [a, b] with |s − t| being sufficiently small. Hence, there exists 0 < K < 1,
depending only on λ and λ0 such that, for every sufficiently small Itime = [s, t] ⊂ [a, b],

uα,d(t, x)− uα,d(s, x) ≥ λ0φ|t−s| (39)

implies that [v, t] ∈ T for all v ∈ Itime(K) = [s, s + K(t− s)]. For convenience, K is assumed
to be the reciprocal of an integer.
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Suppose that rn is the reciprocal of an integer, rn+1 < Krn, and Krn/rn+1 is an integer
for n = 1, 2, . . . Let τ be a positive number such that τ < ε/16. For each n ≥ 1, define
νn = br−τ

n c, $n = b(r−1
n − 1)/νnc+ 1, hn = rn(b− a) and

tn,i = tn,i(a, b) = a + iνnhn, i = 0, 1, . . . , $n − 1,

Jn = {[tn,i, tn,i + hn]; i = 0, 1, . . . , $n − 1}.

For each n ≥ 1 and any Itime = [tn,i, tn,i + hn] ∈ Jn, define

Ξα,d,x(n, Itime) = γ−1
hn

(uα,d(tn,i + hn, x)− uα,d(tn,i, x)),

where γh = K1/2
α,d h

1
2−

d−α
4 . Moreover, define

Jn,+ = {Itime ∈ Jn; Ξα,d,x(n, Itime) > λ(2 log(1/hn))
1/2},

Jn,+(K) = {Itime(K) = [s, s + K(t− s)], Itime = [s, t] ∈ Jn,+},
ρn(Jtime) = #{Itime ∈ Jn,+, Itime ⊂ Jtime}, ρn = ρn([a, b]),

$n(Jtime) = #{Itime ∈ Jn, Itime ⊂ Jtime}, $n = $n([a, b]),

h1−η(n)
n = P(N(0, 1) > λ(2 log(1/hn))

1/2),

where 0 < η(n)→ η := 1− λ2
0 as n→ ∞.

From (10), it follows that, for large enough n , Itime = [s, t] ∈ Jn,+ implies (39),
and then [v, t] ∈ T for any s ∈ Itime(K) ∈ Jn,+(K).

Lemma 6. Let ϑ > 0 and x ∈ Rd be fixed. Assume that w = 0 and σ = 1 in (1), and 0 < α <

d < α + 2. Then, there exists a constant c = c(α, d, ϑ, a, b) > 0, independent of x, such that for any
Itime = [tn,i, tn,i + hn] ∈ Jn and Jtime = [tn,j, tn,j + hn] ∈ Jn with Itime ∩ Jtime = ∅, and any
n ≥ n0 with some n0 > 0,

E[Ξα,d,x(n, Itime)Ξα,d,x(n, Jtime)] ≤ cν
− d−α

2
n . (40)

Proof. Without loss of generality, it is assumed that j > i > 0. For brevity, define by
Zξ,x(·, ·) the increments of the process ξ(·, ·):

Zξ,x(s, t) = ξ(t, x)− ξ(s, x), t, s ∈ R+, x ∈ Rd. (41)

Then, for any j > i > 0,

E[Zξ,x(iνn, iνn + 1)Zξ,x(jνn, jνn + 1)]

= E[(Zξ,x(jνn, iνn + 1))2]−E[(Zξ,x(jνn, iνn))
2]

−E[(Zξ,x(jνn + 1, iνn + 1))2] +E[(Zξ,x(jνn + 1, iνn))
2].

(42)

It follows from (42) and Lemma 1 that, for j > i > 0 and large n,

E[ZUα,d ,x(iνn, iνn + 1)ZUα,d ,x(jνn, jνn + 1)]

= Kα,dν
1− d−α

2
n [(j− i + 1/νn)

1− d−α
2 − 2(j− i)1− d−α

2 + (j− i− 1/νn)
1− d−α

2 ],
(43)
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where Uα,d(·, ·) is given in (18). Let f (x) = x1− d−α
2 for x > 0. Then, f ′′(x) < 0 for x > 0.

This, together with (43) and the Lagrange mean value theorem, yields that

E[ZUα,d ,x(iνn, iνn + 1)ZUα,d ,x(jνn, jνn + 1)] < 0. (44)

It follows from (30) and (27) that, for any a ≤ s < t,

E[(ZVα,d ,x(s, t))2]

= (2π)−d
∫
Rd

e−sϑ|ξ|2

ϑ|ξ|α+2 (1− e−(t−s)ϑ|ξ|2/2)2dξ

=
1

2dπd/2Γ(d/2)ϑ

∫ ∞

0
ζ

d−α
2 −2e−sϑζ(1− e−(t−s)ϑζ/2)2dζ

=
1

2dπd/2Γ(d/2)ϑ

∫ ∞

0
ζ

d−α
2 −2(e−tϑζ + e−sϑζ − 2e−(t+s)ϑζ/2)dζ.

(45)

This, together with (42), yields that

E[ZVα,d ,x(iνn, iνn + 1)ZVα,d ,x(jνn, jνn + 1)]

=
1

2dπd/2Γ(d/2)ϑ

∫ ∞

0
ζ

d−α
2 −2

{
− 2e−((j+i)νn+1)ϑζ/2 + 2e−((j+i)νn)ϑζ/2

+ 2e−((j+i)νn+2)ϑζ/2 − 2e−((j+i)νn+1)ϑζ/2
}

dζ.

(46)

By the changes of variables, (46) becomes

E[ZVα,d ,x(iνn, iνn + 1)ZVα,d ,x(jνn, jνn + 1)]

=
2

2dπd/2Γ(d/2)ϑ
((j + i)νn)

1− d−α
2

{
1− 2

(
1 +

1
(j + i)νn

)1− d−α
2

+
(

1 +
2

(j + i)νn

)1− d−α
2
} ∫ ∞

0
ζ

d−α
2 −2e−ϑζ/2dζ.

(47)

By Taylor expansion of (1± z)s, one has that, for any s > 0 and z ∈ (0, 1/4), 1− 2(1 + z)s +

(1 + 2z)s = −s(1 + η1z)s−1z + s(1 + z + η2z)s−1z = s(s− 1)(1 + η2 − η1)(1 + η3z)s−2z2,
where η1, η2 ∈ [0, 1] and η3 ∈ [0, 2]. This, together with (47), taking s = 1− d−α

2 and
z = 1

(j+i)νn
, yields that

|E[ZVα,d ,x(iνn, iνn + 1)ZVα,d ,x(jνn, jνn + 1)]| ≤ cν
− d−α

2
n . (48)

Since the Gaussian process {uα,d(t, x), t ≥ 0} is self-similar with index 1
2 −

d−α
4 (see

Tudor and Xiao [18]),

E[Ξα,d,x(n, Itime)Ξα,d,x(n, Jtime)] = E[Zuα,d ,x(iνn, iνn + 1)Zuα,d ,x(jνn, jνn + 1)]. (49)

Since uα,d(t, x) = Uα,d(t, x) − Vα,d(t, x), and uα,d(t, x) and Vα(t, x) are independent for
(t, x) ∈ R̊+ ×Rd, the Equation (49) becomes

E[Ξα,d,x(n, Itime)Ξα,d,x(n, Jtime)]

= E[ZUα,d ,x(iνn, iνn + 1)ZUα,d ,x(jνn, jνn + 1)]−E[ZVα,d ,x(iνn, iνn + 1)ZVα,d ,x(jνn, jνn + 1)].
(50)

By (44), (48) and (50), (40) is obtained. The proof is completed.
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The following three lemmas are needed.

Lemma 7. For any 0 < ζ ≤ 1/2, there exists an integer n0 such that

P(|ρn(Jtime)−E[ρn(Jtime)]| ≥ γE[ρn(Jtime)]) ≤ 2 exp(−ζ(1− ζ)(γ− 2ζ)E[ρn(Jtime)]) + h3
n, (51)

for all Jtime ⊆ [a, b], n ≥ n0 and γ > 0.

Proof. For brevity, denote by un,i = γ−1
hn

Zuα,d ,x(tn,i, tn,i + hn), Un,i = γ−1
hn

ZUα,d ,x(tn,i, tn,i +

hn) and Vn,i = γ−1
hn

ZVα,d ,x(tn,i, tn,i + hn), where Zξ,x, Uα,d and Vα,d are defined in (41), (19)

and (21), respectively, and by $n = $n(Jtime), `n = (2 log(1/hn))1/2 and δn = ν
− d−α

4
n .

Note that

ρn(Jtime) =
$n(Jtime)

∑
i=1

I(un,i > λ`n). (52)

Let {ςn, u∗n,i, i = 1, . . . , $n} are independent mean zero Gaussian random variables with
E[ς2

n] = δn and E[(u∗n,i)
2] = 1 − δn − E[V2

n,i]. It follows from Lemma 1 that E[u2
n,i] =

E[U2
n,i] − E[V2

n,i] = 1− E[V2
n,i] and E[(ςn + u∗n,i)

2] = E[ς2
n] + E[(u∗n,i)

2] = 1− E[V2
n,i] =

E[u2
n,i]. Moreover, by Lemma 6, one has E[un,iun,j] ≤ E[(ςn + u∗n,i)(ςn + u∗n,j)] = E[ς2

n] = δn

(i 6= j).
Let

f (z) =

ez if 0 ≤ z ≤ qn

eqn(z− qn + 1) if z ≥ qn

with qn = ζ(γ + 1)E[ρn(Jtime)], and let g(un,1, . . . , un,$n) = f (ζρn(Jtime)). Then, g(un,1, . . . ,
un,$n) ≤ eζρn(Jtime) ∨ $neqn . By the well-known comparison property (cf. Theorem 3.11 of
Ledoux and Talagrand [29], p. 74 or Lemma 2.1 of Zhang [24]), one has

E[g(un,1, . . . , un,$n)] ≤ E[g(ςn + u∗n,1, . . . , ςn + u∗n,$n)].

Thus, it follows that

P(ρn(Jtime)−E[ρn(Jtime)] ≥ γE[ρn(Jtime)])

= P( f (ζρn(Jtime)) ≥ f (qn)))

= P(g(un,1, . . . , un,$n) ≥ eqn))

≤ e−qnE[g(un,1, . . . , un,$n)]

≤ e−qnE[g(ςn + u∗n,1, . . . , ςn + u∗n,$n)]

≤ e−qn
{
E[eζ ∑

$n
i=1 I{ςn+u∗n,i>λ`n}I(ςn ≤ 2δ1/2

n `n)] + $neqnP(ςn > 2δ1/2
n `n)

}
≤ e−qnE[eζ ∑

$n
i=1 I{u

∗
n,i>(λ−2δ1/2

n )`n}] + $nP(ςn > 2δ1/2
n `n)}.

(53)

Since 1− e−x ≤ 2x for all x > 0, by (45), one has for any t, s ∈ Ra,+,

E[(ZVα,d ,x(s, t))2]

=
1

2dπd/2Γ(d/2)ϑ

∫ ∞

0
ζ

d−α
2 −2e−sϑζ(1− e−(t−s)ϑζ/2)2dζ

≤ ϑ

2dπd/2Γ(d/2)
(t− s)2

∫ ∞

0
ζ

d−α
2 e−aϑζdζ

= c(t− s)2.
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This yields that E[V2
n,i] ≤ cr1+ d−α

2
n ≤ δn for any 1 ≤ i ≤ $n. Thus, 1− 2δn ≤ E[(u∗n,i)

2] =

1− δn −E[V2
n,i] ≤ 1− δn for any 1 ≤ i ≤ $n. For an n large enough, denote by pn,0 = pn(λ),

pn,1 = pn(
λ−2δ1/2

n
(1−δn)1/2 ) and pn,2 = pn(

λ
(1−δn)1/2 ) where the following notation is used:

pn(z) = P(N(0, 1) > z`n), z > 0.

Then, it follows from (52) that

$n pn,0 ≤ E[ρn(Jtime)] =
$n(Jtime)

∑
i=1

P
( un,i√

1−E[V2
n,i]

>
λ√

1−E[V2
n,i]

`n

)
≤ $n pn,2.

Thus, qn = ζ(γ + 1)E[ρn(Jtime)] ≥ ζ(γ + 1)$n pn,0.
By the fact that {u∗n,i, i = 1, . . . , $n} are independent, one has

E[eζ ∑
$n
i=1 I{u

∗
n,i>(λ−2δ1/2

n )`n}]

≤ E
[
e

ζ ∑
$n
i=1 I{

u∗n,i√
1−δn−E[V2

n,i ]
>

λ−2δ1/2
n√

1−δn
`n}]

= eζ$n pn,1
(
E
[
e

ζ(I{
u∗n,1√

1−δn−E[V2
n,1 ]

>
λ−2δ1/2

n√
1−δn

`n}−pn,1)])$n

≤ eζ$n pn,1(1 + pn,1(1− pn,1)ζ
2)$n

≤ eζ$n pn,1+ζ2$n pn,1(1−pn,1)

≤ eζ$n pn,1+ζ2$n pn,1 .

Then, it follows from (53) that

P(ρn(Jtime)−E[ρn(Jtime)] ≥ γE[ρn(Jtime)])

≤ e−ζ$n((γ+1)pn,0−(1+ζ)pn,1) + $nP(ςn > 2δ1/2
n `n).

(54)

It follows from (33) that pn,0 ∼ pn,1 ∼ pn,2 as n → ∞. This implies that (1 + ζ)pn,1 ≤
(1 + 2ζ)pn,0 and pn,0 ≥ (1− ζ)pn,2. Thus, (54) becomes

P(ρn(Jtime)−E[ρn(Jtime)] ≥ γE[ρn(Jtime)])

≤ e−ζ$n(γ−2ζ)pn,0 + h3
n

≤ e−ζ(1−ζ)(γ−2ζ)$n pn,2 + h3
n.

(55)

Similarly to (55), by choosing qn = ζ((γ− 1)$n pn,0 + $n), one has

P(E[ρn(Jtime)]− ρn(Jtime) ≥ γE[ρn(Jtime)])

≤ e−ζ(1−ζ)(γ−2ζ)$n pn,0 + h3
n.

(56)

This, together with (55), yields (51). The proof is completed.

Lemma 8. Given ε > 0, δ > 0, with probability 1 there exists an integer n0 such that

|ρn(Jtime)−E[ρn(Jtime)]| ≤ εE[ρn(Jtime)] (57)

for all Jtime ⊆ [a, b] such that |Jtime| ≥ δ, and all n ≥ n0(ε, δ).
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Proof. It follows from (33) that pn,0 = hλ2(1+τn)
n , where τn → 0 as n → ∞. This, together

with Lemma 7 and the Borel–Cantelli argument, yields (57). The proof is completed.

Lemma 9. Given η′ < η = 1− λ2, there is an absolute constant c such that, with probability 1,
there is n1 such that

ρn(Jtime) ≤ c|Jtime|η
′
ρn([a, b]) (58)

for all Jtime ⊆ [a, b], n ≥ n1.

Proof. By Lemma 8, it is sufficient to show that

ρn(Jtime) ≤ c|Jtime|η
′E[ρn([a, b])] = c|Jtime|η

′
$nh1−η(n)

n (59)

for n ≥ n1. Note that |Jtime| < hn, implies ρn(Jtime) = 0, hn ≤ |Jtime| < νnhn, implies

ρn(Jtime) ≤ 1 and |Jtime|η
′
$nh1−η(n)

n ≥ crδ+η′−η(n)
n → ∞, it needs only to consider the

case of |Jtime| ≥ νnhn. It is clearly sufficient to consider only the class Dn of intervals
[a + ihn, a + jhn], where i, j are integers and 0 ≤ i < j ≤ (νnhn)−1. Note that $n ∼
ν−1

n h−1
n ∼ (b− a)−1rτ−1

n and $n(Jtime) = |Jtime|$n. It is deduced from Lemma 7 that, for an
n large enough

P(ρn(Jtime) > c|Jtime|η
′
$nh1−η(n)

n , J ∈ Dn)

≤ h−2
n exp(−c|hn|η

′
$nh1−η(n)

n ) + hn

≤ h−2
n exp(−crτ+η′−η(n)

n ) + hn.

Since τ + η′ − η(n)→ τ + η′ − η < 0, it follows that

∞

∑
n=1

P(ρn(Jtime) > c|Jtime|η
′
$nh1−η(n)

n , J ∈ Dn) < ∞,

which implies almost surely there exists n1 = n1(η
′) > 0 such that (59) holds. This

completes the proof of the lemma.

We are now ready to show that there exists a sequence of sets F1 ⊃ F2 ⊃ · · · fulfilling
the assumptions of Lemma 5, such that F = ∩∞

n=1Fn ⊂ Fα,d,x(λ; a, b). Since only a count-
able number steps of the construction are needed and each step can be carried out with
probability 1, one can assume that all the steps are carried out in the same probability 1
set. Choose η′ = η − 1

4 ε and define n1 =: n1(η
′) such that (58) is valid for n ≥ n1. Suppose

that (εk) is a sequence of positive numbers with ∑ εk < ∞. In the first step, by applying
Lemma 8, there exists an integer m1 ≥ n1 such that

|ρn −E[ρn]| < ε1E[ρn] (n ≥ m1).

Then, one will define an increasing sequence m1, m2, . . . inductively and define for k ≥ 1.

{Ik,i, 1 ≤ i ≤ Qk} = {Itime(K) ∈ Jmk ,+, Itime(K) ⊂ Fk−1},

F0 = [a, b], Fk = ∪
Qk
i=1 Ik,i,

Qk(Jtime) = #{i, Ik,i ⊂ Jtime} for Jtime ⊂ [a, b], Qk = Qk([a, b]),

ς(k) = η(mk), τ(k) = 1− ς(k), Rk = |Ik,i| = K(b− a)rmk .
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For k ≥ 2, suppose that mk−1 has been defined; one can define mk large enough to ensure

mk ≥ n0(ε, R2τ(k−1)/ε
k−1 ), mk = n0(εk, Rk−1),

mk ≥ 2mk−1, rmk ≤ r2
mk−1

,

where n0(ε, δ) is the integer determined in Lemma 8 to invalidate (57), and

R1/(2ε)
k ≤ K2η(b− a)2η

k−1

∏
i=1

Rτ(i)
i Kς(i)(b− a)ς(i). (60)

Then,
|ρn(Jtime)−Eρn(Jtime)| ≤ εkE[ρn(Jtime)] (61)

for all ⊆ [a, b] such that |Jtime| ≥ Rk−1, and all n ≥ nk.
By using (60), (61) and Lemmas 8 and 9, following the same lines as the proof of (2.23)

in Zhang [24], one has

Qk+j(Jtime) ≤ c
( k

∏
i=1

νmi

)
Rε

k |Jtime|η−2εQk+j (62)

for all Rk+1 < |Jtime| ≤ Rk, k ≥ 1, j ≥ 1.
Noting that

r2
mk
≤ r

1+ 1
2+···+

1
2k−1

mk ≤ rmk rmk−1 · · · rm1

and
k

∏
i=1

νmi ≤
( k

∏
i=1

rmi

)−τ
,

by (62), one has
Qk+j(Jtime) ≤ c(K(b− a))εrε−2τ

mk
|Jtime|η−2εQk+j

for all Rk+1 < |Jtime| ≤ Rk, k ≥ 1, j ≥ 1. Thus, it follows from Lemma 5 and the fact that
rε−2τ

mk
→ 0 (k→ ∞) that, with probability 1,

µsη−2ε(Fα,d,x(λ; a, b)) > 0. (63)

Hence, (36) is proved. The proof is completed.

Proof of Theorem 3. By Remark 2, it is sufficient to show Equation (15). By using (10)
and Lemma 4, following the same lines as the proof of the upper bound of Theorem 2.1 in
Khoshnevisan et al. [25], one has, with probability 1,

sup
t∈E

lim sup
h→0+

φα,d,h|uα,d(t + h, x)− uα,d(t, x)| ≤ (dimP(E))1/2. (64)

It now turns to the proof of the opposite inequality. That is, it is sufficient to prove
that, with probability 1,

sup
t∈E

lim sup
h→0+

φα,d,h|uα,d(t + h, x)− uα,d(t, x)| ≥ (dimP(E))1/2. (65)

Fix v such that dimP(E) > v. For any integer n ≥ 1, let Qn denote the set of all intervals
of the form [a + m2−n(b− a), a + (m + 1)2−n(b− a)], m ∈ Z+. In words, Qn denotes the
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totality of all intervals. For all Itime ∈ Qn, define πn(Itime) = a + m2−n(b− a) to be the
smallest element in Itime. For Itime ∈ Qn, denote by ωn(Itime) the indicator function of the
event (Θα,d,x(πn(Itime), 2−n(log n)−1) > v1/2), where the following notation is used:

Θα,d,x(t, h) = φα,d,h|uα,d(t + h, x)− uα,d(t, x)|. (66)

In words, ωn(Itime) is a Bernoulli random variable whose values take 1 or 0 according
to whether

Θα,d,x(πn(Itime), 2−n(log n)−1) > v1/2.

Define by D := lim supn D(n) a discrete limsup random fractal, where

D(n) =
⋃

Itime∈Qn :ωn(Itime)=1

I0
time,

where I0
time denotes the interior of Itime. It is claimed that, whenever dimP(E) > v, then

P(D ∩ E 6= ∅) = 1. (67)

The verification of (67) is postponed and (65) is proved first and thereby the proof is completed.
Since dimP(E) > v, (67) implies that there exists t ∈ E a.s. such that Θα,d,x(a +

2−n[t2n](b− a), 2−n(log)−1) ≥ v for infinitely many n. In particular,

sup
t∈E

lim sup
n→∞

Θα,d,x(a + 2−n[t2n](b− a), 2−n(log)−1) ≥ v a.s.

By (13),

lim
n→∞

sup
t∈Itime :Itime∈Qn

|Θα,d,x(t, 2−n(log)−1)−Θα,d,x(a+ 2−n[t2n](b− a), 2−n(log)−1)| = 0 a.s.

Thus, if dimP(E) > v, then (65) holds and thereby (15) holds.
It remains to verify (67). Fix small ε > 0 such that dimP(E) > v + ε. By Joyce and

Preiss [30], there is a closed E? ⊂ E, such that for all open sets O, whenever E? ∩O 6= ∅, then
dimM (E? ∩O) > v + ε (see Mattila [22] for the definition of upper Minkowski dimension).
It is enough to show that D ∩ E? 6= ∅, a.s. Fix an open set O such that E? ∩O 6= ∅. It is
claimed that, with probability 1,

D(n) ∩ E? ∩O 6= ∅ for infinitely many n. (68)

Define by V(n) := ∪∞
k=nD(k), n ≥ 1, the open sets. Then, this claim implies that, with

probability 1, V(n) ∩ E? ∩O 6= ∅ for all n; by letting O run over a countable base for the
open sets, one has that V(n) ∩ E? is a.s. dense in (the complete metric space) E?. By Baire’s
category theorem (see Munkres [31]), one has that ∩∞

n=1V(n) ∩ E? is dense in E? and in
particular, nonempty. Since D = ∩∞

n=1V(n), one has that D ∩ E? 6= ∅, a.s.; which, in turn,
(67) holds and the result follows.

Fix an open set O satisfying E? ∩O 6= ∅. Denote by Nn the total number of intervals
Itime ∈ Qn satisfying Itime ∩ E? ∩O 6= ∅. Since dimM (E? ∩O) > v + ε, by the definition
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of the upper Minkowski dimension, there exists v1 > v + ε, such that Nn ≥ 2nv1 for
infinitely many integers n. Thus, #(ℵ) = ∞, where

ℵ :=
{

n ≥ 1 : Nn ≥ 2nv1

}
. (69)

Denote by Πn := ∑ ωn(Itime) the total number of intervals Itime ∈ Qn such that Itime ∩
E? ∩O∩D(n) 6= ∅, where the sum is taken over all Itime ∈ Qn such that Itime ∩ E? ∩O 6= ∅;
that is,

Πn = #{Itime ∈ Qn : Itime ∩ E? ∩O 6= ∅, Θα,d,x(πn(Itime), 2−n(log n)−1) > v1/2}.

In order to show (68); with probability 1, D(n) ∩ E? ∩O 6= ∅ for infinitely many n, it
suffices to show that Πn > 0 for infinitely many n, a.s. That is, it is enough to show that

P(Πn > 0 i.o.) = 1, (70)

where i.o. means infinitely often.
It follows from (66) and (53) that E[Θ2

α,d,x(πn(Itime), 2−n(log n)−1)] = 1
2 (1+ τn), where

τn → 0 as n → ∞. Thus, pn := P(ωn(Itime) = 1) = 2−n(v+θn), where θn → 0 as n → ∞.
Hence, E[Πn] = Nn pn ≥ 2n(v1−v−θn). Thus, it follows from Lemma 8 that, with probability
1, Πn ≥ c2n(v1−v−θn). Since, v1 −v− θn → v1 −v < 0, it follows that, with probability
1, Πn → ∞, which implies that P(Πn = 0)→ 0 as n→ ∞. By Fatou’s lemma, one has

P(Πn > 0 i.o.) ≥ lim sup
n→∞

P(Πn > 0) = 1.

This yields (70). This completes the proof.

5. Conclusions

In this paper, the temporal fractal nature of the solution to a spatially colored SHE
has been investigated. The Hausdorff dimensions and hitting probabilities of the sets of
temporal fast points for the spatially colored SHEs in time variable t have been obtained. It
has been confirmed that these points of the spatially colored SHEs, in time, are everywhere
dense with power of the continuum almost surely, and their hitting probabilities are
determined by the packing dimension dimp(E) of the target set E. The research findings
are as follows:

i. The spatially colored SHEs have the exact, dimension-dependent, temporal moduli of
continuity and temporal LIL. The exact values of the regularization constants of these
results are the same.

ii. The set of temporal fast points for the spatially colored SHEs in time variable t is a
random fractal, the size of which is measured by its Hausdorff dimension.

iii. The packing dimension of the target analytic set determines the probability that the
intersection of the set of temporal fast points for the spatially colored SHEs in time
variable t and this analytic set is non-empty.
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