
Citation: Tian, F.; Zhang, D.; Yuan, Y.;

Fu, G.; Li, X.; Chen, G. Fog

Computing Task Scheduling of Smart

Community Based on Hybrid Ant

Lion Optimizer. Symmetry 2023, 15,

2206. https://doi.org/10.3390/

sym15122206

Academic Editors: Alexander

Zaslavski and Tomohiro Inagaki

Received: 11 October 2023

Revised: 30 November 2023

Accepted: 15 December 2023

Published: 17 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Fog Computing Task Scheduling of Smart Community Based on
Hybrid Ant Lion Optimizer
Fengqing Tian *, Donghua Zhang, Ying Yuan, Guangchun Fu, Xiaomin Li and Guanghua Chen

Henan Institute of Science and Technology, Xinxiang 453000, China; zdh18439027037@163.com (D.Z.);
15237613225@163.com (Y.Y.); fuguchun@hist.edu.cn (G.F.); xiaomin@hist.edu.cn (X.L.); chengh@hist.edu.cn (G.C.)
* Correspondence: fengqingtian@hist.edu.cn

Abstract: Due to the problem of large latency and energy consumption of fog computing in smart
community applications, the fog computing task-scheduling method based on Hybrid Ant Lion
Optimizer (HALO) is proposed in this paper. This method is based on the Ant Lion Optimizer
(ALO. Firstly, chaotic mapping is adopted to initialize the population, and the quality of the initial
population is improved; secondly, the Adaptive Random Wandering (ARW) method is designed
to improve the solution efficiency; finally, the improved Dynamic Opposite Learning Crossover
(DOLC) strategy is embedded in the generation-hopping stage of the ALO to enrich the diversity
of the population and improve the optimization-seeking ability of ALO. HALO is used to optimize
the scheduling scheme of fog computing tasks. The simulation experiments are conducted under
different data task volumes, compared with several other task scheduling algorithms such as the
original algorithm of ALO, Genetic Algorithm (GA), Whale Optimizer Algorithm (WOA) and Salp
Swarm Algorithm (SSA). HALO has good initial population quality, fast convergence speed, and
high optimization-seeking accuracy. The scheduling scheme obtained by the proposed method in
this paper can effectively reduce the latency of the system and reduce the energy consumption of
the system.

Keywords: smart community; fog computing; task scheduling; ant lion optimizer; latency;
energy consumption

1. Introduction

In recent years, the rapid development of the Internet of Things (IoT) has promoted
the development of smart cities [1]. The smart community is one of the key elements as a
basic component to realize a smart city. The IoT devices involved in smart communities are
located at the edge of the Internet and are of diverse types. The number and the amount of
data of IoT devices are growing exponentially year by year [2]. Therefore, the transmission
latency and energy consumption in the cloud computing of a smart community has been
highlighted directly. The bandwidth of a network has become a key factor in limiting the
development of cloud computing. Then, fog computing was born [3]. Fog nodes have
limited and different computing capabilities in the application of fog computing. How to
coordinate and schedule the fog computing tasks between the fog nodes and IoT devices to
reduce data transmission time and energy consumption and improve response speed [4],
and enhance the quality of the user experience [5], has become the focus of research in
fog computing.

Currently, a large number of fog computing task-scheduling algorithms have been
proposed for the scheduling of fog computing tasks [6–8]. The hardware utilization ef-
ficiency of fog computing systems has been improved through task scheduling [9–12].
Verba et al. [13] proposed a real-time service model for community energy management,
and cost-effective energy management was achieved for electricity by three scenarios
for the energy consumption in smart community fog computing. In order to meet the
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latency requirements of multiple services in the electric power IoT scenario, a BRT (Bal-
anced initialization, Resource allocation, and Task allocation) algorithm was proposed by
Niu et al. [14]. In the paper, the original problem was decomposed into three subproblems,
and the computational resources were allocated by improved particle swarm optimiza-
tion to minimize the service latency. Amit et al. [15] studied the latency decrease in the
resource-constrained IoT devices in smart cities that require low-latency processing by a
fog computing task-scheduling algorithm based on ant colony optimization. Dai et al. [16]
improved the fog computing architecture for smart factories and reduced the task latency
and kept the resource balance by improved genetic algorithm for the characteristics and
needs of smart factories. Cen et al. [17] proposed a computing resource allocation method
for smart distribution network fog computing devices to improve the adaptability of a
distribution network automation system. The latency of the fog computing system by task
scheduling was optimized in the literature [14–17], but the system energy consumption was
not considered. Mohamed et al. [18] proposed an improved artificial ecosystem algorithm
for computing task scheduling in order to improve the performance of IoT systems. The
improved artificial ecosystem algorithm was evaluated using synthetic and real datasets of
different sizes, and the method worked best in reducing latency and energy consumption.
Wang et al. [19] investigated the limited computing resources and high energy consumption
of terminal devices in smart factories based on a hybrid heuristic algorithm. The tasks of
terminal devices were able to be processed in real time and efficiently with the method in
the paper. Abdel-Basse et al. [20] proposed a fog computing task-scheduling algorithm
based on the Modified Marine Predator Algorithm (MMPA) to solve the problem of high
latency and energy consumption of fog computing in IoT applications. The latency and
energy consumption of the system were reduced effectively in the literature [18–20], but
the priority of IoT task processing was not considered.

Hussein et al. [21] proposed two different scheduling algorithms to improve the quality
of service of fog computing. The load of IoT tasks on fog nodes was balanced effectively by
ant colony algorithm (ACO) and particle swarm optimization in which the communication
cost and response time were considered. Rafique et al. [22] proposed a novel bio-inspired
hybrid algorithm (NBIHA) task-scheduling algorithm based on modified particle swarm
optimization (MPSO) and modified cat swarm optimization (MCSO) to reduce the response
time of IoT fog computing system and improve the fog computing resource utilization.
Movahedi et al. [23] investigated a task-scheduling algorithm based on the Opposition-
based Chaotic Whale Optimization Algorithm (OppoCWOA), and the latency and energy
consumption of IoT tasks were decreased by having fewer offloading requests and fog node
resource constraints in the smart city. Xu et al. [24] proposed a task-scheduling algorithm
based on slackness and the ant colony algorithm to reduce the energy consumption for
scheduling complex tasks with priority constraints in IoT applications, but the latency of
fog computing was not considered.

Table 1 compares the different works in terms of application scenario, optimization
method, optimization objective and priority. To sum up, the existing fog computing
scheduling research mainly focused on manufacturing [6,16,19] and smart grids [13,14,17].
There were few research papers on fog computing task-scheduling in smart communities.
The smart communities have characteristics that distinguish them from other smart subjects:
(1) The smart communities include smart grids [25,26], smart water networks [27], smart
parking [28,29], smart buildings [30] and other subjects, in which a variety of IoT devices are
deployed, and different devices with different requirements of latency, energy consumption
and different priorities of IoT tasks; (2) The smart communities are non-profit organizations,
which invest less in the deployment of fog nodes than other subjects, and have insufficient
fog node resources; (3) Irrational task scheduling can lead to some nodes running at full
capacity, and the system will generate a lot of latency and energy consumption, which does
not meet the requirements of delay-sensitive tasks in smart communities. Therefore, the
traditional optimization algorithms have no way to meet the fog computing task-scheduling
requirements in smart communities. Ant Lion Optimizer [31] (ALO) is a new intelligent
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algorithm proposed by Mirjalili, an Australian scholar, in 2015. Given that ALO has the
advantages of diverse populations, fast convergence, and few adjustment parameters [32],
in this paper, a fog computing task-scheduling algorithm based on the improved Ant Lion
Optimizer is proposed by exploiting the features of intelligent communities and the Ant
Lion Optimizer. The main contribution of this paper is embodied in three aspects.

(1) Modeling smart community fog computing architecture with the specifics of a
smart community;

(2) Chaotic mapping is adopted to initialize the population, and the quality of the initial
population is enhanced;

(3) The random walk is adopted to improve the solving efficiency of ALO;
(4) The improved DOLC strategy is embedded in the generation-hopping process of ALO,

the population diversity is enriched and the ability to jump out of the local optimum
is enhanced.

Table 1. Task scheduling in fog computing.

Ref. Application Scenario Optimization Method Optimization Objective Priority

[13] smart microgrids GA service delivery and longevity No
[14] smart grids BRT latency No
[15] - SACO latency No
[16] smart factory IDGSA latency and resource balance No

[17] smart distribution
transformer area

a sequential logic-based
evolution algorithm configured capacities No

[18] - SSA latency and energy No
[19] smart factory Hybrid Heuristic Algorithm latency and energy No

[20] - Energy-Aware Marine
Predators Algorithm latency and energy No

[21] - ACO response time and load balance Yes
[22] - NBIHA efficient resource utilization No
[23] smart city OppoCWOA latency and energy No
[24] - LBP-ACS energy Yes
Our

work smart community HALO latency and energy Yes

2. Fog Computing Scheduling Model for Smart Communities
2.1. Fog Computing Architecture Model

The fog computing architecture model with three main layers for smart communities
is established based on the current research. The system architecture model consists of an
IoT layer, fog layer and cloud layer, as shown in Figure 1.
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IoT layer: The IoT devices are located on this layer and make up the smart subjects in
the smart community (power system monitoring, smart street lights, community access
control, environmental monitoring, fire alarm, etc.), which have very limited computing
power and need to upload data to the fog layer or cloud layer for processing.

Fog layer: The fog layer is located between the IoT layer and cloud layer and is
composed of fog nodes and fog management nodes mainly. The fog nodes are distributed
in different areas near the IoT devices and have certain data processing capability, but
the computing resources are limited and are mainly used to handle delay-sensitive tasks
(power system fault alarm, fire alarm, dangerous behavior warning) in the fog computing
system of the smart community. The fog management node is able to maintain fog nodes
information, fully dispatch fog computing layer resources, and improve the equipment
utilization rate of the fog computing system.

Cloud layer: Located at the top layer of the network architecture, it consists of cloud
servers with scalable computing capabilities, which are used to store and analyze core data
and provide high-performance computing services for smart community tasks. The cloud
layer cannot guarantee the quality of service for all applications due to network bandwidth
and is mainly used for computing-intensive tasks with low real-time requirements.

The processing of kinds of tasks can be well solved by fog-layer layering. But, due to
the limited resources of fog nodes in smart communities, unreasonable task scheduling will
lead to some nodes running at full load, and the system will generate a lot of latency and
energy consumption, which does not meet the requirements of delay-sensitive tasks. The
task-scheduling problem of the fog computing layer still needs to be solved. This paper
mainly studies the task scheduling of the fog computing layer for smart communities.

2.2. Fog Computing Task-Scheduling Model

The fog computing task-scheduling process of smart community can be described as
follows: n IoT tasks generated in a certain period in the smart community are mapped to m
fog nodes by executing a task scheduler.

The fog computing task-scheduling process is shown in Figure 2. IoT devices send
task-execution requests and device information to the fog management node; fog nodes
send the current state information of the nodes to the fog management node; the fog
management node is responsible for scheduling and distributing fog computing tasks, and
sends the result to IoT devices and fog nodes for execution; IoT devices communicate with
the corresponding fog nodes to complete computing tasks.
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The parameters of the mathematical model for the fog computing tasks scheduling in
smart communities are shown in Table 2.

Table 2. Fog computing task-scheduling parameters.

Parameters Meaning

S Number of IoT devices
so The oth IoT device
N Tasks collection N = {V1 . . . Vi . . . Vn}

TAi The ith task
Di The amount of data in TAi (Mb)
Pi Transmission power of IoT devices of TAi (W)

DMi The maximum delay time of TAi (s)
TTi The type of tasks for TAi
DUi The degree of urgency for TAi

θi The computational density of TAi (cycles/bit)
F Fog nodes collection F =

{
f1 . . . f j . . . fm

}
f j The jth fog node

PCj The calculated power of f j (W)
Cj The computing capacity of f j (G cycles/bit)

SCj Storage capacity of f j (Mb)
SFj The state of f j (0 or 1)
Bj The bandwidth of f j (MHz)

The latency of a task in a fog computing system consists of the transmission time of
the task Ttranstime

ij and the execution time of the task Texecutes
ij . The transmission time of the

ith task to the jth fog node is expressed as:

Ttranstime
ij =

Di
rij

, (1)

where rij denotes the transmission rate [33] of the ith task to the jth fog node, expressed as:

rij = Bj × log2

(
1 +

hij × Pi

σ2

)
, (2)

where Pi denotes the transmission power of the IoT device, hij is the channel power gain,
and σ is the noise power.

The computation time for the ith task is expressed as:

Texecutes
ij =

Di × θi
Cj

(3)

The latency of the ith task is expressed as:

Tij = Ttranstime
ij + Texecutes

ij (4)

The energy consumption for the ith task consists of the transmission energy consump-
tion and the computational energy consumption, respectively, are expressed as:

Etranstime
ij = Ttranstime

ij × Pi (5)

Eexecutes
ij = Texecutes

ij × PCj (6)

where Pi indicates the IoT device transmission power of the ith task, and PCj indicates the
computed power of the jth fog node.
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The energy consumption of the ith task is expressed as:

Eij = Etranstime
ij + Eexecutes

ij (7)

The total latency and total energy consumption of the system are expressed as:

Ttotal =
n

∑
i=1

m

∑
j=1

Sij × Tij (8)

Etotal =
n

∑
i=1

m

∑
j=1

Sij × Eij (9)

Since the two optimization objectives of latency and energy consumption differ signif-
icantly in value, they are normalized, and this paper uses the MIN–MAX normalization
process as follows:

obj1 =
Ttotal − TMIN
TMAX − TMIN

(10)

obj2 =
Etotal − EMIN
EMAX − EMIN

(11)

obj1 is the latency after normalization and obj2 is the energy consumption after
normalization, and TMIN , TMAX , EMIN , EMAX are the minimum and maximum values of
system latency and energy consumption in the ideal state.

In order to achieve a smart community for obj1 and obj2, two objectives of different
weights in the practical application, this paper uses a linear weighting method to establish
the objective function, as follows, in Equation (12):

U = min(ω × obj1 + (1 − ω)× obj2)

s.t.C1 :
m
∑

j=1
Sij = 1, i = 1, 2, . . . , n

C2 :
n
∑

i=1
Sij × Di < SCj, j = 1, 2, . . . , m

C3 :
n
∑

i=1
Sij × θi < Cj, j = 1, 2, . . . , m

C4 : Tij < DMi, i = 1, 2, . . . , n, j = 1, 2, . . . , m
C5 : Sij ∈ {0, 1}, i = 1, 2, . . . , n, j = 1, 2, . . . , m
C6 : DUi−1 < DUi, i = 1, 2, . . . , n
C7 : 0 < ω < 1

, (12)

C1, C5 indicate that tasks can only be executed on a fog node, C2, C3 indicate that a
set of tasks executed by the fog node cannot consume more resources than the storage and
computational resources of that node, C4 indicates that the execution time of a task cannot
be greater than the maximum completion time, C6 indicates that the priority of the ith task
is greater than that of the (i − 1)th task, and C7 indicates the degree of user preference for
latency and energy consumption.

3. Traditional Ant Lion Optimizer

The ant lion optimizer achieves global optimization by simulating the idea of ant lions
capturing ants in nature. Firstly, the ant lion optimizer randomly generates the position of
the initial population in the search space, denoted as:

Xi = r1 × (ubi − lbi) + lbi, i = 1, 2, . . . , n (13)

r1 is a random number between [0, 1], where ubi, lbi are the upper and lower bounds of
the search space and Xi denotes the ith dimensional variable of the population individuals.
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Ants wander randomly in the search space with different random wandering steps,
denoted as:

X(Iter) =
[
0, cumsum(s(1)) . . . cumsum(s(Iter)) . . . cumsum(s(Max_Iter))

]
(14)

X(Iter) is the set of steps in which the ant randomly wanders, cumsum is the calculation
of the cumulative sum, and Iter and Max_Iter are the current and maximum number of
iterations, respectively;

s(Iter) is the random function of −1 and 1, denoted as:

s(Iter) =
{

1, r2 > 0.5
−1, r2 < 0.5

(15)

r1 is a random number between [0, 1].
A normalization process is applied to each dimension of X(Iter) so that it is in the

search space to generate new ants, denoted as:

X Iter
i =

(
(X Iter

i − min(X(Iter)))
(max(X(Iter))− min(X(Iter)))

× (ubIter
i − lbIter

i ) + lbIter
i

)
(16)

ai and bi are the minimum and maximum values of ants randomly wandering, respec-
tively, and ubIter

i and lbIter
i are the upper and lower boundaries of the search space of the

ith dimension of an individual ant at the Iterth generation, respectively.
The search space of ants randomly wandering is related to the behavior of ants

captured by the ant lion, around which the trap is first constructed as follows:{
lbIter

i = PALIter
y + cIter

ubIter
i = PALIter

y + dIter , (17)

PALIter
y indicates the position of the Iterth generation of the yth ant lion, and cIter

and dIter indicate the minimum and maximum values of the Iterth generation of all
variables, respectively.

Secondly, as the number of iterations increases, the scope of the search space in which
the ants randomly roam diminishes, denoted as:{

cIter = cIter

I
dIter = dIter

I
(18)

I = 10w(Iter/Max_Iter) indicates the ratio of the current algebra to the largest algebra,
and w is a constant.

Finally, two approaches were used to jointly determine the random wandering of the
ants; the ants randomly wandered around the ant lions chosen by the roulette strategy; and
the ants randomly wandered around the elite ant lions, elite ant lions being the ant lions
with the best fitness values during each iteration of the process, denoted as:

PAIter
k =

RIter
A + RIter

E
2

(19)

RIter
A , RIter

E are separately the random wanderings of the ant lion and elite ant lion
selected by the Iterth generation of ants around the roulette wheel.

When the ant has a better fitness value than the ant lion, the ant lion captures the ant
and the ant lion updates to the location of the captured ant, as follows:

PALIter
y = PAIter

k i f
(

PAIter
k

)
> U

(
PALIter

y

)
(20)
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PALIter
y indicates the position of the Iterth generation of the yth ant lion, and PAIter

k
indicates the location of the Iterth generation of the kth ant.

4. HALO

As mentioned earlier, the fog computing task scheduling in the smart community is a
high-dimensional discrete problem, and the Ant Lion Optimizer has poor initial population
quality, slow iteration speed and easily falls into a local optimum when solving complex
high-latitude problems. This paper makes the following improvements to address the
above problems of the Ant Lion Optimizer.

4.1. Chaotic Mapping Initialization

The Ant Lion Optimizer generates initial populations randomly in the search space,
resulting in uneven distribution of initial populations in the search space [34]; the poor
ergodicity of the solutions affects the pre-searching ability of the Ant Lion Optimizer.
Chaotic mapping has the characteristics of ergodicity, regularity and orderliness, which can
improve the diversity of the initial population of the algorithm [35–37].

The Circle Chaos Map (CCM) has chaotic properties such as unpredictability and
non-periodicity and can generate uniformly distributed random numbers in the range of
[0, 1].

The Circle Chaos Map can be expressed as

xi+1 = mod
(

xi + 0.2 −
(

0.5
2π

)
× sin(2π × xi), 1

)
(21)

Figure 3a,b show the distribution of random and circle chaos mapping separately;
it can be seen that circle chaos mapping has a more uniform and ergodic distribution of
points compared to random distribution. By introducing the circle chaos mapping into
the ALO algorithm, the initial population is more evenly distributed in the search space,
which enriches the population diversity and improves the quality of the initial solution of
the algorithm.
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Suppose X = (X1, . . . , Xi, . . . , Xn) is an n-dimensional individual in the population.
Apply the circle chaos mapping to the population initialization, denoted as

Xi = xi × (ubi − lbi) + lbi, i = 1, 2, . . . , n (22)

where ubiand lbi are the upper and lower bounds of the search space, xiis the chaos factor
of the circular chaos mapping and Xi denotes the ith dimensional variable of the population
individuals. Mapping the chaos factor xi onto the solution space of the fog computing task
scheduling according to Equation (22) replaces the original random distribution, avoids
duplicate values, and improves the quality of the initial population.

4.2. Adaptive Random Wandering

The Ant Lion Optimizer uses the cumulative sum method to simulate the random
wandering of ants during each iteration according to Equations (14) and (15). The cumula-
tive sum method ensures the superiority-seeking ability of the ants, but the excessive use
of this technique increases the running time and complexity of the algorithm during the
iteration process and inevitably generates duplicate values. In order to improve the solving
efficiency of the Ant Lion Optimizer and to guarantee the merit-seeking ability of the ants
in the search space, this paper designs an adaptive random walk (ARW) to simulate the
results of the ant’s random walk T times; during each iteration, randomized wandering
results are generated directly according to Equations (23) and (24), avoiding the complexity
of cumulative sums:

X(Iter) = sa × (r3 − γ) (23)

X(Iter) is the set of steps for an ant to wander randomly, r3 is a random number
between [0, 1], γ is the conditioning parameter, and sa is the adaptive factor, denoted as:

sa = Max_Iter − sin
(

Iter × π

4 × Max_Iter

)
× Iter (24)

Iter and Max_Iter are the current and maximum number of iterations, respectively.
Comparison of the two wandering methods is shown in Figure 4, where Figure 4a

shows the results of ants randomly wandering according to ALO after 200 iterations.
Figure 4b shows the result of the ant after 200 iterations according to the ARW proposed in
this paper.
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Figure 4. Wandering mode comparison: (a) Random wandering; (b) Adaptive random wandering.

From Figure 4a, it can be seen that the range of random wandering in the search space
is not sufficient, and the phenomenon of duplicate values exists regardless of any stage of
the algorithm iteration, and the diversity after wandering is poor. Figure 4b shows that,
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due to the use of ARW strategy, through the control of sa, the wandering results of the
ants maintain the corresponding characteristics; in the iteration of the algorithm in the
early stage, the ants use ARW in the solution space; the search range is wider compared to
the random wandering, wandering after the location diversity, in favor of the algorithm’s
global search for the optimal, and in the iteration of the algorithm in the late stage, through
the adaptive factor of the control of the ants, the ants of the random wandering results
gradually reduced, gradually approaching the optimal solution, in favor of the algorithm’s
global search for optimality. In the late iteration of the algorithm, through the control of the
adaptive factor, the result of the ant’s random walk gradually decreases and approaches
the optimal solution, which is conducive to the local optimization of the algorithm in the
late stage.

4.3. Improving Dynamic Oppositional Learning Strategies

Dynamic Oppositional Learning (DOL) is that Xu et al. [38] proposed an improved
version for the problem of unavoidable convergence to locally optimal positions existing
in the space from the current number to the opposite number for Oppositional Learning
(OBL) [39]. DOL has the features of search space asymmetry and random dynamic adjust-
ment of the number of opposites and is commonly used in the generation-hopping process
of the algorithm to improve the ability of the algorithm to jump out of the local optimum,
denoted as:

XO = lb + ub − X (25)

XRO = r4 × XO (26)

XDO = X + φ × r5 × (XRO − X) (27)

where r4, r5 are random numbers between [0, 1], XO is the dyadic number of X in the
search space, XRO is the asymmetric search space controlled by random numbers, and XDO

is the dynamic dyadic number in the space of X and XRO. φ is the weighting factor used to
balance the region and diversity of the search space.

Expanding the dynamic dyadic numbers in n dimensional space, then, the dynamic
dyadic points are expressed as:

Xi
O = lbi + ubi − Xi, i = 1, 2, . . . , n (28)

Xi
RO = r6 × Xi

O, i = 1, 2, . . . , n (29)

Xi
DO = Xi + φ × r7 × (Xi

RO − Xi), i = 1, 2, . . . , n (30)

where r6 and r7 are random numbers between [0, 1], Xi
O is the opposition point of Xi in

the search space, Xi
RO is the asymmetric search space controlled by random numbers, and

Xi
DO is the dynamic opposition point in the space of Xi and Xi

RO.
The asymmetric search space of DOL applied in the Ant Lion Optimizer [32] is shown

in Figure 5. The search space for XDO is located between XRO and X [38]. Where (a) is
the location distribution of XRO, (b) is the search space of XDO when the value of XRO is
smaller than XO, (c) is the search space of XDO when the value of XRO is greater than XO,
and (d) is the search space of XDO when the value of XRO exceeds the boundary of the Ant
Lion trap. To prevent Xi

DO from exceeding the search space, it is necessary to perform a
boundary check according to Equation (31), as follows:

Xi
DO = r8 × (ubi − lbi) + lbi, i = 1, 2, . . . , n (31)

where r8 is a random number between [0, 1], and ubi and lbi are the upper and lower
bounds of the search space.
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In order to further improve the performance of the DOL strategy in the high-dimensional
discrete problem of smart community fog computing, this paper embeds the dynamic opposi-
tional learning crossover (DOLC) strategy designed in this paper in the generation-hopping
process of the ant-lion algorithm. Firstly, the Ant Lion Optimizer generates new ant
DOLPAi

Iter by the DOL strategy. Secondly, the original individuals and DOLPAi
Iter as par-

ents are subjected to a two-point crossover process to generate new offspring, CPAIter
1 and

CPAIter
2 ; finally, the better-adapted individual ants are selected based on the idea of greed

DOLCPAi
Iter. After solving the dynamic opposite solution, DOLC generates offspring

individuals by fusing the superior genes of two individuals, which in turn enriches the
population diversity and improves the ability of the algorithm to jump out of local optima.
A jump rate factor jump is introduced to prevent the population from staying in a local
optimum due to overuse of the dynamic pairwise crossover technique.

4.4. Coding Method

Fog computing task scheduling in a smart community is a discrete problem, and this
paper adopts a real number encoding approach. Taking the location of ants in the Ant Lion
Optimizer as an example, the location of each ant can be represented by an n dimensional
array, and each ant represents a task-scheduling scheme, as shown in Figure 6.
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Figure 6. AntIter
k Example of coding.

AntIter
k is the location of the kth ant of the Iterth generation, the location of the

ants is represented as an n-dimensional array corresponding to n IoT tasks, and the
value of each dimension of the array represents the assignment of the corresponding
task to the fog node f j(in the interval [1,m]). Figure 6 shows a simple coding example
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AntIter
k = {3, 7, 10, 10, 14, 7, 11}, which indicates that task 1 is assigned to fog node 3, task 2

and task 6 are assigned to fog node 7, task 3 and task 4 are assigned to fog node 10, task 5 is
assigned to fog node 14, and task 7 is assigned to fog node 11.

4.5. Fog Computing Task Scheduling Algorithmic Process

In this section, the steps of HALO are summarized and the HALO flowchart is drawn,
as shown in Figure 7. (Iter denotes the current iteration number, Max_Iter denotes the
maximum iteration number) .

Symmetry 2023, 15, x FOR PEER REVIEW 13 of 23 
 

 

 
Figure 7. HALO flow chart. 

5. Experimental Studies 
5.1. Experimental Environment and Data Set 

In order to verify the effectiveness of HALO in the scheduling of fog computing tasks 
for smart communities, a lot of research has been conducted for two objectives: latency 
and energy consumption in the fog computing environment. The experimental environ-
ment in this paper is Windows 10, 64-bit operating system, Intel(R) Celeron(R) CPU 
G3900, 8GB memory; all programs run in MATLAB2018b software, and each experiment 
is repeated 20 times independently. Taking the example of the Henan Xinxiang Shi He Fu 
Smart Community and synthesizing nine data sets (Task Data) with different numbers of 
IoT tasks (Task 50~Task 450), the main parameters are shown in Table 3. In all experiments, 
it is assumed that all fog nodes have been deployed and can cover all IoT devices. 

Table 3. Description of experimental parameters. 

Parameters Description Parameter Value 
n  Number of tasks 50~450 

iD  Amount of data for the iTA  1~5 M 

iDU  The degree of urgency the iTA  First, Second, Third 

iDM  Maximum delay time of the iTA  0.5~1 s 

iθ  Computational density of iTA  100~200 

iP  Transmission power of IoT devices  0.1~0.5 W 

m  Number of fog nodes 15 

jC  Fog node computing capacity 2~4 G cycles/s 

Yes

Start

if 𝑗𝑢𝑚𝑝>𝑟𝑎𝑛𝑑

 CCM initializes the positions of  PA 
and PAL

DOLC generates a new population 
of ants DOLCPA

Calculate the objective function U 
and select the primary elite antlion

The ants wander around the ant 
lion in accordance with SRW

Calculate the objective function U, 
the ant lion captures ants

if Iter<Max_Iter

Calculate the objective function U, 
the ant lion captures ants

End

Iter=Iter+
1

No

Yes

No

Figure 7. HALO flow chart.

5. Experimental Studies
5.1. Experimental Environment and Data Set

In order to verify the effectiveness of HALO in the scheduling of fog computing tasks
for smart communities, a lot of research has been conducted for two objectives: latency and
energy consumption in the fog computing environment. The experimental environment in
this paper is Windows 10, 64-bit operating system, Intel(R) Celeron(R) CPU G3900, 8 GB
memory; all programs run in MATLAB2018b software, and each experiment is repeated
20 times independently. Taking the example of the Henan Xinxiang Shi He Fu Smart
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Community and synthesizing nine data sets (Task Data) with different numbers of IoT
tasks (Task 50~Task 450), the main parameters are shown in Table 3. In all experiments, it is
assumed that all fog nodes have been deployed and can cover all IoT devices.

Table 3. Description of experimental parameters.

Parameters Description Parameter Value

n Number of tasks 50~450
Di Amount of data for the TAi 1~5 M

DUi The degree of urgency the TAi First, Second, Third
DMi Maximum delay time of the TAi 0.5~1 s

θi Computational density of TAi 100~200
Pi Transmission power of IoT devices 0.1~0.5 W
m Number of fog nodes 15
Cj Fog node computing capacity 2~4 G cycles/s
Bj Fog node bandwidth 2000 MHz

CPj Fog node calculated power 5~15 W

Each dataset generates 15 fog nodes with different configurations, and the slowest
and fastest fog nodes have computational capacities of 2 and 4 G cycles/s, respectively.
Each IoT task in the experiments is independent with different task priorities. The IoT
task data size of each dataset ranges from 1 to 5 M, and IoT tasks of different urgency are
randomly generated.

5.2. Evaluation Indicators

In order to evaluate the effectiveness of the HALO algorithm proposed in this paper in
the fog computing system of smart communities, this paper evaluates the following metrics.

MeanO
T and MeanO

E are the average latency and average energy consumption results, re-
spectively, of the original task-scheduling algorithm after running it independently 20 times,
and are expressed in Equations (32) and (33).

MeanO
T =

(
20

∑
f r=1

TO
total

( f r)

)
÷ 20 (32)

MeanO
E =

(
20

∑
f r=1

EO
total

( f r)

)
÷ 20 (33)

TO
total

( f r) and EO
total

( f r) are the latency and energy consumption results after the f rth run of
the original task-scheduling algorithm, respectively, as calculated by Equations (8) and (9).

MeanC
T and MeanC

E are the average latency and average energy consumption results of
the current task-scheduling algorithm after running it independently 20 times, respectively,
and are represented by Equations (34) and (35).

MeanC
T =

(
20

∑
f r=1

TC
total

( f r)

)
÷ 20 (34)

MeanC
E =

(
20

∑
f r=1

EC
total

( f r)

)
÷ 20 (35)

TC
total

( f r) and EC
total

( f r) are the latency and energy consumption results after the f rth
run of the current task-scheduling algorithm and are calculated by Equations (8) and (9).
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PIRT and PIRE are the average latency and average energy consumption improvement
rates of the current task-scheduling algorithm compared to the original task-scheduling
algorithm after 20 independent runs and are represented by Equations (36) and (37).

PIRT(%) =

(
MeanO

T − MeanC
T

MeanC
T

)
× 100 (36)

PIRE(%) =

(
MeanO

E − MeanC
E

MeanC
E

)
× 100 (37)

MeanO
T and MeanO

E are the average latency and average energy consumption results
of the original task-scheduling algorithm, and MeanC

T and MeanC
E are the average latency

and average energy consumption results of the current task-scheduling algorithm.

5.3. Sensitivity Analysis

This paper uses linear weighting to construct the objective function as Equation (12);
the different values of ω determine the optimization weights of the objective. In this section,
simulation experiments are conducted for HALO algorithms under different ω to obtain
the optimal ω solutions to balance the weights of the optimization objective in the objective
function under the same experimental environment.

In the set case, the data set with 200 tasks is selected for the experiment, the population
size is set to 40, the maximum number of iterations is 200 [40], the value of ω is from 0.1
to 0.9, and the experiment is run 20 times independently to take the average value. The
results are shown in Table 4.

Table 4. Analysis of optimization target weights.

HALO ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7 ω = 0.8 ω = 0.9

obj1 0.206 0.199 0.196 0.194 0.193 0.191 0.190 0.187 0.184
obj2 0.234 0.236 0.241 0.243 0.244 0.246 0.249 0.254 0.256

Figure 8 shows the average values of obj1 and obj2 for different weighting factors. It
can be seen that with the increasing of ω, obj1 shows a decreasing trend and obj2 shows an
increasing trend. By adjusting the value of ω, the learning of different objectives can be
achieved. As ω increases, the importance of obj1 increases in the system, obj2 decreases,
and when ω = 0.4, the two optimization objectives reach the equilibrium optimum.
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5.4. Analysis of the Effectiveness of the Proposed Strategy

Three strategies, Circle Chaotic Mapping (CCM) initialization, Adaptive Random Wan-
dering (ARW), and Dynamic Opposite Learning Crossover (DOLC), are used to improve
the efficiency of HALO in solving the smart community fog computing task-scheduling
problem. Among them, the CCM strategy and ARW strategy are added to ALO, named
HALO-1, and the DOLC strategy is added to HALO-1, named HALO. For fair comparison,
each algorithm is run 20 times independently in each experiment, the same population size
of 40 is set, and the maximum number of iterations is 200.

From Figures 9 and 10, it can be seen that HALO has the smallest latency and energy
consumption results compared to other algorithms for different numbers of tasks, which
proves the effectiveness of the algorithm proposed in this paper. Tables 5 and 6 show the
results of PIRT and PIRE for different algorithms under Task Data. HALO-1’s latency and
energy consumption results on Task Data are generally better than ALO; ARW not only
reduces the complexity of ALO, but also ensures the optimization capability of ALO. The
HALO algorithm adds the DOLC strategy on the basis of HALO-1, which is more powerful
in Task Data, and the results of latency and energy consumption for high-dimensional
test problems such as Task 200–Task 450 are improved by 2.85~3.33% and 4.65~5.39%,
respectively, compared with ALO, and they are better than HALO-1, proving that the
proposed HALO algorithm still has a stronger performance than ALO in solving high-
dimensional complex task-scheduling problems.
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Table 5. PIRT of two algorithms on latency over ALO with different Task Data.

Task 50 Task 100 Task 150 Task 200 Task 250 Task 300 Task 350 Task 400 Task 450

HALO-1 PIR (%) 0.47 0.16 0.70 0.07 0.32 0.27 0.11 0.04 0.40
HALO PIR (%) 3.15 3.48 3.22 3.33 2.85 2.92 3.06 2.85 3.20

Table 6. PIRE of two algorithms on energy consumption over ALO with different Task Data.

Task 50 Task 100 Task 150 Task 200 Task 250 Task 300 Task 350 Task 400 Task 450

HALO-1 PIR (%) 0.28 0.65 0.84 0.20 0.75 0.51 0.09 0.45 0.79
HALO PIR (%) 3.45 4.26 4.87 4.98 4.65 5.35 5.03 4.89 4.89

To visualize the performance of the algorithms, the average convergence curves of
the three algorithms run independently 20 times on Task 350 are shown in Figure 11. The
initial values of HALO-1 and HALO are better than those of ALO, because HALO-1 and
HALO are initialized with CCM, which generates high-quality initial populations and
improves the convergence speed of the algorithm in the first iteration. Meanwhile, at the
late stage of the algorithm iteration, it can be seen that HALO-1 has a smaller average
fitness value compared to ALO, which proves that ARW can still guarantee the algorithm’s
merit-seeking ability at the late stage. HALO has a stronger ability to find the optimal
compared to ALO and HALO-1; due to the DOLC strategy, it enriches the diversity of ant
populations and is able to jump out of the local optimum very well.

Symmetry 2023, 15, x FOR PEER REVIEW 17 of 23 
 

 

Figure 10. Energy consumption results of three algorithms with different Task Data. 

Table 6. 
EPIR  of two algorithms on energy consumption over ALO with different Task Data. 

 Task 50 Task 100 Task 150 Task 200 Task 250 Task 300 Task 350 Task 400 Task 450 

HALO-1 PIR (%) 0.28 0.65 0.84 0.20 0.75 0.51 0.09 0.45 0.79 

HALO PIR (%) 3.45 4.26 4.87 4.98 4.65 5.35 5.03 4.89 4.89 

To visualize the performance of the algorithms, the average convergence curves of 
the three algorithms run independently 20 times on Task 350 are shown in Figure 11. The 
initial values of HALO-1 and HALO are better than those of ALO, because HALO-1 and 
HALO are initialized with CCM, which generates high-quality initial populations and im-
proves the convergence speed of the algorithm in the first iteration. Meanwhile, at the late 
stage of the algorithm iteration, it can be seen that HALO-1 has a smaller average fitness 
value compared to ALO, which proves that ARW can still guarantee the algorithm’s merit-
seeking ability at the late stage. HALO has a stronger ability to find the optimal compared 
to ALO and HALO-1; due to the DOLC strategy, it enriches the diversity of ant popula-
tions and is able to jump out of the local optimum very well. 

 
Figure 11. Comparison of different algorithms on Task 350. 

5.5. Comparison with Other Algorithms 
In this section, HALO is tested using Task Data, and the results of HALO are com-

pared with algorithms proposed in recent years such as GWO, SSA, ALO and other re-
searchers’ applications of GA, PSO, WOA in fog computing [31,41–44]. To reflect fairness, 
the population size and the number of iterations of the algorithms involved in computing 
are the same as HALO at 40 and 200, respectively, and run 20 times independently, with 
the minimum and average values of latency and energy consumption and the perfor-
mance improvement rate as evaluation criteria. 

From Figures 12 and 13, it is intuitively clear that the ant lion algorithm improved in 
this paper is optimized to have the smallest latency and energy consumption relative to 
the original algorithm for different numbers of tasks. Tables 7 and 8 give the results of 

TPIR  and EPIR  for different algorithms under Task Data. It can be seen that HALO out-
performs the results obtained by other algorithms on Task Data. Latency and energy con-
sumption fall by 0.12~4.21% and 0.50~6.76%, respectively, compared to GA, latency and 
energy consumption, which fall by 1.93~3.47% and 3.20~4.60%, respectively, compared to 
WOA, latency and energy consumption, which fall by 2.15~3.62% and 3.11~5.50%, respec-
tively, compared to GWO, latency and energy consumption, which fall by 4.46~5.48% and 

Figure 11. Comparison of different algorithms on Task 350.

5.5. Comparison with Other Algorithms

In this section, HALO is tested using Task Data, and the results of HALO are compared
with algorithms proposed in recent years such as GWO, SSA, ALO and other researchers’
applications of GA, PSO, WOA in fog computing [31,41–44]. To reflect fairness, the popula-
tion size and the number of iterations of the algorithms involved in computing are the same
as HALO at 40 and 200, respectively, and run 20 times independently, with the minimum
and average values of latency and energy consumption and the performance improvement
rate as evaluation criteria.
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From Figures 12 and 13, it is intuitively clear that the ant lion algorithm improved
in this paper is optimized to have the smallest latency and energy consumption relative
to the original algorithm for different numbers of tasks. Tables 7 and 8 give the results
of PIRT and PIRE for different algorithms under Task Data. It can be seen that HALO
outperforms the results obtained by other algorithms on Task Data. Latency and energy
consumption fall by 0.12~4.21% and 0.50~6.76%, respectively, compared to GA, latency
and energy consumption, which fall by 1.93~3.47% and 3.20~4.60%, respectively, compared
to WOA, latency and energy consumption, which fall by 2.15~3.62% and 3.11~5.50%,
respectively, compared to GWO, latency and energy consumption, which fall by 4.46~5.48%
and 7.00~9.69%, respectively, compared to SSA; compared to PSO, latency and energy
consumption fall by 1.86~4.11% and 1.02~6.08%, respectively, and compared to ALO,
latency and energy consumption fall by 2.68~3.25% and 2.35~5.37%, respectively.
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Table 7. PIRT of different algorithms on latency with different Task Data.

Task 50 Task 100 Task 150 Task 200 Task 250 Task 300 Task 350 Task 400 Task 450

GA 0.12% 0.65% 0.98% 1.76% 2.43% 2.81% 3.02% 4.21% 3.71%
WOA 3.16% 3.47% 2.84% 2.58% 2.35% 1.93% 2.10% 2.79% 2.02%
GWO 2.15% 3.62% 3.13% 2.26% 2.53% 2.61% 2.41% 2.55% 2.25%
SSA 4.46% 5.48% 5.14% 4.79% 4.63% 4.58% 4.52% 5.13% 4.61%
PSO 1.86% 2.07% 2.11% 2.57% 2.81% 2.67% 3.09% 4.11% 3.51%
ALO 2.68% 3.36% 3.05% 3.25% 2.93% 2.79% 2.89% 3.05% 3.02%

Table 8. PIRE of different algorithms on energy consumption with different Task Data.

Task 50 Task 100 Task 150 Task 200 Task 250 Task 300 Task 350 Task 400 Task 450

GA 0.50% 1.83% 3.08% 4.03% 5.01% 5.80% 6.21% 6.91% 6.76%
WOA 3.20% 4.22% 3.88% 3.90% 3.94% 3.71% 4.19% 4.60% 3.71%
GWO 3.11% 5.31% 4.90% 4.14% 5.05% 5.50% 5.17% 4.98% 4.82%
SSA 7.00% 8.96% 9.34% 8.78% 9.24% 9.40% 9.40% 9.69% 9.39%
PSO 1.02% 2.57% 3.43% 3.68% 4.80% 5.00% 5.43% 6.43% 6.08%
ALO 2.35% 3.90% 4.36% 4.83% 4.75% 5.16% 5.13% 5.15% 5.37%

To visualize the performance of the algorithm, the convergence curves of the compari-
son algorithm on Task Data are shown in Figure 11. The figure shows that the initial values
of HALO are better compared to those of GA, WOA, GWO, SSA, PSO, and ALO. As shown
in Figure 14f–i, it can be seen that for high-dimensional problems, GWO inevitably falls
into a local optimum; SSA starts to converge only after 100 generations, while GA, WOA,
PSO can guarantee convergence performance, but the optimization-seeking accuracy is not
as high as HALO for high-latitude problems. HALO can effectively jump out of the local
optimum while guaranteeing convergence speed, which proves that the HALO algorithm
improved by CCM, ARW and DOLC in this paper is effective in scheduling fog computing
tasks in smart communities and can effectively reduce the system latency.

Symmetry 2023, 15, x FOR PEER REVIEW 19 of 23 
 

 

WOA 3.20% 4.22% 3.88% 3.90% 3.94% 3.71% 4.19% 4.60% 3.71% 
GWO 3.11% 5.31% 4.90% 4.14% 5.05% 5.50% 5.17% 4.98% 4.82% 
SSA 7.00% 8.96% 9.34% 8.78% 9.24% 9.40% 9.40% 9.69% 9.39% 
PSO 1.02% 2.57% 3.43% 3.68% 4.80% 5.00% 5.43% 6.43% 6.08% 
ALO 2.35% 3.90% 4.36% 4.83% 4.75% 5.16% 5.13% 5.15% 5.37% 

To visualize the performance of the algorithm, the convergence curves of the com-
parison algorithm on Task Data are shown in Figure 11. The figure shows that the initial 
values of HALO are better compared to those of GA, WOA, GWO, SSA, PSO, and ALO. 
As shown in Figure 14f–i, it can be seen that for high-dimensional problems, GWO inevi-
tably falls into a local optimum; SSA starts to converge only after 100 generations, while 
GA, WOA, PSO can guarantee convergence performance, but the optimization-seeking 
accuracy is not as high as HALO for high-latitude problems. HALO can effectively jump 
out of the local optimum while guaranteeing convergence speed, which proves that the 
HALO algorithm improved by CCM, ARW and DOLC in this paper is effective in sched-
uling fog computing tasks in smart communities and can effectively reduce the system 
latency. 

 
(a) Task 50 

 
(b) Task 100 

 
(c) Task 150 

 
(d) Task 200 

Figure 14. Cont.



Symmetry 2023, 15, 2206 19 of 21
Symmetry 2023, 15, x FOR PEER REVIEW 20 of 23 
 

 

 
(e) Task 250 

 
(f) Task 300 

 
(g) Task 350 

 
(h) Task 400 

 
(i) Task 450 

Figure 14. Comparison of different algorithms on Task Data. 

6. Conclusions 
A mathematical model of fog computing task scheduling is established for smart 

communities. The HALO fog computing task-scheduling algorithm is proposed to im-
prove the quality of service for users under the condition of satisfying the goal of latency 
and energy consumption to minimize the same for the smart community fog computing 
system. The improvement of ALO in this paper is mainly in three aspects: (1) The initial 

Figure 14. Comparison of different algorithms on Task Data.

6. Conclusions

A mathematical model of fog computing task scheduling is established for smart com-
munities. The HALO fog computing task-scheduling algorithm is proposed to improve the
quality of service for users under the condition of satisfying the goal of latency and energy
consumption to minimize the same for the smart community fog computing system. The
improvement of ALO in this paper is mainly in three aspects: (1) The initial population is
initialized by the chaotic mapping, which makes the initial values more evenly distributed;
(2) The adaptive random wandering is used for Ant Lion wandering, which improves
the solving speed; (3) The dynamic opposite learning crossover strategy is embedded in
the ALO, which improves the optimization-seeking ability of ALO. Simulation experi-
ments show that compared with GA, WOA, GWO, SSA, PSO, and ALO algorithms, HALO
has the best computing capability in high dimensional fog computing task scheduling.
Using the method proposed in this paper, compared with GA, WOA, GWO, SSA, PSO,
and ALO, the latency fell, respectively, by 4.21%, 2.79%, 2.55%, 5.13%, 4.11%, and 3.05%,
and the energy consumption fell, respectively, by 6.76%, 3.71%, 4.82%, 9.39%, 6.08%, and
5.37% for the large-scale smart community fog computing task scheduling. The proposed
method can effectively reduce the energy consumption and latency in the smart community
fog computing.
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