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Abstract: The traditional algorithm for finding Lie point symmetries of ordinary differential equations
(ODEs) faces challenges when applied to first-order ODEs. This stems from the fact that for first-
order ODEs, unlike higher-order ODEs, the determining equation lacks derivatives, rendering it
impossible to decompose into simpler PDEs to be solved for the infinitesimals. Consequently, a
common technique for determining Lie point symmetries of first-order ODEs involves making
speculative assumptions about the form of the infinitesimal generator. In this study, we propose a
novel and more efficient approach for finding Lie point symmetries of first-order ODEs and systems
of first-order ODEs. Our method leverages the inherent connection between first-order ODEs and
their corresponding second-order counterparts derived through total differentiation. By exploiting
this connection, we develop a systematic algorithm for determining Lie point symmetries of a wide
range of first-order ODEs. We present the algorithm and provide illustrative examples to demonstrate
its effectiveness.
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1. Introduction

First-order ODEs and systems of first-order ODEs are prevalent mathematical models
utilized to represent diverse physical phenomena across scientific disciplines (see, for exam-
ple, [1–3]). In physics, they find relevance in describing phenomena like exponential decay,
circuit charging and discharging, and radioactive decay. Mechanical systems employ these
equations to model simple harmonic motion and damping. In biology, first-order ODEs are
employed in population dynamics to simulate population growth and decline, as well as
in processes such as enzyme kinetics and drug metabolism. Chemistry employs them to
characterize chemical reactions through rate equations. In economics, they serve to model
economic growth, consumption patterns, and investment behavior. Engineering fields rely
on first-order ODEs to represent control systems, heat transfer, fluid flow, and electrical
circuits. Environmental science utilizes these equations to model pollutant dispersion,
groundwater flow, and ecological interactions.

Solving first-order ODEs and systems of first-order ODEs can be challenging, which is
why methods based on Lie symmetry analysis of differential equations are attractive.

Lie symmetry analysis, which has its origins in the pioneering work of the Norwegian
mathematician Sophus Lie, provides very effective techniques for studying and analyzing
differential equations (see, for example, [4–8]). Detailed accounts of Lie symmetry analysis
of differential equations are found in many books [9–16] and monographs [17,18].

One of the most common applications of Lie symmetry analysis to ODEs is the reduc-
tion of order; when an ODE admits a Lie point symmetry, the equation can be reduced
to a simpler form. In the case of first-order ODEs, the reduction amounts to complete
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integration of the equation. Other applications include the determination of invariant solu-
tions, the derivation of conservation laws, the construction of “links” between seemingly
different differential equations, and generating new solutions from known solutions. Lie’s
method for studying differential equations is so versatile that various approaches to solving
differential equations can be traced to particular forms of the corresponding symmetries of
the differential equations [11,14].

Central to many routines for Lie symmetry analysis of differential equations is the
determination of their symmetries. In the case of an ODE or a system of ODEs of order
two or more, the infinitesimals of the symmetry generator are found systematically, using
Lie’s algorithm, a straightforward algorithm that reduces the problem to that of solving
an overdetermined system of first-order linear PDEs. However, for first-order ODEs and
systems of first-order ODEs, Lie’s algorithm does not work, in that the strategy of splitting
the determining PDE is inapplicable. A typical approach in this case involves guessing
a form of the infinitesimals and then invoking the invariance criterion [19]. The success
of this approach depends on the specific form of the ODE. Different forms may require
different guessing strategies, which makes the approach less universally applicable.

This article proposes an innovative method for finding Lie point symmetries of first-
order ODEs and systems of first-order ODEs. The method exploits the “increase in order”
of a first-order ODE or a system of first-order ODEs achieved through total differentiation.
Lie point symmetries of a given first-order ODE or a system of first-order ODEs are
searched among those of the associated second-order equations for which Lie’s algorithm
is effective in determining the admitted symmetries. We show that the mapping of first-
order ODEs into second-order ODEs through total differentiation provides a systematic
algorithm for finding Lie point symmetries of first-order ODEs and systems of first-order
ODEs. In related work by Bildik and Açcl [20], the authors only considered basic examples
involving simple scalar first-order ODEs, and their exposition did not use the language of
total differentiation.

The remainder of this article unfolds as follows: Section 2 introduces the essential
background on Lie symmetry analysis of ODEs, including an explanation of the challenge
of finding Lie point symmetries of first-order ODEs. In the same section, we present the
algorithm at the core of this article: the algorithm for uncovering Lie point symmetries
of first-order ODEs by “mapping” them into associated second-order ODEs via total
differentiation. Section 3 presents illustrative examples involving scalar first-order ODEs.
In Section 4, we extend the preliminaries of Lie symmetry analysis presented in Section 2 to
systems of ODEs and we provide illustrative examples that involve systems of first-order
ODEs. Finally, in Section 5, we provide concluding remarks.

2. Preliminaries

We briefly review some background material on Lie symmetry analysis of differential
equations relevant to this paper. For the interested reader, fuller accounts of the methods
can be found in many books, including [9–16].

Consider an nth-order ODE,

F
(

x, y, y′, . . . , y(n)
)
= 0, (1)

where

y(k) =
dky
dxk , k = 1, 2, . . . , n,

and a one-parameter Lie group of point transformations,

x̃ = f (x, y; ε) = x + εξ(x, y) + O
(

ε2
)

,

ỹ = g(x, y; ε) = y + εη(x, y) + O
(

ε2
)

,
(2)
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with the group parameter ε and the corresponding infinitesimal generator,

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
. (3)

The Lie group (2) is admitted by (1) if and only if

X(n)F
(

x, y, y′, . . . , y(n)
)
= 0 whenever F

(
x, y, y′, . . . , y(n)

)
= 0, (4)

where X(n) is the nth extended infinitesimal generator of (3) given by

X(n) = X + η(1)(x, y, y′
) ∂

∂y′
+ · · ·+ η(k)

(
x, y, y′, . . . , y(k)

) ∂

∂y(k)
, (5)

where
η(k)

(
x, y, y′, . . . , y(k)

)
= Dxη(k−1) − y(k)Dxξ, k = 1, 2, . . . , n

with
η(0) = η(x, y),

and Dx is the total differential operator defined by

Dx =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · · . (6)

We typically refer to either (2) or (3) as a symmetry of the ODE (1) if the invariance
condition (4) holds.

The infinitesimal criterion for invariance (4) results in a linear homogeneous differen-
tial equation called the determining equation. If the order of the ODE (1) is two or greater,
then the solution of the determining equation is simplified by the fact that the unknown
functions ξ and η depend only on x and y, while the determining equation involves also
the derivatives y′, . . . , y(n). Because the determining equation must hold identically in all
variables x, y, y′, . . . , y(n), the terms in the equation multiplied by the various monomials
in the derivatives y′, . . . , y(n) must be equated to zero. Therefore, the determining equation
splits into a large number of elementary linear PDEs for the coefficients ξ and η. The
general solution of the system of the elementary PDEs determines the most general forms
of the functions ξ and η.

Let us assume that (1) is a first-order ODE and that it can be written in the form

y′ = Ω(x, y). (7)

Applying the invariance condition, we ascertain that (7) admits a Lie group of point
transformations that has an infinitesimal generator (3) if

X(1)(y′ − Ω(x, y)
)
|(7) = 0. (8)

Equation (8) reduces to the determining PDE

ηx +
(
ηy − ξx

)
Ω − ξyΩ2 − ξΩx − ηΩy = 0, (9)

which is to be solved for the functions ξ and η. Given the function Ω, this PDE possesses
infinitely many (nonzero) solutions ξ and η [11,14,17,21]. Despite this, no universal guide-
lines exist to facilitate the resolution of Equation (9). Typically, to solve (9) an ansatz is used.
One common ansatz is to use ξ = α(x) and η = β(x)y + γ(x), where α, β, γ are taken to be
polynomials. Other ad hoc methods have been proposed to deal with particular kinds of
first-order ODEs [7,19,22–24].

The problem of finding symmetries admitted by first-order ODEs is also tackled in the
“reverse” order. Given an infinitesimal generator of a Lie group of point transformations,
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the general first-order ODE that admits the group is determined. Consider, for example,
the group with the symmetry generator

X = x
∂

∂x
+ x

∂

∂y
. (10)

Using the once-extended operator

X(1) = x
∂

∂x
+ x

∂

∂y
+ (1 − y′)

∂

∂y′
, (11)

one readily finds an invariant u = y− x and a first-order differential invariant v = x(y′ − 1).
Hence, the general first-order ODE invariant under (10) has the form v = H(u), where H is
an arbitrary function. This means that the general form of a first-order ODE that admits a
Lie group of point transformations with infinitesimal generator (10) is

xy′ = x + H(y − x). (12)

Using this approach, tables can be (in fact, have been) generated of general forms of
first-order ODEs with known Lie point symmetries (see, for example, [25] (p. 59)).

In this article, we propose a straightforward method for obtaining Lie point symmetries
of a wide range of first-order ODEs via exploitation of the connection between a given
first-order ODE and the second-order ODE derived from it through total differentiation.

Consider a first-order ODE,
f
(
x, y, y′

)
= 0 (13)

for some function f . The equation

Dx f
(

x, y, y′
)
= 0, (14)

where Dx is the total differential operator defined by (6), is a second-order ODE. We shall re-
fer to (14) as the second-order ODE associated with the first-order ODE (13). Equation (14),
being a second-order ODE, possesses k Lie point symmetries, where k ∈ {0, 1, 2, 3, 8}
(see [15,26]). Lie point symmetries for Equation (14) can be readily determined using popu-
lar software packages [27–30]. A natural question to ask is whether any of the k symmetries
(if k > 0) admitted by Equation (14) are inherited by Equation (13).

It turns out that, in many instances, this is the case, i.e., among the Lie point symmetries
of the associated second-order ODE are Lie point symmetries of the first-order ODE.

To determine which of the symmetries X1, . . . , Xk of (14) are inherited by (13), we take
a linear combination, X = ∑k

i=1 δiXi, where δis are arbitrary constants, and then apply the
invariance condition to determine conditions on the arbitrary constants under which the
first-order ODE admits X.

In instances where other symmetries of a given first-order ODE (or system) are known,
additional admitted Lie point symmetries can be found systematically by calculating
the Lie brackets for all conceivable pairs of the infinitesimal generators. Upon finding
new ones through this process, the method is iteratively re-applied to the extended set
of infinitesimal generators. This iterative procedure is repeated until no further linearly
independent infinitesimal generators are uncovered. This is illustrated in Example 5.

The calculations reported in this article were performed using Mathematica 9.0 [31]
and the Mathematica-based package MathLie [27,28]. Several illustrative examples are
provided below.

3. Lie Point Symmetries of Scalar First-Order ODEs

Example 1. Consider the ODE [11] (p. 108),

y′ = x − y. (15)
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The associated second-order ODE obtained is

Dx
(
y′ − x + y

)
= y′′ + y′ − 1 = 0. (16)

Equation (16) admits the following Lie point symmetries:

X1 = (2 − y + x)
∂

∂x
+ 2

∂

∂y
, X2 =

∂

∂x
,

X3 =
[
(x − y)2 − 2

] ∂

∂x
+ (x − y − 2)

∂

∂y
,

X4 = 4
∂

∂x
+ 3

∂

∂y
, X5 = e−x ∂

∂x
,

X6 = e−x
[
(x − y)

∂

∂x
+

∂

∂y

]
, X7 = ex

(
∂

∂x
+

∂

∂y

)
,

X8 = ex(x − y)
(

∂

∂x
+

∂

∂y

)
.

(17)

To determine which of these symmetries are admitted by first-order ODE (15), we take the linear
combination X = ∑8

i=1 δiXi, where δis are arbitrary constants, and then apply the invariance
condition, i.e., we solve the equation

X(1)(y′ − x + y
)
|(15) = 0 (18)

for constants δis. We determine that Equation (18) holds if and only if

δ1 = δ3 = δ5 = δ6 = 0, δ2 = −δ4, δ8 = −δ7. (19)

This means that the following symmetries of (16) are admitted by the first-order ODE (15):

X4 − X2, X7 − X8. (20)

Example 2. Consider the nonlinear ODE [32] (p. 28),

x4yy′ + 2x3y2 + x = 0. (21)

The associated second-order ODE is

x4(y′)2 + x3y
(
xy′′ + 8y′

)
+ 6x2y2 + 1 = 0, (22)

and admits the following Lie point symmetries:

X1 = x2 ∂

∂x
− 1

2

(
1

xy
+ 3xy

)
∂

∂y
,

X2 = x
∂

∂x
− 1

4

(
3

x2y
+ 7y

)
∂

∂y
,

X3 =
∂

∂x
−
(

3
2x3y

+
2y
x

)
∂

∂y
,

X4 = x3
(

x2y2 + 1
) ∂

∂x
− 1

2

(
3x2y2 + 1

)(
x2y +

1
y

)
∂

∂y
,

X5 = x2
(

x2y2 + 3
) ∂

∂x
− 2
(

x3y3 + 3xy +
1

xy

)
∂

∂y
,

X6 = x
∂

∂x
−
(

1
x2y

+ 2y
)

∂

∂y
,

X7 =
∂

∂x
−
(

2
x3y

+
2y
x

)
∂

∂y
, X8 =

1
x4y

∂

∂y
.

(23)
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If set X = ∑8
i=1 δiXi, then the invariance condition

X(1)
(

x4yy′ + 2x3y2 + x
)
|(21) = 0 (24)

holds if and only if
δ3 = −2δ7, δ5 = − 1

2 δ2. (25)

Therefore, the following symmetries are admitted by the first-order ODE (21):

X1 − 1
2 X5, X2, X4, X6, −2X3 + X7, X8. (26)

Example 3. Consider the nonlinear ODE [24],

y′ =
(y − x ln x)2

x2 + ln x. (27)

The associated second-order ODE is

x3y′′ + 2xy(1 − y′) + 2 ln x[x2(y′ − 1)− xy]− 2y2 + x2 = 0 (28)

and is found to admit the following Lie point symmetries:

X1 = x
∂

∂x
+ (y + x)

∂

∂y
,

X2 = x(1 − 2 ln x)
∂

∂x
− [(2x + y)2 ln x − 3y]

∂

∂y
.

(29)

Upon invoking the invariance condition, we determine that X = δ1X1 + δ2X2 is admitted by (27),
provided that δ2 = 0. This means that only X1 is admitted by (27) from the symmetries admitted by
the associated second-order ODE (28).

Example 4. Consider the nonlinear ODE [19]

y′ = beaxyxa +

(
x2 − 1

)
y

x
− 1

x2 + ln x + c, (30)

where a, b, and c are constants. The associated second-order ODE

x3(y′′ − y
)
− abxa+2eaxy

(
x2y′ + xy + 1

)
−
(

x2 − x4
)

y′ + xy − x2 − 2 = 0 (31)

admits only one Lie point symmetry, namely

X =
1
x

∂

∂x
−
(

y
x2 +

1
x3

)
∂

∂y
. (32)

It happens that Equation (30), the original first-order ODE, also admits this symmetry.

Example 5. The ODE [14]

y′ = −y + 2x
x

, (33)

has the following associated second-order ODE:

y′′ =
y − xy′

x2 . (34)

Equation (34) is found to admit the following eight Lie point symmetries:
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X1 = y
∂

∂x
− y2

x
∂

∂y
, X2 = x2y

∂

∂x
+ xy2 ∂

∂y
,

X3 =

(
x +

1
x

)
∂

∂y
, X4 =

(
x − 1

x

)
∂

∂y
, X5 = y

∂

∂y
,

X6 =

(
x +

1
x

)
∂

∂x
− y
(

1
x2 + 3

)
∂

∂y
,

X7 =

(
x − 1

x

)
∂

∂x
+ y
(

1
x2 − 3

)
∂

∂y
,

X8 = x
(

x2 + 1
) ∂

∂x
+ y
(

x2 + 3
) ∂

∂y
.

(35)

Applying the invariance condition, we determine that X = ∑8
i=1 δiXi is admitted by (33), provided that

δ2 = δ8, δ3 = 2δ1 − δ4 + δ5 − 4δ6 + 4δ7 + 2δ8. (36)

This leads to the following symmetries of the first-order ODE (33):

X1 + 2X3, X4 − X3, X3 + X5,

X6 − 4X3, 4X3 + X7, X2 + 2X3 + X8.
(37)

Remark 1. It is noteworthy that the symmetry

Z =
1

y + 2x
∂

∂x
, (38)

which is also admitted by (33) (reported in [14]), is not admitted by the associated second-order
ODE (34), and cannot be represented by the symmetries in (37). Therefore, additional Lie point
symmetries of the first-order ODE (33) can be found by calculating Lie brackets as explained in
Section 2. For example, taking Y = X4 − X3 and Z, we obtain this new symmetry of (33),

[Y, Z] =
2

x(y + 2x)

(
1

y + 2x
∂

∂x
− 1

x
∂

∂y

)
.

Example 6. The nonlinear ODE,
y2y′ = x sin2 x, (39)

has the following associated second-order ODE:

2y
(
y′
)2

+ y2y′′ − x sin(2x)− sin2 x = 0. (40)

Equation (40) is found to admit the following eight Lie point symmetries:

X1 =
8y3 − 6x2 + 3 cos(2x) + 6x sin(2x)

y2
∂

∂y
,

X2 = 2
∂

∂x
− x cos(2x)

y2
∂

∂y
, X3 = x

∂

∂x
+

x2 sin2 x
y2

∂

∂y
,

X4 = 24x2 ∂

∂x
+

x(8y3 + 6x2 + (3 − 12x2) cos(2x) + 6x sin(2x))
y2

∂

∂y
,

X5 =
1
y2

∂

∂y
, X6 =

x
y2

∂

∂y
,

X7 = 48x
∂

∂x
+

8y3 + 18x2 + (3 − 12x2) cos(2x) + 6x sin(2x)
y2

∂

∂y
,

X8 = 4
∂

∂x
+

x(3 + cos(2x)− 2x sin(2x))
y2

∂

∂y
.

(41)
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Applying the invariance condition, we determine that X = ∑8
i=1 δiXi is admitted by (39), provided that

δ4 = δ7 = δ8 = 0, δ6 = δ2. (42)

This leads to the following symmetries of the first-order ODE (39):

X1, X2 + X6, X3, X5. (43)

Example 7. The Bernoulli equation [33,34],

y′ = y + y−1ex, (44)

has associated with it the second-order ODE:

y′′ =
(

ex

y2 + 1
)

y′ − ex

y
, (45)

which admits the Lie point symmetries

X1 = ex ∂

∂x
+ yex ∂

∂y
, X2 = 2x

∂

∂x
+ y

∂

∂y
. (46)

The symmetries given in Equation (46) are also determined, using the invariance condition, to be
symmetries of the Bernoulli Equation (44).

4. Lie Point Symmetries of Systems of First-Order ODEs

Systems of ODEs featuring a single independent variable and multiple dependent
variables are prevalent in various applications, including mathematical models for infec-
tious disease propagation, species competition dynamics, and predator–prey interactions.
Just as with scalar ODEs, Lie symmetry analysis can be effectively employed to analyze
such systems, provided admitted Lie point symmetries can be found.

The challenge of finding Lie point symmetries for scalar first-order ODEs, as discussed
in Section 2, applies to systems of first-order ODEs. This section is dedicated to extending
the procedure introduced in Section 2 to systems of first-order ODEs.

The preliminaries of Lie symmetry analysis presented in Section 2 extend naturally to
the study of systems of ODEs. Let us consider a system of ODEs consisting of one dependent
variable t and m (with m ≥ 2) dependent variables u(t) = (u1(t), u2(t), . . . , um(t)),

Fα(t, u(1), u(2), . . . , u(k)) = 0, α = 1, . . . , m, (47)

where u(k) denotes all kth order derivatives of u with respect to t. Henceforth, we will
adhere to the convention of summation over repeated indices. We say that (47) admits a
Lie group of point transformations with an infinitesimal generator,

X = ξ(t, u)
∂

∂t
+ ηα(t, u)

∂

∂uα
, (48)

if and only if for all α = 1, . . . , m,

X(k)Fα(t, u(1), u(2), . . . , u(k)) = 0 whenever (47) holds, (49)

where X(k) is the kth extended infinitesimal generator given by
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X(k) = ξ(t, u)
∂

∂t
+ ηα(t, u)

∂

∂uα
+ ηα

t (t, u, u(1))
∂

∂uα
t
+ · · ·

+ ηα
tt · · · t︸ ︷︷ ︸
k times

(t, u(1), u(2), . . . , u(k))
∂

∂uα
tt · · · t︸ ︷︷ ︸
k times

, k = 1, 2, . . . , (50)

with the extended infinitesimals given by

ηα
t = Dtη

α − (Dtξ)uα
t ,

and
ηα

tt · · · t︸ ︷︷ ︸
k times

= Dtη
α

tt · · · t︸ ︷︷ ︸
(k − 1) times

− (Dtξ)uα
tt · · · t︸ ︷︷ ︸
k times

, k = 2, 3, . . . ,

where Dt is the total differential operator with respect to t defined by

Dt =
∂

∂t
+ uα

t
∂

∂uα
+ uα

tt
∂

∂uα
t
+ · · ·+ uα

tt · · · t︸ ︷︷ ︸
(n + 1) times

∂

∂uα
tt · · · t︸ ︷︷ ︸
n times

+ · · · . (51)

If the system (47) is first-order, i.e., k = 1, we increase the system’s order to second-
order by applying the total differential operator (51). We obtain the corresponding system
of second-order ODEs,

DtFα(t, u(1)) = 0, α = 1, . . . , m. (52)

Lie point symmetries of the original first-order ODE are then searched among the Lie point
symmetries of (52). We shall now provide three illustrative examples.

Example 8. Among the mathematical models considered in Nucci and Leach [8] is the system
of ODEs

u′ + u2 − uv = 0
v′ + auv + v2 = 0,

(53)

where a is a constant, with one independent variable t, and two dependent variables u and v. The
associated second-order system of ODEs

u′′ + (2u − v)u′ − uv′ = 0
v′′ + avu′ + v′(au + 2v) = 0

(54)

is found to admit two Lie point symmetries

X1 =
∂

∂t
, X2 = −t

∂

∂t
+ u

∂

∂u
+ v

∂

∂v
. (55)

Taking the linear combination X = δ1X1 + δ2X2, and then applying the invariance condition, i.e.,

X(1)
(

u′ + u2 − uv
)
|(53) = 0 (56)

X(1)
(

v′ + auv + v2
)
|(53) = 0, (57)

we obtain that both Equations (56) and (57) hold for all δ1 and δ2. Therefore, the Lie point symmetries
in (55) are both inherited by the first-order system (53).

Example 9. The simultaneous first-order ODEs

u′ = 3u + v, v′ = v − u, (58)
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are typical of models of two species of animals that compete for survival in a given habitat, where
u(t) and v(t) are their respective populations at time t. Associated with (58) is the system of
second-order ODEs,

u′′ = 3u′ + v′, v′′ = −u′ + v′. (59)

The system (59) is found to admit the following Lie point symmetries:

X1 =
∂

∂t
, X2 = u

∂

∂u
+ v

∂

∂v
, X3 = v

∂

∂u
− (u + 2v)

∂

∂v
,

X4 =
∂

∂u
+

∂

∂v
, X5 =

∂

∂u
− 3

∂

∂v
, X6 = e2t

(
∂

∂u
− ∂

∂v

)
.

(60)

It is easily shown that if X = ∑6
i=1 δiXi then

X(1)(u′ − 3u − v
)
|(59) = 0 (61)

X(1)(v′ − v + u
)
|(59) = 0, (62)

provided that δ4 = δ5 = 0. This means that all the symmetries in (60) except X4 and X5 are
admitted by the system (58).

Example 10. The following coupled system of three linear first-order ODEs is also typical of systems
commonly encountered in applications involving mathematical modeling with differential equations:

u′ = −2u + v + w, v′ = u − 3v, w′ = 2v − w. (63)

The three dependent variables u(t), v(t), and w(t) are related in such a way that their rates of
change are determined by linear combinations of the variables themselves. The associated system of
second-order ODEs is

u′′ = −2u′ + v′ + w′, v′′ = y′ − 3v′, w′′ = 2u′ − w′, (64)

and admits the following Lie point symmetries:

X1 =
∂

∂t
, X2 = 3

∂

∂u
+

∂

∂v
+ 2

∂

∂w
, X3 = 3

∂

∂u
+ 2

∂

∂v
+ 4

∂

∂w
,

X4 = 3
∂

∂u
+

∂

∂v
+ 5

∂

∂w
, X5 = u

∂

∂u
+ v

∂

∂v
+ w

∂

∂w
,

X6 = (v + w)
∂

∂u
+ (u − v)

∂

∂v
+ (2v + w)

∂

∂w
,

X7 = 2(v + w)
∂

∂u
+ w

∂

∂v
+ (2u + 2v + w)

∂

∂w
,

X8 = e−
(√

5+3
2

)
t
(

∂

∂u
+

√
5 + 3
2

∂

∂v
−
(√

5 + 1
) ∂

∂w

)
,

X9 = e
√

5−3
2 t

(
∂

∂u
−

√
5 − 3
2

∂

∂v
+
(√

5 − 1
) ∂

∂w

)
,

X10 = e−3t
(

∂

∂v
− ∂

∂w

)
.

(65)

We determine that X = ∑10
i=1 δiXi is admitted by the system (63), provided that δ2 = δ3 = δ4 = 0.

Therefore, the symmetries X1, X5, X6, X7, X8, X9, and X10 are admitted by the system of first-order
ODEs (63).

5. Concluding Remarks

In the study of first-order ODEs and systems of first-order ODEs, Lie symmetry anal-
ysis emerges as a powerful toolkit, providing an array of useful routines and algorithms.
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Central to Lie symmetry analysis of such equations is the determination of Lie point sym-
metries of the equations. In this context, our proposed methodology for finding admitted
Lie point symmetries stands as a noteworthy contribution to the existing techniques.

As elaborated in the introduction and preliminary sections, Lie’s algorithm—the
primary mechanism for finding Lie point symmetries of ODEs—falls short when applied
to first-order ODEs. However, a given first-order ODE can be viewed as a first integral
of the second-order ODE obtained by applying the total differential operator to the given
first-order equation. By considering symmetries of the associated second-order ODE, it
becomes possible to search for Lie point symmetries of the original first-order equation
among the symmetries of the second-order ODE.

Our methodology effectively finds symmetries of many first-order ODEs and systems
of first-order ODEs. We have illustrated this through examples involving seven scalar
first-order ODEs and three systems of first-order ODEs. This approach to finding Lie point
symmetries of first-order ODEs and systems of first-order ODEs potentially enables the
determination of Lie point symmetries in previously intractable cases. We hope this will
open up new avenues for applying Lie symmetry analysis to complex systems of first-order
ODEs that arise in diverse fields, such as the modeling of the spread of infectious diseases,
competition between species, and predator–prey relationships.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Acknowledgments: I would like to express my appreciation to the Directorate of Research Develop-
ment and Innovation of Walter Sisulu University for its continued support.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Boyce, W.E.; Diprima, R.C.; Meade, D.B. Elementary Differential Equations and Boundary Value Problems, 11th ed.; John Wiley & Sons:

New York, NY, USA, 2017.
2. Simmons, G.F. Differential Equations with Applications and Historical Notes, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017.
3. Hirsch, M.W.; Smale, S.; Devaney, R.L. Differential Equations, Dynamical Systems, and an Introduction to Chaos; Academic Press: San

Diego, CA, USA, 2004.
4. Zhdanov, R.Z. Lie symmetry and integrability of ordinary differential equations. J. Math. Phys. 1998, 39, 6745–6756. [CrossRef]
5. Senthilvelan, M.; Chandrasekar, V.K.; Mohanasubha, R. Symmetries of nonlinear ordinary differential equations: The modified

Emden equation as a case study. Pramana 2015, 85, 755–787. [CrossRef]
6. Borgqvist, J.G.; Ohlsson, F.; Baker, R.E. Energy translation symmetries and dynamics of separable autonomous two-dimensional

ODEs. Phys. D Nonlinear Phenom. 2023, 454, 133876. [CrossRef]
7. Sharma, N.; Kumar, G. Lie Symmetry Solution of Bernoulli Differential Equation of First Order. J. Res. Appl. Math. 2022, 8, 72–78.
8. Nucci, M.C.; Leach, P.G.L. Singularity and symmetry analyses of mathematical models of epidemics. S. Afr. J. Sci. 2009, 105,

136–146. [CrossRef]
9. Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993.
10. Cantwell, B.J. Introduction to Symmetry Analysis; Cambridge University Press: New York, NY, USA, 2002.
11. Bluman, G.W.; Kumei, S. Symmetries and Differential Equations; Springer: New York, NY, USA, 1989.
12. Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York,

NY, USA, 2010.
13. Hydon, P.E. Symmetry Methods for Differential Equations: A Beginner’s Guide; Cambridge University Press: New York, NY, USA, 2000.
14. Stephani, H. Differential Equations: Their Solution Using Symmetries; Cambridge University Press: Cambridge, UK, 1989.
15. Schwarz, F. Algorithmic Lie Theory for Solving Ordinary Differential Equations; Chapman & Hall/CRC: New York, NY, USA, 2008.
16. Bluman, G.W.; Anco, S.C. Symmetry and Integration Methods for Differential Equations; Springer: New York, NY, USA, 2002.
17. Oliveri, F. Lie symmetries of differential equations: Classical results and recent contributions. Symmetry 2010, 2, 658–706.

[CrossRef]
18. Schwarz, F. Symmetries of differential equations: From Sophus lie to computer algebra. SIAM Rev. 1988, 30, 450–481. [CrossRef]
19. Cheb-Terrab, E.S.; Kolokolnikov, T. First-Order Ordinary Differential Equations, Symmetries and Linear Transformations. Eur. J.

Appl. Math. 2003, 14, 231–246. [CrossRef]
20. Bildik, N.; Aç, M. On the Lie symmetries of first-order ordinary differential equations. In AIP Conference Proceedings; American

Institute of Physics: College Park, MD, USA, 2013; Volume 1558, p. 2575.
21. Ibragimov, N.H. Equivalence groups and invariants of linear and non-linear equations. Arch. ALGA 2004, 1, 9–69.

http://doi.org/10.1063/1.532654
http://dx.doi.org/10.1007/s12043-015-1106-5
http://dx.doi.org/10.1016/j.physd.2023.133876
http://dx.doi.org/10.4102/sajs.v105i3/4.66
http://dx.doi.org/10.3390/sym2020658
http://dx.doi.org/10.1137/1030094
http://dx.doi.org/10.1017/S0956792503005126


Symmetry 2023, 15, 2198 12 of 12

22. Cheb-Terrab, E.S.; Roche, A.D. Symmetries and first-order ODE patterns. Comput. Phys. Commun. 1998, 113, 239–260. [CrossRef]
23. Aç, M.; Konuralp, A.; Bildik, N. Finding the Lie Symmetries of Some First-Order ODEs via Induced Characteristic. CBU J. Sci.

2017, 13, 275–278.
24. Cheb-Terrab, E.S.; Duarte, L.G.S.; da Mota, L.A.C.P. Computer algebra solving of first order ODEs using symmetry methods.

Comput. Phys. Comm. 1997, 101, 254–268. [CrossRef]
25. Ibragimov, N.H. Introduction to Modern Group Analysis; TAU: Ufa, Russia, 2000.
26. Mahomed, F.M. Symmetry group classification of ordinary differential equations: Survey of some results. Math. Meth. Appl. Sci.

2007, 30, 1995–2012. [CrossRef]
27. Baumann, G. MathLie, a Program of Doing Symmetry Analysis. Math. Comput. Simul. 1998, 48, 205–223. [CrossRef]
28. Baumann, G. Symmetry Analysis of Differential Equations using MathLie. J. Math. Sci. 2002, 108, 1052–1069. [CrossRef]
29. Cheviakov, A.F. GeM Software Package for Computation of Symmetries and Conservation Laws of Differential Equations. Comput.

Phys. Commun. 2007, 176, 48–61. [CrossRef]
30. Filho, R.; Tarcísio, M.; Figueiredo, A. [SADE]: A Maple Package for the Symmetry Analysis of Differential Equations. Comput.

Phys. Commun. 2011, 182, 467–476. [CrossRef]
31. Wolfram Research, Inc. Wolfram Mathematica; Version 9.0; Wolfram Research, Inc.: Champaign, IL, USA, 2012.
32. Dresner, L. Applications of Lie’s Theory of Ordinary and Partial Differential Equations; Institute of Physics: Bristol, UK, 1999.
33. Musyoka, Z.; Sogomo, K.; Gathia, P. Some Hyndon’s Generalizations to Starrett’s Method of Solving first-order ODEs by Lie

Group Symmetry. Adv. Theor. Appl. Math. 2013, 8, 139–151.
34. Altoum, S.H. Lie group and RK4 for solving nonlinear first-order ODEs. Int. J. Appl. Math. Res. 2016, 5, 117–122. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/S0010-4655(98)00071-X
http://dx.doi.org/10.1016/S0010-4655(97)00018-0
http://dx.doi.org/10.1002/mma.934
http://dx.doi.org/10.1016/S0378-4754(98)00143-8
http://dx.doi.org/10.1023/A:1013548607060
http://dx.doi.org/10.1016/j.cpc.2006.08.001
http://dx.doi.org/10.1016/j.cpc.2010.09.021
http://dx.doi.org/10.14419/ijamr.v5i2.6033

	Introduction
	Preliminaries
	Lie Point Symmetries of Scalar First-Order ODEs
	Lie Point Symmetries of Systems of First-Order ODEs
	Concluding Remarks
	References

