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Abstract: Computation of prolate spheroidal wavefunctions (PSWFs) is notoriously difficult and
time consuming. This paper applies operator theory to the discrete Fourier transform (DFT) to
address the problem of computing PSWFs. The problem is turned into an infinite dimensional matrix
operator eigenvalue problem, which we recognize as being the definition of the DPSSs. Truncation
of the infinite matrix leads to a finite dimensional matrix eigenvalue problem which in turn yields
what is known as the Slepian basis. These discrete-valued Slepian basis vectors can then be used as
(approximately) discrete time evaluations of the PSWFs. Taking an inverse Fourier transform further
demonstrates that continuous PSWFs can be reconstructed from the Slepian basis. The feasibility
of this approach is shown via theoretical derivations followed by simulations to consider practical
aspects. Simulations demonstrate that the level of errors between the reconstructed Slepian basis
approach and true PSWFs are low when the orders of the eigenvectors are low but can become large
when the orders of the eigenvectors are high. Accuracy can be increased by increasing the number of
points used to generate the Slepian basis. Users need to balance accuracy with computational cost.
For large time-bandwidth product PSWFs, the number of Slepian basis points required increases for
a reconstruction to reach the same error as for low time-bandwidth products. However, when the
time-bandwidth products increase and reach maximum concentration, the required number of points
to achieve a given error level achieves steady state values. Furthermore, this method of reconstructing
the PSWF from the Slepian basis can be more accurate when compared to the Shannon sampling
approach and traditional quadrature approach for large time-bandwidth products. Finally, since the
Slepian basis represents the (approximate) sampled values of PSWFs, when the number of points is
sufficiently large, the reconstruction process can be omitted entirely so that the Slepian vectors can be
used directly, without a reconstruction step.

Keywords: PSWF; DPSS; Slepian basis; waveform concentration; operator theory

1. Introduction

To what extent can a bandlimited function be concentrated in the time domain? This
question has been investigated by several researchers and most famously addressed in a
series of seminal papers by Slepian, Landau and Pollock [1–5]. This resulted in a new class
of bandlimited functions with a distinctive combination of characteristics, which were iden-
tified as prolate spheroidal wave functions (PSWFs) because of a ‘lucky accident’ of Slepian
et al. In addition to certain orthogonality properties, the most valuable characteristic of the
PSWFs is their property of optimal energy concentration. PSWFs form an orthogonal basis
set over a finite interval, as well as being orthogonal over infinity. Another important prop-
erty is that their Fourier transform is a scaled version of itself. Such desirable physical and
mathematical properties led to many applications that use PSWFs in such diverse domains.
For example, in radio astronomical source modelling [6], PSWFs can model the source with
a minimum number of basis functions and fewer artifacts outside the region of interest
(ROI). On the assessment of ship responses [7,8], PSWFs can be used not only to represent
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ocean waves, but also to smooth the measured autocorrelation function and associated
power spectrum densities. In the application of beam forming in 1D and 2D [9], using
first order PSWFs as a filter window can achieve near optimal performance but with less
computational cost. Magnetic resonance imaging (MRI) [10] applies a matching 2D-PSWF
filter so that optimal signal concentration and minimal truncation artifacts are achieved.
Other applications, such as noise filtering for chipless RFID [11], improving the spectral
utilization of communication systems [12], MIMO radar [13], satellite navigation [14], and
diffuse sound pressure fields [15] also make use of PSWFs.

Discrete prolate spheroidal sequences (DPSSs) are a set of sequences (vectors) that
have somewhat similar energy-concentration properties as PSWFs. DPSSs are orthogonal
bandlimited sequences that are most concentrated to a given index range in the time
domain. They are often referred to as a “discrete version of PSWFs”. This is correct, in
the sense that the DPSSs solve a bandlimited, index-concentrated version of the energy-
concentration problem. The DPSSs are discrete sets of vectors and are not usually directly
associated with the PSWF (continuous functions) themselves.

The numerical calculation of the PSWFs is a non-trivial problem. The PSWFs can
be defined from either an integral equation or a differential equation formulation [1,16].
Hence, their calculation can also be approached from finding numerical solutions to either.
Many authors have considered these numerical computations, from both the integral and
differential equation definitions. Boyd provided the algorithms and MATLAB codes for
computing the PSWFs and their eigenvalues using a Legendre–Galerkin discretization
of the prolate differential equation [17]. The PSWFs were then found from a Legendre
series with coefficients provided by eigenvectors of the matrix eigenproblem. Schmutzhard
et al. [18] also investigated the truncation of the infinite eigensystem where the Legendre–
Galerkin method was used to compute the PSWFs from their differential operator definition.
Osipov and Rokhlin considered quadrature rules for the integration of the PSWFs [19].
Their work follows on other works that considered quadrature and interpolation, for
example, Xiao et al. [20]. Xiao et al. based their work on an infinite series of Legendre poly-
nomials, considering the integral equation formulation of the problem. They based their
Legendre polynomial approach on the classical method of Bouwkamp, who considered
the differential equation definition [21]. Karoui and Moumni used normalized Legendre
polynomials to discretize the definition of the PSWFs as eigenfunctions of the finite-Fourier
transform and returned the values at the Shannon sampling points [22]. In a further work,
Bonami and Karoui used the Legendre complete elliptic integral of the first kind to provide
explicit approximations of the function and their eigenvalues [23]. Many other works have
considered the numerical computation of the PSWFs, both from the integral or differential
equation approach [24–34].

A marked shift from approaching the numerical computation of the PSWFs from the
quadrature or special function approaches considered above involved using the Shannon
sampling theorem. Khare and George introduced an approach to computing the PSWFs
using a sampling theory approach [35]. Walter and Soleski also proposed a very simi-
lar approach, again using the sampling theorem [36–38]. The method in this approach
leads to an eigenvalue problem for an (infinite) matrix operator equivalent to that of the
integral operator. Truncation of the infinite matrix leads to a finite dimensional matrix
eigenvalue/eigenvector problem. Their computationally friendly approach gives the values
of the PSWFs on the real line, at the Shannon sampling points. Interpolation with sinc
functions is then required to obtain sampled values of the PSWF at points other than the
Shannon sampling points. Hogan and Lakey extended the work of Walter and Shen to
establish error estimates of the eigenfunction samples and on the matrices used to generate
these sample approximations [39].

Linear operators have been studied in the context of many applications of mathematics
from the past to the present [40–42]. In this paper, we approach the problem of computation
of the PSWF from the point of view of applying operator theory to the discrete Fourier
transform (DFT) and solving the PSWF in discrete time. This leads to an infinite dimensional
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matrix operator eigenvalue problem, which we recognize as being the definition of the
DPSSs. The truncation of the infinite matrix introduces some error but leads to a finite
dimensional matrix eigenvalue problem which in turn yields what is known as the Slepian
basis. These discrete-valued Slepian basis vectors can then be used (with some error) as
discrete time evaluations of the PSWF—in other words, direct approximations to sampled
values of the PSWF. The main merits of using the Slepian basis as discrete time evaluation
of PSWF is to avoid the computation of the integral or differential operator, as in [19–21],
and because it does not require reconstruction, as in the Shannon sampling approach [35].
Although this approach has some errors especially when the number of points is small,
the reconstruction algorithm using sinc series is provided in Section 5.4 to retain detail in
between the sample points.

The outline of this paper is as follows. Section 2 introduces the PSWFs. Section 3
introduces the time and band-limiting operators in continuous time and frequency. Section 4
formulates the concentration problems in terms of operators. Section 5 implements the
operator approach to discrete time—this is the theoretical core of the present paper. Section 6
compares this approach with the classic Shannon sampling approach. In Section 7, the
proposed approach for calculating the PSWFs is implemented, analyzed, and discussed.
Section 8 summarizes and concludes the paper.

2. Introduction to PSWFs

In this section, we introduce the definitions of the PSWFs. The PSWFs arise in various
science- and engineering-related applications. They can be considered as eigenfunctions
of either a differential operator or a (non-obviously) related integral operator, correspond-
ing to two distinct classes of physical phenomena. In this paper, we are interested in
the time–frequency-concentration properties of PSWFs and present them as solutions to
time–frequency-concentration problems. We begin our definitions by introducing the
energy-concentration problems that led Slepian to discover the connection between energy-
concentration and PSWFs [1].

2.1. Energy Concentration Ratios

We start by defining the energy-concentration ratios. For a given finite bandwidth
[−W, W] (W in rad/s) and duration [−T, T] (T in seconds), we define the energy-concentration
ratios for a signal f (t) and its Fourier transform F(ω) in time and angular frequency do-
mains as

α =

T∫
−T
| f (t)|2dt

∞∫
−∞
| f (t)|2dt

(1)

and

β =

W∫
−W
|F(ω)|2dω

∞∫
−∞
|F(ω)|2dω

(2)

Hence, α represents the fraction of the total energy of the signal concentrated in
the time interval |t| ≤ T and β represents the fraction of the total energy of the signal
concentrated in the frequency bandwidth with width |ω| ≤W.

2.2. Problem Statement

Some of the questions that Slepian, Pollak, and Landau set out to answer in [1,6] were:

1. Time-concentration problem: if a function f (t) is bandlimited (or equivalently β = 1
and W is finite), what range of time-concentration ratios α is achievable and what type
of function can achieve the maximum concentration?
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2. Frequency-concentration problem: if a function f (t) is timelimited (or equivalently
α = 1 and T is finite), what range of frequency-concentration ratios β is achievable and
what type of function can achieve the maximum concentration?

2.3. Solution to the Time-Concentration Problem

It can be shown that the solution to the time-concentration problem (Problem 1) can be
solved in either the time domain or frequency domain [1,16,43]. The solution is provided
by the functions that satisfy the following integral eigenequation in the frequency domain,

W∫
−W

F(p)
sin(T(ω− p))

π(ω− p)
dp = λF(ω) |ω| ≤W (3)

Here, λ are the eigenvalues of the eigenequation and achieve the stationary points of the
ratio in Equation (1). W and T are defined independently, where W is the band limit of
the eigenfunction and [−T, T] is the time concentration interval (solution to Problem 1).
Equivalently, the solution is provided by the functions that satisfy the following integral
eigenequation in the time domain,

T∫
−T

f (p)
sin(W(t− p))

π(t− p)
dp = λ f (t) −∞ < t < ∞ (4)

The solutions to Equation (3) or equivalently (4) are a set of functions known as the
prolate spheroidal wave functions (PSWFs) and have many important properties that have
been listed elsewhere [1,16,43]. The PSWFs and their corresponding eigenvalues form an
infinitely countable, orthogonal set of bandlimited eigenfunctions of Equation (3) or (4).
Countable means that the set can be put in one-to-one correspondence with the set of
natural numbers. This set is the set of bandlimited, time-concentrated PSWFs, bandlimited
to [−W, W] and time-concentrated in [−T, T].

2.4. Solution to the Frequency-Concentration Problem

Similar to the above, it can be shown that the solution to the frequency-concentration
problem (Problem 2) can be solved in either the time or the frequency domain [1,16,43]. The
solutions are provided by the functions that satisfy the following integral eigenequation in
the time domain,

T∫
−T

f (s)
sin(W(t− s))

π(t− s)
ds = λ f (t) |t| ≤ T (5)

Here, λ are the eigenvalues of the eigenequation and achieve the stationary points of the
ratio in Equation (2). Equivalently, the solutions are given by the functions that satisfy the
following integral eigenequation in the frequency domain,

W∫
−W

F(s)
sin(T(ω− s))

π(ω− s)
ds = λF(ω) −∞ < ω < ∞ (6)

The solutions to Equations (5) or (6) are also prolate spheroidal wave functions (PSWFs).
These PSWFs and their corresponding eigenvalue form an infinitely countable, orthogo-
nal set of timelimited eigenfunctions of Equations (5) or (6). These are the timelimited,
frequency-concentrated PSWFs, timelimited in [−T, T] and frequency-concentrated in
[−W, W].
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2.5. Comparison of the Time and Frequency Concentration Problems

Consider a side-by-side comparison of Equations (3) and (5):

Problem 1
W∫
−W

F(p) sin(T(ω−p))
π(ω−p) dp = λF(ω) |ω| ≤W

Problem 2
T∫
−T

f (s) sin(W(t−s))
π(t−s) ds = λ f (t) |t| ≤ T

(7)

There is a clear time/frequency symmetry between Equations (3) and (5). Furthermore,
they are identical, apart from interchanging the role of time and frequency. In other words,
the equations are identical if f (t) is replaced with F(ω), time t is replaced with angular
frequency ω, T is replaced with W and W is replaced with T. That is, the role of time
and frequency are completely interchanged. The eigenvalues for the W bandlimited, T
time-concentrated PSWFs are the same as the eigenvalues of the T timelimited, W band-
concentrated PWSFs.

We can also see this connection in another way by introducing two simple changes in
the variable, provided via

ωT
W

= t and
pT
W

= s (8)

These changes in variables demonstrate that if Ψn(ω) is an eigensolution to (3), then
Ψn(ωT/W) is an eigensolution to (5) [43]. In other words, the frequency-concentration
problem is the symmetric dual of the time-concentration problem—which explains the
above comments that a set of PSWFs are eigenfunctions of either the frequency- or time-
concentration problems. Hence, we only need to solve one set of eigenequations since the
mathematical structure of both problems is the same, albeit with a change in variables to
switch from one problem to the other.

Another insight can be gained through comparing Problems 1 and 2 by compar-
ing Equation (4) with Equation (5), now both equations in the same domain. These are
reproduced here for convenience:

Problem 1
T∫
−T

f (p) sin(W(t−p))
π(t−p) dp = λ f (t) −∞ < t < ∞

Problem 2
T∫
−T

f (s) sin(W(t−s))
π(t−s) ds = λ f (t) |t| ≤ T

(9)

It is noted from the preceding side-by-side comparison that time-limiting the result of
Problem 1 to [−T, T] yields Problem 2.

It is important to remark that some other authors use the [−T/2, T/2] time concen-
tration interval rather than [−T, T] as proposed here. The advantage of the [−T, T] time
interval is that there is complete symmetry between time and frequency domains; variables
can be interchanged without having to account for a factor of 2.

3. Band-Limiting and Time-Limiting Operators

It is useful to consider the problems above from the point of view of operator theory.
This allows powerful results from functional analysis to be used and also allow us to make
the connection from the PSWF set of functions to the DPSS set of vectors. To proceed in this
fashion, we introduce the band-limiting and time-limiting operators in both frequency and
time domains. This operator theory approach allows us to demonstrate how the DPSS can
be used to evaluate the PSWF at discrete points.
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3.1. Band-Limiting Operator Action

Let Bσ be the (self-adjoint and idempotent) projection operator action of projecting
into the subspace Fσ of bandlimited functions with the maximum angular frequency σ. The
units of σ are radians per second and we will make use of σ = 2πB if the desired maximum
frequency, B, needs to be specified in Hertz. That is, multiplication or division by 2π, as
appropriate, ensures that the final values are given in the desired units. The band limiting
operator action Bσ for σ > 0 takes a function as input and returns a frequency-limited
version of the function as output where the frequencies are limited to [−σ, σ]. It is defined
in frequency space as

B̃σ[F](ω) =

{
F(ω) if |ω| ≤ σ

0 if |ω| > σ
(10)

The tilde (~) over the operator action is used to denote that the operator action is taking
place in the frequency domain. In the time domain, the operator action is provided by:

Bσ[ f ](t) =
1

2π

σ∫
−σ

F(ω)eiωtdω −∞ < t < ∞ (11)

In Equation (11), F(ω) is the Fourier transform of f (t) and the band-limiting operator
action is denoted without the tilde since it is taking place in the time domain. The form of
the operator in Equation (11) is not that useful since it acts on f (t), on the left-hand side, but
F(ω) appears on the right-hand side. We need to rewrite the operator so that it acts directly
on f (t). Using the definition of the Fourier transform (see Appendix A and [44]), then:

Bσ[ f ](t) = 1
2π

σ∫
−σ

F(ω)eiωtdω

= 1
2π

σ∫
−σ

∞∫
−∞

f (s)e−iωsds eiωtdω

=
∞∫
−∞

1
2π

σ∫
−σ

e−iωseiωtdω f (s) ds

(12)

This becomes

Bσ[ f ](t) =
∞∫
−∞

Kσ(t, s) f (s)ds t ∈ R (13)

where the operator kernel is provided by

Kσ(t, s) =
1

2π

σ∫
−σ

e−iωseiωtdω =
sin(σ(s− t))

π(s− t)
(14)

The form of the operator in Equations (13) and (14) is the desired form, since now the
definition of the operator acts on f (t) (the same function) on both sides of the equation. The
self-adjointness of Bσ is easily established since the kernel Kσ(t, s) is real and symmetric,
i.e., Kσ(t, s) = Kσ(s, t) [43], as can be seen from its integral definition in Equations (13)
and (14).

Hence,Bσ[ f ] and B̃σ[F] form a Fourier pair, Bσ[ f ]⇔ B̃σ[F] , which means applying
the operator Bσ on f in the time domain is equivalent to applying the operator B̃σ on F
(the Fourier transform of f ) in the frequency domain. The frequency-limiting operator
can be applied in either domain, by implementing its appropriate mathematical form in
each domain.
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3.2. Time-Limiting Operator Action

Similarly, let BT be the (self-adjoint and idempotent) projection operator action of
projecting into the subspace FT of timelimited functions limited to the time interval |t| ≤ T.
Then, the time-limiting operator action BT is defined in the time domain as

BT [ f ](t) =

{
f (t) if |t| ≤ T
0 if |t| > T

(15)

In the frequency domain, the operator action is given by:

B̃T [F](ω) =

T∫
−T

f (t)e−iωtdt −∞ < ω < ∞ (16)

Once again, the tilde over the operator action is used to denote that the operator is acting
in the frequency domain. As above, we want to recast Equation (16) so that it operates on
the same form of the function on both sides of the equation. Following the methodology of
above and using the definition of the Fourier transform, then

B̃T [F](ω) =

∞∫
−∞

KT(ω, s)F(s)ds (17)

where the operator kernel is given by

KT(ω, s) =
1

2π

T∫
−T

eiste−iωtdt =
sin(T(s−ω))

π(s−ω)
(18)

Equation (17) is the requisite form as it applies to the same form of the function on both
sides of the equation. As above, the self-adjointness of B̃T is established since it is real
and symmetric, which is clear from its integral definition in Equations (17) and (18). As
above,BT [ f ] and B̃T [F] form a Fourier pair, BT [ f ]⇔ B̃T [F] . That is, applying the operator
BT on f in the time domain is equivalent to applying the operator B̃T on F (the Fourier
transform of f ) in the frequency domain. The time-limiting operator can be applied in
either domain, by implementing its appropriate mathematical form in each domain.

4. Concentration Problems in Terms of Operators

As noted above, the time-concentration and frequency-concentration problems are
essentially the same problem, with the roles of time and frequency (and the appropriate
variables T and W) interchanged. Hence, it suffices to focus on only one problem. We return
to the definition of the time-concentration problem, which is: if a function is bandlimited
(or equivalently β = 1), what range of time-concentration ratios α is achievable and what
type of function can achieve the maximum concentration?

We rewrote the problem in terms of the time- and band-limiting operators. Using
the idempotent and self-adjoint properties of the operator, we can make use of the inner
product notation for energy and write the time-concentration ratio in the time domain as

α =

T∫
−T
|BW f (t)|2dt

∞∫
−∞
|BW f (t)|2dt

=
〈BT BW f , BT BW f 〉
〈BW f , BW f 〉 =

〈BW BT BT BW f , f 〉
〈BW BW f , f 〉 =

〈BW BT BW f , f 〉
〈BW f , f 〉 (19)
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Here, we use the L2 Hermitian inner product between two functions on a measure space
with measure µ given by

〈 f , g〉 =
∞∫
−∞

f g dµ (20)

In Equation (19), we first used the self-adjoint property to transfer the operators to the
left-hand side of the inner product operator and then used the idempotent property of each
to obtain the final equality.

Using Parseval’s relation, Equation (19) can also be written in the frequency domain as

α =
〈BW BT BW f , f 〉
〈BW f , f 〉 =

〈
B̃W B̃T B̃W F, F

〉
〈

B̃W F, F
〉 (21)

4.1. Operator Interpretation of the Time Concentration Problem-Time Domain

In the time domain, Equation (19) can be rearranged as

〈BW BT BW f , f 〉 = α〈BW f , f 〉 (22)

The concentration ratio is maximized when f satisfies the eigenvalue problem given by

BW BT BW f = λBW f or BW BT g = λg (23)

where g = BW f . Hence, the maximum value of the time-concentration ratio, α, is achieved
for the largest eigenvalue λ in Equation (23).

Applying the definition of the operator BW given in Equation (13) and the definition
of operator BT given in Equation (15) to BW BT g = λg in Equation (23) yields exactly the
eigenequation given in Equation (4). Hence, we obtain

BW BT g =

T∫
−T

g(p)
sin(W(t− p))

π(t− p)
dp = λg(t) −∞ < t < ∞ (24)

Thus, the W bandlimited, T time-concentrated PSWFs are an infinitely countable set of
bandlimited functions, denoted by φn(t), with a corresponding eigenvalue λn that satisfies
(24) or equivalently BW BTφn = λnφn. That is, the W bandlimited, T time-concentrated
PSWFs are eigenfunctions of the time-limiting, followed by the band-limiting operator. We
use the superscript notation to count the eigenfunctions since the subscript notation will be
used to denote discretization later in this paper.

4.2. Operator Interpretation of the Time-Concentration Problem–Frequency Domain

In the frequency domain, Equation (21) can be rearranged as〈
B̃W B̃T B̃W F, F

〉
= α

〈
B̃W F, F

〉
(25)

As above, the maximum concentration ratio is given by solving the eigenvalue problem

B̃W B̃T B̃W F = λB̃W F (26)

Applying the definitions of B̃W and B̃T given in Equations (10) and (17) to
B̃W B̃T B̃W F = λB̃W F yields exactly the eigenequation given in Equation (3), represented by:

W∫
−W

F(p)
sin(T(ω− p))

π(ω− p)
dp = λF(ω) |ω| ≤W (27)
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Thus, solving B̃W B̃T B̃W F = λB̃W F in the frequency domain also yields the W bandlimited,
T time-concentrated PSWFs, but now in the frequency domain. That is, the PSWFs are an
infinitely countable set of eigenfunctions that satisfy B̃W B̃T B̃WΦn = λn B̃WΦn, where Φn

are the Fourier transforms of φn.

4.3. Operator Interpretation of the Frequency-Concentration Problem

We can follow the same steps as above to interpret the frequency-concentration prob-
lem (Problem 2) in the time and frequency domains. Following the methodology for the
time-concentration problem, it can be shown that the frequency-concentration problem
can be written as an eigenfunction problem that needs to satisfy BT BW BT f = λBT f in the
time domain and B̃T B̃W G = λG (where G = B̃T F) in the frequency domain. Applying the
definitions of the time- and band-limiting operators in the appropriate domains yields the
eigenequations provided in Equations (5) and (6).

We stated in the previous section that the W bandlimited, T time-concentrated PSWFs
φn(t) satisfy BW BTφn = λnφn in the time domain. Adding one more time-limiting operator
to both sides yields:

BT BW BTφn = λnBTφn (28)

In other words, BTφn solves Equation (5), which is the eigenproblem that defines the
frequency-concentration problem (Problem 2) yielding the T timelimited and W band-
concentrated PSWFs. The eigenvalues are the same as for the time-concentration problem.

5. Discrete Time Fourier Transform Interpretation of the Operators

In the previous section, we demonstrated how the PSWFs can be found from an
operator theoretical point of view using time- and band-limiting operators in sequence.
In this section, we apply a discrete-time approach to the evaluation of the PSWFs. We
will demonstrate how implementation of the operators using the discrete time Fourier
transform (DTFT), leads to discrete prolate spheroidal sequence (DPSS) [5] and Slepian-
based approximations of the PSWFs. The key to establishing the connection between
the PSWF and DPSS is the use of the DTFT. The DTFT is a transform that operates on
discrete time data to give a continuous function of frequency. It can be considered as a
transform that connects the discrete time domain to the continuous frequency domain
(forward transform and inverse transform). Although it connects any form of discrete data
(which is the interpretation given in [5]), in this work we interpret the discrete data to be
samples of a continuous function, which allows us to connect the continuous PSWFs to the
DPSSs that arise as a result of the eigenfunction problem.

5.1. Discrete-Time Interpretations of the Eigenequation of Problem 1

We showed in the previous section that the PSWFs are defined from the eigenequation
BW BT g = λg in the time domain. In the following section, we apply the above operators to
a discrete-time function, that is, we consider g in discrete time. To implement the band- and
time-limiting operators in discrete time, we refer to the DTFT. That is, we need to interpret
the operators using the appropriate definition of the Fourier transform for functions in
discrete time.

We start with the definition of the DTFT, a Fourier transform that operates on discrete
time data. We are interested in domains of [−T, T] in the time domain, and [−W, W] in the
frequency domain. Here, W is in units of radians per second, so the equivalent domain
in Hertz is [−B, B] where W = 2πB. We will discretize our problem to a dimension of N
where N is an integer.

Suppose we start with a discrete-time function given by fn = f
(

n
Fs

)
, where Fs is

the sampling frequency and n is a counter variable. The evaluations f
(

n
Fs

)
are samples

of f (t) defined at specific instances on the real line. We choose the sampling frequency
given by Fs =

1
∆t =

N−1
2T Hz (or 2πFs rad/s), where the sampling interval has been chosen

as ∆t = 2T
N−1 and N is the chosen dimension of the problem. The N − 1 factor arises so
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that there will be exactly N points in the interval [−T, T], including both endpoints of the
interval. In other words, given a domain of interest [−T, T], choosing N determines both
the sampling rate Fs and the dimension of the system N that we will be considering.

Then, the definition of the DTFT provides the relationship between the discrete sam-
ples f

(
n
Fs

)
and its continuous Fourier transform F(ω) as

F(ω) =
∞

∑
n=−∞

1
Fs

f
(

n
Fs

)
e−i n

Fs ω (29)

The inverse transform returns the original discrete time function from

f
(

n
Fs

)
=

1
2π

+πFs∫
−πFs

F(ω)ei n
Fs ωdω −∞ < n < ∞ (30)

Note that the limits of integration in Equation (30) are from [−πFs, πFs] rad/s or
[
− Fs

2 , Fs
2

]
Hz. In other words, the effect of sampling the function at a frequency of Fs Hz is equivalent
to band-limiting the function between

[
− Fs

2 , Fs
2

]
Hz. Alternatively, if the function is known

to be bandlimited with a max frequency Fs/2, then sampling the function at Fs guarantees
that we can perfectly calculate its DTFT and reconstruct the function; there is no loss of
information.

Given the space of discrete-time functions fn = f
(

n
Fs

)
and the corresponding ap-

propriate Fourier transform (DTFT), we want to implement the operator eigenequation
BW BT fn = λ fn on this space. To do so, we need forms of the operators BW and BT that are
appropriate for the space.

We want to consider how to implement the time-limiting operator, BT , that is to limit
a function between [−T, T]. Given our choice of discretization, this is equivalent to limiting
the counter n to be between n ∈

[
− (N−1)

2 , N−1
2

]
. Hence, this implies

BT fn = B N−1
2

fn =

{
fn −N−1

2 ≤ n ≤ N−1
2

0 otherwise
(31)

Next, we need to implement a band-limiting operator in the discrete-time domain
of the DTFT. Previously in this paper, we implemented the band-limiting operator in
the continuous time domain; however, here, we need to interpret it for the discrete-time
domain. To implement a band-limiting operator to frequency range [−W, W], then we use
Equation (30) with the given bandlimit, so that:

BW fn = BW f
(

n
Fs

)
=

1
2π

W∫
−W

F(ω)ei n
Fs ωdω (32)

In Equation (32), it is imperative that the band-limit is ‘tighter’ than the given infor-
mation in the problem. That is, Equation (32) only makes sense if W < πFs in radians or
equivalently B < Fs/2 (W = 2πB) since there is no information about the function past
frequency Fs/2.

Equation (32) can be put in the proper discrete-time form (that is, as an operator acting
on fn rather than F(ω)) by substituting the definition of F(ω) from Equation (29) into
Equation (32). This gives

BW fn = BW f
(

n
Fs

)
=

1
2π

W∫
−W

{
∞

∑
m=−∞

1
Fs

fm e−i m
Fs ω

}
ei n

Fs ωdω (33)
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Interchanging the order of summation and integration in Equation (33) gives

BW fn =
∞

∑
m=−∞

fm

sin
(

2TW(m−n)
N−1

)
π(m− n)

−∞ < m, n < ∞ (34)

Now, we put all our definitions and implementations of operators to define the
desired eigenequation in discrete time. Our desired equation is BW B N−1

2
fn = λ fn. Using

Equations (31) and (34), this yields the eigenequation implemented in discrete time as

N−1
2

∑
m=− (N−1)

2

f
(

m
Fs

) sin
(

2TW(m−n)
N−1

)
π(m− n)

= λ f
(

n
Fs

)
−∞ < n < ∞ (35)

Equation (35) implements the PSWF-defining operator eigenequation in discrete time. That
is, it implements the discrete time equivalent of the same set of operators that return the
PSWF in continuous time. Hence, the discrete time eigenvectors returned by (35) should
return (approximations to) sampled values of the W-bandlimited, T-time concentrated
continuous PSWFs. Furthermore, the eigenvalues should also be (approximations to) the
eigenvalues for the time-concentration problem (Problem 1). Although we are applying
the discrete-time equivalent of the operators that define the original PSWF, the action of
the operators in their respective domains introduces some differences. There is some error
introduced in going from BW BT f = λ f to BW B N−1

2
fn = λ fn since after time-limiting, the

function loses its bandlimitedness (prior to the application of the band-limiting operator)
which means that the DTFT representation now has some error. We will examine the
practical implications of this through simulations in the next section.

The kernel of the transformation in Equation (35) is the (infinite) matrix represen-
tation of the operator BW BT = BW B N−1

2
. It can be written for m ∈

[
− (N−1)

2 , N−1
2

]
and

n ∈ [−∞, ∞] as

sin
(

2TW(m−n)
N−1

)
π(m− n)

=
sin
(

2π·2TB(m−n)
N−1

)
π(m− n)

=
sin
(

2π
(

B
Fs

)
(m− n)

)
π(m− n)

(36)

Since B < Fs/2, as described above, it then follows that B/Fs < 1/2. In the case of the
hard inequality B/Fs < 1/2, Equation (35) is also the defining equation for the discrete
prolate spheroidal sequences (DPSSs). The defining equations for the DPSSs traditionally
use sin(2πσ(m−n))

π(m−n) in the kernel, where σ < 1/2. Hence, converting from our notation to
traditional DPSS definition, we have σ = B/Fs, thereby demonstrating the connection
between the traditional DPSSs and the (approximate) sampled values of the PSWFs.

The requirement B/Fs < 1/2 is equivalent to the classical Shannon sampling theorem
statement that 2B < Fs. Shannon allowed equality to hold, that is, the minimum sampling
rate is Fs = 2B. The statement 2B < Fs can also be rewritten in terms of the definition of
Fs as

2B <
N − 1

2T
⇒ 4BT + 1 < N (37)

The selection of N controls the sampling of the function and the sampling rate Fs. A larger
N implies more detail and a finer sampling of the interval [−T, T]. The smallest allowable
value of N must satisfy Equation (37), which is the equivalent of the statement of the
Shannon sampling theorem.

We note from Equation (36) that the parameters T and B (or equivalently W) are the
ones used to define the continuous time PSWFs. However, N is the parameter chosen
to represent the discrete time version of the problem by controlling the sampling rate
Fs. Choosing different values of N will return a different DPSS, that is a different DPSS
(controlled by T, B and N) that can be used to approximate the PSWF (controlled by T and
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B). The ‘approximation’ of the PSWF by the DPSS is controlled by the choice of N. The
choice of N allows us to start with fn, a discrete time function, before applying the operator
eigenequation BW BT fn = λ fn. The operator equation BW BT fn = λ fn is equivalent to
applying the continuous operators BW BT BFs/2 f = λBFs/2 f since discretization can be
considered equivalent to applying a band-limiting operator. In contrast, the true PSWF
itself is the result of applying the operator eigenequation BW BT f = λ f to a continuous
time function.

5.2. Time-Bandwidth Product and the Shannon Number

The product c = 2BT = WT
π (where W = 2πB) is called the time-bandwidth product

of the PSWFs and represents the degrees of freedom of the function [45]. This represents
the minimum number of samples of a signal required to represent it in a fairly accurate
manner [35]. In much of the literature on PSWFs, the parameter 2πBT = WT is referred
to as the Shannon number and is related to the time-bandwidth product [45]. Some care
needs to be taken in comparing various works as some authors use [−T/2, T/2] as the
time interval instead of [−T, T]. Most of the literature on PSWFs studies their properties
based on the definition as a solution of the differential equation depending on the value of
c. To further highlight the inconsistencies in terminology, MATLAB refers to 2BT as the
time (interval duration 2T), half-bandwidth (B) product. Hence, caution is advised when
referring to the ‘time-bandwidth’ product as there are several slightly different definitions
that exist in the literature.

5.3. Discrete-Time Interpretation of the Eigenequation of Problem 2

If the transformation kernel of Equation (35) is further restricted to n ∈
[
− (N−1)

2 , N−1
2

]
,

then this is the implementation of the operator BT BW BT = B N−1
2

BW B N−1
2

. The resulting
N × N matrix is known as the prolate matrix and given by:

ρm,n =
sin
(

2π
(

B
Fs

)
(m− n)

)
π(m− n)

m, n ∈ [1 . . . N] (38)

Note that the summation counter (m) in Equation (35) is for m ∈
[
− (N−1)

2 , N−1
2

]
while

n ∈ [−∞, ∞]. However, in Equation (38), both counters (m and n) run from 1 to N. Since
the kernel/matrix only depends on the difference m− n, the statement of Equation (38)
with m, n ∈ [1 . . . N] is correct. The reader is reminded that W in Equation (35) refers to
the band-limit in rad/s. The prolate matrix is usually defined in the literature using a
normalized frequency between 0 and 1/2, represented by B/Fs in Equation (38), which is
guaranteed to be < 1/2 since we imposed the ‘tighter’ bandlimit of B < Fs/2.

The matrix in Equation (38) (prolate matrix) is the matrix implementation of the
BT BW BT = B N−1

2
BW B N−1

2
operator. Hence, the eigenvectors and eigenvalues of that matrix

represent an approximation to BT BW BT f = λ f . For continuous functions f, this is the defin-
ing equation for the timelimited band-concentrated PSWFs. Here, we have implemented it
on discrete time functions BT BW BT fn = λ fn. Hence, the eigenvectors are, by construction,
approximations to the sampled values of the timelimited band-concentrated PSWF, and
the eigenvalues are approximations of the eigenvalues for the frequency-concentration
problem (Problem 2), as long as fn is a good representation for f . As discussed above, every
application of the time-limiting operator introduces a loss of bandlimitedness and hence
some error into a DTFT assumption. Hence, although we have paralleled the defining
eigenequation in discrete time, the result cannot be expected to return eigenvalues and
eigenvectors that are identical to the continuous time version. There is always some error
between the discrete and continuous time versions.

The finite dimensional eigenproblem defined by the prolate matrix in Equation (38)
provides a set of finite dimensional eigenfunctions which are known as a Slepian basis.
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These are finite-dimensional (truncated) versions of the DPSSs. The DPSS which arise from
the eigenvector problem in Equation (35) are of infinite length since n ∈ [−∞, ∞].

5.4. Reconstruction from the Discrete Time Values

Since Equation (37) ensures that the Shannon sampling theorem is respected [46], then
the continuous time function can be reconstructed after the eigenproblem of Equation (35)
is solved. This reconstructs the time-concentrated bandlimited PSWF (band limiting is a
requirement of the Shannon sampling theorem). Since the sampling rate Fs may be higher
than the minimum required by the Shannon theorem, the interpolation in the time domain
is best seen by taking the continuous inverse Fourier transform of Equation (29).

Hence, the DPSS/Slepian approximation to the PSWF is found by first solving the
eigenequation implemented in discrete time, given by

N−1
2

∑
m=− (N−1)

2

φp
(

m
Fs

) sin
(

2TW(m−n)
N−1

)
π(m− n)

= λpφp
(

n
Fs

)
(39)

where φp is the pth eigenvector corresponding to the pth eigenvalue λp. The counter n
is infinite −∞ < n < ∞ for the DPSS and n is finite for the Slepian bases. The inter-
polation/reconstruction is performed after the sampled values φ

p
n = φp

(
n
Fs

)
have been

determined from the eigenproblem. From the definition of the inverse Fourier transform
and recalling that the resulting function is W-bandlimited (by construction), then the
continuous-time PSWFs can be found from

Φp(ω) =
∞
∑

n=−∞

1
Fs

φp
(

n
Fs

)
e−i n

Fs ω

1
2π

W∫
−W

Φp(ω) eiωtdω = 1
2π

W∫
−W

∞
∑

n=−∞

1
Fs

φp
(

n
Fs

)
e−i n

Fs ω eiωtdω
(40)

The left-hand side of Equation (40) is the definition of φp(t). Then, interchanging the
summation and integration on the right-hand side gives

φp(t) =
∞

∑
n=−∞

φp
(

n
Fs

) sin
(

W
(

t− n
Fs

))
πFs

(
t− n

Fs

) (41)

For DPSS solutions, where −∞ < n < ∞ then Equation (41) is an infinite sum, as
written. For the Slepian bases corresponding to the timelimited, band-concentrated PSWFs,
the operation of limiting in time is equivalent to limiting the counter to n ∈

[
− (N−1)

2 , N−1
2

]
.

However, it should be noted that once timelimited, a function is no longer bandlimited.
This implies that the Shannon sampling theorem with sinc interpolation is no longer exact,
which means some error has been introduced.

6. Comparison with Shannon Sampling Approach

Both Khare et al. [35,45] and Walter et al. [36] proposed the computation of the PSWFs
using a sinc series along with the Shannon sampling theorem, meaning sampling at pre-
cisely ∆t = 1/2B. The sampling theorem allows a bandlimited function g(x) in L2(−∞, ∞)
with a Fourier transform bandlimited to [−B, B] Hz to be expressed in terms of equally
spaced samples that are ∆t = 1/2B apart. Specifically, it gives the following relations
between a bandlimited function g(x) and its samples g(m/2B)

g(t) =
∞

∑
m=−∞

g
( m

2B

) sin(π(2Bt−m))

π(2Bt−m)
(42)
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Furthermore,

g
( m

2B

)
= 2B

∞∫
−∞

g(t)
sin(π(2Bt−m))

π(2Bt−m)
dt (43)

Here, we use our operator theory approach as introduced in the first part of this
paper, along with Equations (42) and (43) to re-derive the Shannon sampling approach
to computing the PSWFs. Specifically, we want to implement the discrete eigenequation
BBBT gn = λgn, as above, where now gn = g(n/2B). That is, gn are discrete values of the
function, with the difference that now we specify the sampling rate to be precisely the
Shannon sampling rate.

We want to implement λgn = λg
( n

2B
)
= BB{BT gn}. We consider Equation (43) to be

the definition of the band-limiting operator. Hence,

BB{BT g} = 2B
∞∫
−∞

{BT g(t)} sin(π(2Bt− n))
π(2Bt− n)

dt (44)

We then use Equation (42) to implement the time-limiting operator as

BT g(t) =


∞
∑

m=−∞
g
( m

2B
) sin(π(2Bt−m))

π(2Bt−m)
−T ≤ t ≤ T

0 otherwise
(45)

Inserting Equation (45) into Equation (44) and interchanging the order of integration and
summation, then λgn = BB{BT g} becomes:

λg
( n

2B

)
= 2B

∞

∑
m=−∞

g
( m

2B

) T∫
−T

sin(π(2Bt−m))

π(2Bt−m)

sin(π(2Bt− n))
π(2Bt− n)

dt (46)

This can be written as λgn = 2B
∞
∑

m=−∞
gm Amn where

Amn =

T∫
−T

sin(π(2Bt−m))

π(2Bt−m)

sin(π(2Bt− n))
π(2Bt− n)

dt (47)

Notably, the infinite matrix defined in Equation (47) is the same as that obtained by
Khare [35,45] and Walter [36].

Khare observed that the matrix elements Amn fall off to zero as the main lobes of the
corresponding sinc functions go beyond the range of integration, that is when |m|, |n|
> 2TB. Clearly, only a square sub-matrix of Amn with the dimension of the order of the
time-bandwidth product (4TB) has elements with significant magnitude [35,45]. Hence, the
number of significant eigenvalues is at most of the order of (4TB), the remaining eigenvalues
being close to zero. The 4TB value is the same as that we arrived at in Equation (37).

Solving the eigenvalue problem involves truncating the infinite matrix in Equation (47).
For the matrix Amn in (47) to have dimension N×N implies that the summation in Equation
(46) is for m ∈

[
−N−1

2 . . . N−1
2

]
. The sampled values gn are 1/2B apart. The sampled values

start at g
(
−N−1

4B

)
and end at g

(
N−1
4B

)
. Since the sampled values are 1/2B apart, then there

are 4TB + 1 values (the +1 to account for the two endpoints) in the concentration interval
[−T, T]. Khare observed that the N must be chosen to be ‘sufficiently larger’ than 4TB + 1
for this approach to work. Hence, there are 4TB+ 1 data points in the concentration interval,
but the information returned extends past the concentration interval itself to g

(
±N−1

4B

)
.

Increasing N implies going out further beyond the endpoints of the concentration interval.
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We compare this to our ‘discrete time’ approach taken above where the truncation
of the problem also results in an N × N matrix. However, in our discrete time approach,
there are N points inside the concentration interval. Increasing N in this case implies
obtaining ‘more detail’ (a finer sampling interval) about the function within the [−T, T]
concentration interval. Hence, although both approaches can be truncated into a N × N
matrix eigenvalue problem, the nature of the information returned with the N pieces of
information is different. For the Shannon sampling approach, we have information over
an interval wider than the concentration interval; for our discrete time approach, we have
more information within the concentration interval.

7. Simulations

Section 5 demonstrated that the Slepian basis vectors can be close approximations
to the discrete-time values of PSWFs. PSWFs can then be reconstructed from the Slepian
basis with Equation (41). In this section, we evaluate numerical simulation results to
compare reconstructed Slepian basis values directly with the PSWFs. All simulations
were performed using MATLAB. The Slepian bases are obtained through the MATLAB
R2019b signal processing toolbox function dpss, which calculates the eigenvalues and
eigenvectors of the prolate matrix using a fast autocorrelation technique [47]. The errors
between eigenvalues found from the Slepian basis approach versus those found directly
from the PSWF are calculated via

Err =

∣∣λS − λ
∣∣

|λ| × 100% (48)

where λ is the true eigenvalue from PSWF and λS is the eigenvalue obtained from the
Slepian basis. The error between two eigenvectors with N points is calculated as a mean
error from:

Err =
1
N

N

∑
i=1

∣∣∣⇀p i −
⇀
q i

∣∣∣
max

∣∣∣⇀q i

∣∣∣ × 100% (49)

where
⇀
p i and

⇀
q i are the values of two eigenvectors being compared.

7.1. PSWF Ground Truth

The PSWFs used in the simulations are obtained through the software Chebfun [48],
which solves the eigenproblem using the method provided by [20] to compute the normal-
ized Legendre coefficients of the PSWFs by solving an eigenvalue problem. To validate
the accuracy of the results of Chebfun, a comparison between the PSWF values obtained
through Chebfun and the commonly used Flammer’s tabulated values [49] is provided in
Figure 1.
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In Figure 1, PSWFs of order zero for time-bandwidth products c = 5 and c = 1 are
shown. The errors are calculated via Equation (49), where

⇀
p i represents PSWF values

obtained from Chebfun and
⇀
q i represents PSWF values from Flammer’s tabulated values.

Results demonstrate accuracy of the Chebfun software for generating PSWF values.

7.2. Slepian Bases and Reconstruction

The Slepian bases are obtained from MATLAB function [E,V] = DPSS(N,NW) written
by E. Breitenberger [47], which uses inverse iteration using the exact eigenvalues on
a starting vector with approximate shape to obtain the required eigenvectors. It then
computes the eigenvalues of the Toeplitz sinc matrix using a fast autocorrelation technique.
Here, N is the number of points of Slepian basis and NW is the time-bandwidth product.
With the mapping method in [50], the Slepian basis can be mapped to a discrete time vector
and consequently, NW = 2TB.

Figure 2 shows some examples of Slepian basis φn with different number of points
plotted against time vectors. Here, n is the order of the eigenvector. Note that the Slepian
bases are discrete and are approximations of the sampled values of PSWFs.

Symmetry 2023, 15, x FOR PEER REVIEW 17 of 32 
 

 

 

Figure 1. Comparison of PSWFs obtained through the Chebfun software and Flammer’s tabulated 

values. (a) c = 5; (b) c = 1. 

In Figure 1, PSWFs of order zero for time-bandwidth products 5c =  and 1c =  are 

shown. The errors are calculated via Equation (49), where ip  represents PSWF values 

obtained from Chebfun and iq  represents PSWF values from Flammer’s tabulated val-

ues. Results demonstrate accuracy of the Chebfun software for generating PSWF values. 

7.2. Slepian Bases and Reconstruction 

The Slepian bases are obtained from MATLAB function [E,V] = DPSS(N,NW) written 

by E. Breitenberger [47], which uses inverse iteration using the exact eigenvalues on a start-

ing vector with approximate shape to obtain the required eigenvectors. It then computes 

the eigenvalues of the Toeplitz sinc matrix using a fast autocorrelation technique. Here, N 

is the number of points of Slepian basis and NW is the time-bandwidth product. With the 

mapping method in [50], the Slepian basis can be mapped to a discrete time vector and 

consequently, 2NW TB= . 

Figure 2 shows some examples of Slepian basis n  with different number of points 

plotted against time vectors. Here, n  is the order of the eigenvector. Note that the Slepian 

bases are discrete and are approximations of the sampled values of PSWFs. 

 

Figure 2. Slepian bases with different number of points N, (a–f) N from 5 to 501. Figure 2. Slepian bases with different number of points N, (a–f) N from 5 to 501.

With the reconstruction method shown in Section 5, we can reconstruct the nth Slepian
basis φn with sinc interpolation to obtain a smooth vector shown in Figure 3. In Figure 3,
all vectors are normalized to have unit energy for future convenience in comparison
with PSWFs.

7.3. Comparison between Sinc-Series-Reconstructed Slepian Basis and PSWF

In this section, we evaluate the sinc-series-reconstructed Slepian basis with PSWF
values obtained through Chebfun. Figures 4–7 show the comparison results for eigenvectors
of order 0 to 3. The reconstructed Slepian bases are those shown in Figure 3. As can be
seen from the error values in Figures 4–7, as the number of points used to reconstruct the
Slepian bases increases, the error decreases.
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Figure 6. Error between sinc-series reconstructed Slepian bases with different N and PSWFs of order
2, (a–f) N from 5 to 501.

Figure 8 shows the trend observed in Figures 4–7 in a clearer manner as additional
eigenvectors are generated and compared, using increasing values of N to evaluate the
effect of N on error. In Figure 8, the duration and bandwidth of the eigenvectors are chosen
to be T = 1 s and B = 1.5915 Hz, the minimum requirement for N is 7 points, and the
eigenvectors obtained are of order from zero to six.
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Figure 8. Eigenvector error vs. Slepian bases number of points, (a–g) shows the relation for differ-
ent orders.

As can be seen from Figure 8, the error between eigenvectors decreases with increasing
number of points. However, when the number of points, N, is sufficiently large enough,
the gain in accuracy becomes small with increasing N. Thus, users need to balance between
desired accuracy and the computational cost of increasing N. The same trend can also be
observed with the error between eigenvalues shown in Figure 9, which shows the errors in
eigenvectors of order 0 to 6 for increasing values of N. The errors between eigenvalues are
calculated through Equation (48).
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Figure 9. Eigenvalue error relation with number of points, for eigenvectors of order 0 to 6: (a–g)
shows the relation for different orders.

To better illustrate that the error drops to low values when N is large enough, Figure 10
shows a curve fitting of the trends for the errors of the eigenvalues and eigenvectors of order
zero with c = 2π. In Figure 10a,d, the errors in percentage for eigenvectors and eigenvalues
are shown; Figure 10b,c are two different curve fitting methods for the errors of eigenvectors;
Figure 10e,f are two different curve fitting methods for the errors of eigenvalues. Note
that in Figure 10b,e, the vertical axes are the negative inverse of the percentage errors to
show the decreasing pattern clearly. Curve fittings with other time-bandwidth products
and orders can be found in Appendix B.

As can be seen in Figure 8, Figure 10, and the figures in Appendix B, the rate of error
decreasing with the increasing number of points is different for different orders of the
eigenvectors. Figure 11 provides a heuristic view of the error decrease rate by plotting
the errors for different orders of eigenvectors in the same figure. Figure 11a shows the
actual errors in percentages and the number on the legend is the order of the eigenvector.
Figure 11b normalizes the errors to have the same maximum absolute value, so that the
rate of error decrease can be observed more easily. PSWFs and Slepians are known to
have the majority of their eigenvectors either close to 0 or close to 1, with a small number
of eigenvectors falling in the ‘transition zone’ between 0 and 1. When the order of the
eigenvector is in the ‘eigenvalue transition zone’, i.e., the associated eigenvalues are neither
close to 1 nor close to zero, the errors are generally large and drop very slowly with
increasing number of points.

However, fortunately for engineering applications, the eigenvectors with eigenvalue
close to 1 are often the desired ones due to their compactness properties. Figure 12 calculates
the mean error of eigenvectors with c = 10 but different orders and different number of
points. For example, Figure 12a calculates the errors of 15 orders of eigenvectors with the
same time-bandwidth product and same number of points. Then, a mean value of the
15 errors is shown on the subtitle of the subplot along with a mean value of the first 4TB
order errors since it is known that there are 4TB eigenvalues close to 1 with a given time
and bandwidth [51].
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Figure 10. Error between reconstructed Slepian bases and PSWF of order zero with time-bandwidth
product c = 2π: (a) error between eigenvectors; (b) linear curve fitting with vertical axis taken to be
negative inverse of the error between eigenvectors; (c) parabolic curve fitting of the error between
eigenvectors; (d) error between eigenvalues; (e) linear curve fitting with vertical axis taken to be
negative inverse of the error between eigenvalues; (f) parabolic curve fitting of the error between
eigenvalues.
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Figure 11. Comparison of rate of error decrease for different orders of eigenvectors.

As shown in Figure 12, the errors tend to be large with large orders of eigenvectors.
However, the error within the first 4TB orders of eigenvectors are consistently small.

Another point of view from which to observe the error between the Slepian basis and
PSWFs is through different time-bandwidth products. Simulations were used to determine
the number of points required for the Slepian basis to reach less than 2% error between
PSWFs for different time-bandwidth products (see Figure 13). Figure 13a shows the error
when the Slepian basis reaches less than 2% error with the PSWF; Figure 13b shows the
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number of points when the Slepian basis reaches less than 2% error for different time-
bandwidth products (note here that the horizontal axis is taking “time-bandwidth products
as TB for comparison with [50].”); Figure 13c,d show detailed plots of the vectors to provide
a better view of how different they look from each other.
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products tend to achieve a minimum value. Here, we demonstrate that a similar trend can 

also be observed with higher order eigenvectors, as shown in Figures 14 and 15. 

Figure 13. (a) Error between Slepian basis and PSWFs of order zero. (b) Number of points required
to achieve less than 2% error against time-bandwidth products. (c) Detailed plot of Slepian basis with
minimum N and PSWFs sampled at the same time. (d) Detailed plot of Slepian basis with larger N
and PSWFs sampled at the same time.

In Figure 13, the duration of the vectors are kept the same as T = 1 s, while B ranges
from 0.3 Hz to 3.2 Hz. The number of points in the Slepian basis needed to reach less than
2% error tends to be a constant value after a certain time-bandwidth threshold. In [50], it
was shown that when TB of the Slepian basis of order zero is greater than a certain lower
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threshold (approximately 0.5~1 depending on different measures used to define effective
duration and bandwidth), the effective energy-based or variance-based time-bandwidth
products tend to achieve a minimum value. Here, we demonstrate that a similar trend can
also be observed with higher order eigenvectors, as shown in Figures 14 and 15.
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Figure 14. (a) Error between Slepian basis and PSWF of order one. (b) Number of points required to
achieve less than 2% error versus time-bandwidth product. (c) Detailed plot of Slepian basis with
minimum N and sampled PSWF values. (d) Detailed plot of Slepian basis with larger N and sampled
PSWF values.
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Figure 15. (a) Error between Slepian basis and PSWF of order two. (b) Number of points required to
achieve less than 2% error against time-bandwidth products. (c) Detailed plot of Slepian basis with
minimum N and sampled PSWF values. (d) Detailed plot of Slepian basis with larger N and sampled
PSWF values.
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Evaluating PSWFs with large time-bandwidth products (c > 10) is notoriously dif-
ficult [36]. In this section, we show that the PSWF can be evaluated with sinc-series
reconstruction from the Slepian basis even with large time-bandwidth products. Figure 16
plots the zeroth order PSWFs and the reconstructed Slepian basis with different time-
bandwidth products from (a) to (f). The errors are shown in the legends. PSWFShannon is
the PSWF obtained through the Shannon sampling approach [35] and PSWFQuadrature is the
PSWF obtained through quadrature rules [20], to provide comparisons with our proposed
reconstruction method.
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Figure 16. Errors between PSWFs generated with other methods and the proposed reconstructed
Slepian basis approach, (a–f) c from 0.628 to 62.8.

As shown in Figure 16, the Shannon sampling approach and the quadrature method
of evaluating PSWFs both start to fail when the time-bandwidth product increases, while
the reconstructed Slepian basis as proposed in this paper still returns the true shape of
PSWF and maintains small errors.

Furthermore, the run time for generating the plots in Figure 16 is recorded and
shown in the legend of Figure 17. The run time for generating the Slepian basis without
reconstruction is also provided.

As shown in Figure 17, the reconstructed Slepian basis method proposed in this paper
uses less computational resources than the traditional quadrature or Shannon sampling
approaches. In addition, if a continuous function is not required and using sampled values
directly is acceptable (i.e., the reconstruction process can be omitted), then the run time for
generating the sampled points of PSWFs can be shortened by another order of magnitude.
Many vectorized applications require sampled function values. Our approach directly
provides sampled values, which is a more efficient approach compared with producing
continuous function approximations only to then sample them.

Although all the existing methods are fast (less than one second) to compute, for some
applications the increase in computation efficiency still matters. For example, in photoacous-
tic imaging where PSWFs can be good candidates for input laser waveforms [52], a typical
pulse repetition rate is 10 Hz [53,54]. This requires the calculation of the PSWF 10 times in
one second. The traditional method of calculating PSWFs may not be implementable under
such conditions.



Symmetry 2023, 15, 2191 25 of 29

Symmetry 2023, 15, x FOR PEER REVIEW 26 of 32 
 

 

the zeroth order PSWFs and the reconstructed Slepian basis with different time-band-

width products from (a) to (f). The errors are shown in the legends. PSWFShannon is the 

PSWF obtained through the Shannon sampling approach [35] and PSWFQuadrature is the 

PSWF obtained through quadrature rules [20], to provide comparisons with our proposed 

reconstruction method. 

 

Figure 16. Errors between PSWFs generated with other methods and the proposed reconstructed 

Slepian basis approach, (a–f) c from 0.628 to 62.8. 

As shown in Figure 16, the Shannon sampling approach and the quadrature method 

of evaluating PSWFs both start to fail when the time-bandwidth product increases, while 

the reconstructed Slepian basis as proposed in this paper still returns the true shape of 

PSWF and maintains small errors. 

Furthermore, the run time for generating the plots in Figure 16 is recorded and shown 

in the legend of Figure 17. The run time for generating the Slepian basis without recon-

struction is also provided. 

 

Figure 17. Run times of generating PSWFs using different approaches, (a–f) c from 0.628 to 62.8. Figure 17. Run times of generating PSWFs using different approaches, (a–f) c from 0.628 to 62.8.

8. Summary and Conclusions

Computation of PSWFs is notoriously difficult and time consuming. This paper applies
operator theory to discrete Fourier transform (DFT) to solve the problem of computing
PSWFs. This leads to an infinite dimensional matrix operator eigenvalue problem, which
we recognize as being the definition of the DPSSs. Truncation of the infinite matrix leads
to a finite dimensional matrix eigenvalue problem which in turn yields what is known as
the Slepian basis. These discrete-valued Slepian basis vectors can then be directly used
as approximations of the discrete time evaluations of the PSWF, in other words, direct
approximations to sampled values of the PSWF. Based on applying an inverse, Fourier
transform demonstrates that a continuous PSWF can also be reconstructed from the Slepian-
basis-sampled values of PSWF.

The simulation results discussed the feasibility of using reconstructed Slepian basis
to evaluate the PSWFs with same time and bandwidth properties. The errors between the
reconstructed Slepian basis and PSWFs are large when the orders of the eigenvectors are
large. However, the errors within the first 4TB orders of eigenvectors whose eigenvalues
are close to 1 are small. The accuracy can be increased by increasing the number of points
used to generate the Slepian basis. The accuracy achieves an almost steady-state value
where the rate of error decrease becomes small when the number of points is sufficiently
large. Thus, users need to balance accuracy with computational costs. When increasing the
time-bandwidth product of PSWFs, the number of Slepian basis points required for recon-
struction to reach the same error level also increases. However, when the time-bandwidth
product is increased to the value where maximum concentration is reached, the required
number of points starts to remain constant. Furthermore, the method of reconstructing the
Slepian basis can be more accurate (as shown in Figure 16) when compared to the Shannon
sampling approach and quadrature approach for large time-bandwidth products. In ad-
dition, the method of reconstructing the Slepian basis is more efficient than the Shannon
sampling approach and quadrature approach, as shown in Figure 17. Another result is that
since the Slepian bases are approximately sampled values of PSWFs, when the number
of points is large enough, the reconstruction process can be omitted entirely, as can be
seen from Figure 2 with N = 201 and N = 501. The computational time can be reduced
by an order of magnitude when the reconstruction process is omitted. However, when
the number of points is small (as shown in Figure 14c), although the sampled points are
sufficiently accurate, a sinc-series reconstruction is still needed to obtain the desired shape
of the PSWF.
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Appendix A. Mathematical Definitions

Appendix A.1. The Fourier Transform

Let L2(R) , L2(−∞, ∞) be the space of square integrable functions f (r) on the real
line r ∈ (−∞, ∞) with the inner product defined as [44]

〈 f , g〉 =
∞∫
−∞

f (t)g(t) dt (A1)

Here, the overbar indicates the complex conjugate operation. This inner product induces
a norm

‖ f ‖ = 〈 f , f 〉1/2 =

 ∞∫
−∞

| f (t)|2 dt

1/2

(A2)

In signal processing terms, the energy of the signal is typically defined as
E f = 〈 f , f 〉 = ‖ f ‖2.

The Fourier transform of a function f (t) is defined as a linear operator on L2(R) by
the integral

F(ω) = F[ f ](ω) = F[ f (t)] =
∞∫
−∞

f (t)e−iωtdt =
〈

f (r), eiωt
〉

(A3)

The Fourier transform transforms functions in the spatial variable t to functions in the
angular frequency ω domain such that f (t)⇔ F(ω) . The notation⇔ is used to indicate a
Fourier transform pair. Here, we use the capitalization to denote a Fourier transform (F is
the Fourier transform of the function f ).

An integral transform needs to be invertible in order to be useful. The inversion
formula is given by

f (t) = F−1[F](t) = F−1[F(ω)] =
1

2π

∞∫
−∞

F(ω)eiωtdt =
1

2π

〈
F(ω), e−iωt

〉
(A4)

Appendix A.2. Parseval Relation

The functions belonging to L2(R) satisfy the generalized Parseval relation [44]:

∞∫
−∞

f (t)g(t) dt =
1

2π

∞∫
−∞

F(ω)G(ω) dω (A5)

This can be written as
〈 f , g〉 = 1

2π
〈F, G〉 (A6)
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This also yields the useful observation that the energy of a signal/function can be equiva-
lently calculated in either the time or frequency domain, that is

〈 f , f 〉 = 1
2π
〈F, F〉 (A7)

Appendix B. Curve Fitting for Relation between Error and Slepian Basis Number
of Points

This appendix provides the curve fitting for relation between errors and the Slepian
basis number of points. Figures A1 and A2 show the errors in the eigenvectors and
eigenvalues between the reconstructed Slepian basis and PSWF with c = 1 of order 0 and
order 1, respectively.
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product c = 1; (a) error between eigenvectors; (b) linear curve fitting with vertical axis taken to
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tween eigenvectors; (d) error between eigenvalues; (e) linear curve fitting with vertical axis taken
to be negative inverse of the error between eigenvalues; (f) parabolic curve fitting of the error
between eigenvalues.
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negative inverse of the error between eigenvectors; (c) parabolic curve fitting of the error be-
tween eigenvectors; (d) error between eigenvalues; (e) linear curve fitting with vertical axis taken
to be negative inverse of the error between eigenvalues; (f) parabolic curve fitting of the error
between eigenvalues.
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40. Çiçek, H.; Zainalabdin, S.J.; İzgi, A. A New Generalization of Szasz-Kantorovich Operators on Weighted Space. Turk. J. Sci. 2022,
7, 85–106.

41. Aksoy, N.Y.; Sarıahmet, E. On the Stability of Finite Difference Scheme for the Schrödinger Equation Including Momentum
Operator. Turk. J. Sci. 2022, 7, 107–115.

42. Pankov, P.S.; Zheentaeva, Z.K.; Shirinov, T. Asymptotic reduction of solution space dimension for dynamical systems. TWMS J.
Pure Appl. Math. 2021, 12, 243–253.

43. Kennedy, R.A.; Sadeghi, P. Hilbert Space Methods in Signal Processing, Illustrated ed.; Cambridge University Press: Cambridge, UK,
2013; ISBN 978-1-107-01003-1.

44. Howell, K. Fourier Transforms. In The Transforms and Applications Handbook; CRC Press LLC: Boca Raton, FL, USA, 2000; Volume 2,
pp. 2.1–2.159.

45. Khare, K.; Butola, M.; Rajora, S. Sampling Theorem. In Fourier Optics and Computational Imaging; Khare, K., Butola, M., Rajora, S.,
Eds.; Springer International Publishing: Cham, The Netherlands, 2023; pp. 33–49. ISBN 978-3-031-18353-9.

46. Unser, M. Sampling-50 Years after Shannon. Proc. IEEE 2000, 88, 569–587. [CrossRef]
47. Breitenberger, E. SSA Matlab Implementation; 1995.
48. Driscoll, T.; Hale, N.; Trefethen, L. Chebfun Guide; Pafnuty Publications: Oxford, UK, 2014.
49. Flammer, C. Spheroidal Wave Functions; Stanford Research Institute Monograph; Stanford University Press: Stanford, CA,

USA, 1957.
50. Sun, Z.; Baddour, N. On the Time Frequency Compactness of the Slepian Basis of Order Zero for Engineering Applications.

Computation 2023, 11, 116. [CrossRef]
51. Karnik, S.; Romberg, J.; Davenport, M.A. Improved Bounds for the Eigenvalues of Prolate Spheroidal Wave Functions and

Discrete Prolate Spheroidal Sequences. Appl. Comput. Harmon. Anal. 2021, 55, 97–128. [CrossRef]
52. Baddour, N.; Sun, Z. Photoacoustics Waveform Design for Optimal Signal to Noise Ratio. Symmetry 2022, 14, 2233. [CrossRef]
53. Mao, Q.; Zhao, W.; Qian, X.; Tao, C.; Liu, X. Improving Photoacoustic Imaging in Low Signal-to-Noise Ratio by Using Spatial and

Polarity Coherence. Photoacoustics 2022, 28, 100427. [CrossRef]
54. Oh, J.-T.; Li, M.-L.; Zhang, H.F.; Maslov, K.; Wang, L.V. Three-Dimensional Imaging of Skin Melanoma in Vivo by Dual-Wavelength

Photoacoustic Microscopy. J. Biomed. Opt. 2006, 11, 034032. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.acha.2006.05.004
https://doi.org/10.1063/1.1665398
https://doi.org/10.1016/j.cpc.2006.06.006
https://doi.org/10.1016/j.acha.2022.02.001
https://doi.org/10.1007/s10915-016-0321-7
https://doi.org/10.1016/j.jcp.2014.10.024
https://doi.org/10.1016/j.acha.2022.02.002
https://doi.org/10.1088/0305-4470/36/39/303
https://doi.org/10.1016/j.acha.2005.04.001
https://doi.org/10.1007/BF03549384
https://doi.org/10.1007/BF03549526
https://doi.org/10.1109/5.843002
https://doi.org/10.3390/computation11060116
https://doi.org/10.1016/j.acha.2021.04.002
https://doi.org/10.3390/sym14112233
https://doi.org/10.1016/j.pacs.2022.100427
https://doi.org/10.1117/1.2210907

	Introduction 
	Introduction to PSWFs 
	Energy Concentration Ratios 
	Problem Statement 
	Solution to the Time-Concentration Problem 
	Solution to the Frequency-Concentration Problem 
	Comparison of the Time and Frequency Concentration Problems 

	Band-Limiting and Time-Limiting Operators 
	Band-Limiting Operator Action 
	Time-Limiting Operator Action 

	Concentration Problems in Terms of Operators 
	Operator Interpretation of the Time Concentration Problem-Time Domain 
	Operator Interpretation of the Time-Concentration Problem–Frequency Domain 
	Operator Interpretation of the Frequency-Concentration Problem 

	Discrete Time Fourier Transform Interpretation of the Operators 
	Discrete-Time Interpretations of the Eigenequation of Problem 1 
	Time-Bandwidth Product and the Shannon Number 
	Discrete-Time Interpretation of the Eigenequation of Problem 2 
	Reconstruction from the Discrete Time Values 

	Comparison with Shannon Sampling Approach 
	Simulations 
	PSWF Ground Truth 
	Slepian Bases and Reconstruction 
	Comparison between Sinc-Series-Reconstructed Slepian Basis and PSWF 

	Summary and Conclusions 
	Appendix A
	The Fourier Transform 
	Parseval Relation 

	Appendix B
	References

