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Abstract: The influence of a background vortex flow on the clustering of floating tracers is addressed.
The vortex flow considered is induced by an ellipsoidal vortex evolving in a deformation. The system
exhibits various vortex motion regimes: (1) a steady state, (2) oscillation and (3) rotation of the
ellipsoidal vortex core. The latter two induce an unsteady velocity field for the tracer, thus leading
to irregular (chaotic) tracer motion. Superimposing a stochastic divergent velocity field onto the
deterministic vortex flow allows us to observe significantly different tracer evolution. An ellipsoidal
vortex has ellipsoidal symmetry, and the tracer’s trajectories exhibit the same symmetry inside the
vortex. Outside the vortex, the external deformation flow symmetry dominates. Diffusion scattering
and chaotic advection give tracers the opportunity to leave the region of ellipsoidal symmetry and
form a picture of shear flow symmetry. We use the method of characteristics to integrate the floating
tracer density evolution equation and the Euler Ito scheme for obtaining the floating tracer trajectories
with a random velocity field. The cluster area and cluster mass from the statistical topography are
used as the quantitative diagnostics of a floating tracer’s clustering. For the case of a steady ellipsoidal
vortex embedded into the deformation flow with a random velocity field component, we found that
the clustering characteristics were weakened by the steady vortex. For the cases of an unsteady
ellipsoidal vortex, we observed clustering in the floating tracer density field if the contribution of the
divergent component was greater than or equal to that of the rotational (nondivergent) component.
Even when the initial floating tracer patch was set on the boundary of the oscillating ellipsoidal vortex,
we observed the formation of clusters. In the case of a rotating ellipsoidal vortex, we also observed
pronounced clustering. Thus, we argue that unsteady ellipsoidal vortex regimes (oscillation and
rotation), which induce chaotic motion of the nearby passive tracer’s trajectories, are still conducive to
clustering of floating tracers observed in the density field, despite the intense deformation introduced
by strain and shear.

Keywords: tracer clustering; compressibility; ellipsoidal vortex; random flow

1. Introduction

Tracer evolution in various media often manifests significant heterogeneity of the
tracer density or concentration fields even outside the tracer sources and sinks. In turbu-
lent oceanic and atmospheric flows [1–3], this tracer aggregation is usually attributed to
clustering (and its asymptotic version: exponential clustering). Under favorable conditions,
tracers can be aggregated into coherent zones [4–6]. The area of these zones exponentially
tends toward zero, and the dimensionless mass of the tracer tends toward unity. Many
studies have established that ultimately, the velocity divergence is responsible for tracer
clustering [3,7,8]. In addition, the importance of the horizontal shear of the velocity field,
which can mediate the intensity of the tracer clustering, has been pointed out. However,
these works addressed simplified stochastic models with limited applicability to more
comprehensive models and natural experiments.
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When looking at tracer aggregating induced by compressible velocity fields including
oceanic flows, Jacobs et al. [3], Huntley et al. [7], Schumacher and Eckhardt [8], and
Haza A.C. [9] have pointed out that mesoscale eddies trap tracer particles and significantly
affect tracer aggregation. These studies used gridded velocity fields, which were the output
from high-resolution ocean models. The gridded velocity fields were deterministic with
non-vanishing divergence. However, the spatial resolution of the ocean models is limited
by the grid scale, which means that all the sub-grid scales remained unresolved. One way
to model these unresolved scales would be relying on superimposing random velocity
components to the large-scale deterministic velocity field. The random component thus
plays the role of small-scale dynamics.

Using this framework, where the velocity field consists of deterministic and random
components, Stepanov et al. [10] studied the floating tracer aggregating and clustering
embedded into the velocity field with a deterministic component from high-resolution
model outputs. These studies confirmed that the shear flows associated with coherent vor-
tex flows can significantly modulate floating tracer clustering. However, the deterministic
component resulted from the interaction of many processes, and it was extremely complex
to untangle all the involved processes and study them in detail. It did not allow one to
determine the leading physical mechanisms driving floating tracer clustering.

The present study investigates the role of a background vortex flow in floating tracer
clustering. The vortex flow is induced by an ellipsoidal vortex embedded into a deformation
flow [11–13]. Using the model, where the velocity field consists of deterministic and random
components, we focus on the influence of the ellipsoidal vortex motion on floating tracer
clustering. Based on the diagnostics from the stochastic topography, we qualitatively
estimate the clustering rate and clustering mass to confirm the importance of the vortex
motion inducing chaotic behavior in the tracer trajectories for tracer clustering.

This paper is organized as follows. In Section 2, we formulate the general problem,
the model of the random component, and the deterministic component model. Scaling
of the equations and their integration are presented in Section 3. Section 4 considers the
qualitative diagnostics for floating tracer clustering. The main results are in Section 5,
followed by discussions in Section 6 and conclusions in Section 7.

2. Problem Formulation

The evolution of the passive tracer density ρ(r, t) under the rotational (nondivergent)
velocity field u(r, t) = (U, w)(r, t), where U and w are the horizontal and vertical velocity
components, respectively, is governed by the following equations [14–16]:(

∂

∂t
+

∂

∂r
u(r, t)

)
ρ(r, t) = κ∆ρ(r, t) + Q, ρ(r, 0) = ρ0(r), (1)

where ρ0(r) is the initial density of the passive tracers, r = (R, z) = (x, y, z) are the spatial
coordinates, κ is the dynamic diffusivity, and Q is the source term. When κ = 0, Q = 0, and
there is no tracer exchange across the region boundaries, then the random velocity field
u(r, t) with specified characteristics governs the stochastic features of Equation (1).

Let us consider the evolution of the floating tracer density ρ(R, z, t) = ρ(R, t)δ(z).
Then, Equation (1) becomes(

∂

∂t
+

∂

∂R
U(R, t)

)
ρ(R, t) = 0, ρ(R, 0) = ρ0(R). (2)

Here, the 2D velocity field U(R, t) has potential (i.e., divergent) [4,14,17], and its divergence
is governed by changes in w:

∇RU(R, t) = −∂w(r, t)
∂z

|z=0, (3)
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where ∇RU(R, t) is the horizontal divergence at the surface (z = 0). When w = 0, then
U(R, t) is rotational (nondivergent).

We are interested in studying the influence of the deterministic nondivergent veloc-
ity field (Ue(R, t)) on floating tracer clustering. Also, we assume that Ue(R, t) does not
interact with the random velocity field (Ur(R, t)). Therefore, the velocity field consists of
two components:

U(R, t) = Ue(R, t) + Ur(R, t). (4)

2.1. Statistical Characteristics of the Random Velocity Field

As for our random velocity field, we consider a 2D velocity field with Gaussian,
spatially homogeneous, isotropic, and stationary statistics [5]. We assume that the velocity
field is δ correlated in time. This random velocity field consists of a divergent component
(Up

r (R, t)) and a nondivergent component (Us
r(R, t)):

Ur(R, t) = γrUp
r (R, t) + (1− γr)Us

r(R, t), (5)

where γr is a contribution of the divergent component to the random velocity field. The
associated spatiotemporal velocity correlation tensors are

Bj
αβ(R

′, η) = 〈U j
rα(R, t)U j

rβ(R + R′, t + η)〉 =
∫

dkEj
αβ(k, η)eikR′ , (6)

where indices α and β stand for x and y, respectively, and indicate different components
of the tensor. Index j stands for either p for divergent or s for nondivergent components.
Then, we have

Ep
αβ(k, η) = Ep(k, η)

kαkβ

k2 , Es
αβ(k, η) = Es(k, η)

(
δαβ −

kαkβ

k2

)
. (7)

Here, we use the spectral density in the form

Ep(k, η) = Es(k, η) = σ2
U

l4

4π
exp

{
−1

2
k2l2

}
δ(η),

and l is the spatial correlation length.
We suppose that the spatiotemporal velocity correlation tensors satisfy the relations

Bj
αβ(0, 0) = 〈U j

rα(R, t)U j
rβ(R, t)〉 = 1

2
σ2

Uδαβ, (8)

where σ2
U = Bj

αα(0, 0) =
∫

dkE(k, 0) for the nondivergent and divergent components of the
random velocity field. The effective diffusivities corresponding to the divergent (Dp) and
nondivergent (Ds) components of the random velocity field, respectively, are [4–6,18]

Dp =

∞∫
0

dη
∫

dkk2Ep(k, η) =

∞∫
0

dη

〈
∂U(R, t + η)

∂R
∂U(R, t)

∂R

〉
,

Ds =

∞∫
0

dη
∫

dkk2Es(k, η) =
1
2

∞∫
0

dη〈ω(R, t + η)ω(R, t)〉,

(9)

where ω(R, t) = ∇× (Us
r(R, t)) is the velocity curl and ∂Up

r (R,t)
∂R is the divergence of the

random velocity field.
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2.2. Velocity Field Induced by the Ellipsoidal Eddy

As for a deterministic velocity component, we consider a nondivergent 2D velocity
field induced by an ellipsoidal vortex embedded in a deformation flow [11,13,19–21]. A
detailed description of the ellipsoidal vortex model is presented in Appendix A. According
to relations from the ellipsoidal vortex model (see Equation (A1) in the Appendix A for
details), the velocity field components are determined by the solutions to the following
system of equations:

ȧ = ae cos 2θ, ḃ = −be cos 2θ, ċ = 0,

θ̇ = −g
β0b2 − α0a2

a2 − b2 + γ− e
a2 + b2

a2 − b2 sin 2θ,

ẋ0 = ex0 − χy0 + u0, ẏ0 = χx0 − ey0 + v0.

(10)

Here a, b, and c are the semi-axes of the ellipsoidal vortex, and χ and e are the rotational and
strain components of the deformation flow, respectively. Then, the velocity components
Ue(ue, ve) satisfy the next relations:

ue = ex− χy + u0 −
∂

∂y
ψv,

ve = χx− ey + v0 +
∂

∂x
ψv,

(11)

where ψv is the stream function associated with the ellipsoidal vortex (see Appendix A for
details). Since the equations for the center of the ellipsoidal vortex are split, we can null
them and suppose that c(t) ≡ const. Then, from the first two parts of Equation (10), we can
obtain the relation a(t)b(t) = const. We denote ε = b

a , which features the relation between
the semi-axes of the ellipsoidal vortex.

The system in Equations (10) and (11) for the trajectories of a passive tracer is a two-
and-a-half-degree-of-freedom system, and thus the passive tracer trajectories can manifest
chaotic behavior.

Koshel et al. [13] considered specific regimes of the ellipsoidal vortex motion and
velocity field induced by these vortex motion regimes. This study considers these specific
motions of the ellipsoidal vortex when ψv has a separatrix (the self-intersecting stream line),
hyperbolic points, and the recirculation regions outside the ellipsoidal vortex [13]. Figure 1
shows a phase portrait of the ellipsoidal vortex motion regimes depending on ε and the
angle θ.

Our deterministic velocity component is considered for three vortex motion regimes:
(1) when the center of this vortex is fixed and (2) when the core of the ellipsoidal vortex
oscillates or (3) rotates. In the first case, passive tracer trajectories coincide with the closed
lines both within the vortex and outside it in the recirculation zones. In the second and
third cases (see Figure 1c,d), passive tracer trajectories can manifest chaotic behavior in the
recirculation zones and therefore influence the floating tracer clustering.
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Figure 1. Motion regimes of the ellipsoidal vortex embedded in a deformation flow. (a) Phase portrait
of the ellipsoidal vortex motion regimes (ε, θ). Various color points denote the initial states of the
ellipsoidal vortex for three cases: the blue point (ε = 2.28, θ =−π/4) denotes a steady state, when
the vortex is stationary, the green point (ε = 3.5, θ = −π/4) denotes an oscillation state, and the blue
point (ε = 2.56, θ = −π/4) denotes a case of the vortex’s rotation. (b) Passive tracer trajectories inside
the vortex (blue closed lines) and outside the vortex (green closed line) in a steady state. The red line
denotes a separatrix, and the hyperbolic points are denoted by red points. (c) Positions of the vortex
core boundary under oscillating of the ellipsoidal vortex. Blue points denote the initial state of the
ellipsoidal vortex, and black points denote the positions of the vortex core boundary after 1/4, 1/2, and
3/4 of a period. Green points denote the position of the recirculation zone boundaries at the initial time
moment. (d) Positions of the vortex core boundary for a rotating ellipsoidal vortex. Blue and green
points denote the initial state of the ellipsoidal vortex and its recirculation zones, respectively. Red
points denote the vortex core boundary after 1/4 and 3/4 of a period. Black points denote the vortex
core boundary after 1/2 of a period.

3. Scaling of Floating Tracer Equations and Their Integration

We suppose that the variables of Equation (2) are dimensionless with spatial (L) and
time (T) scales and a density scale (P). Since the random velocity field is δ-correlated in
time, the scale T is equal to the time step. By having the spatial step equal to the time
step, we can find the velocity scale V = L/T. The typical spatial scale of the ellipsoidal
vortex or the b semi-axes is Lvortex = 6× 102 × L, the typical rotation time of the vortex
is Tvortex = 2× 103 × T, the oscillation time of the vortex is Tvortex = 2× 104 × T, and
the typical time of diffusion scattering or the diffusion timescale is 2× 102 × T. For all
numerical experiments, we used the next rms value σU = 0.33 and spatial correlation radius
value l = 8.

For all of the following numerical experiments, we considered a square 2× 2 patch
as the initial condition. The patch was uniformly filled by 3.6× 1010 floating markers.
The initial patch was placed either within the vortex or on the boundary of the adjacent
recirculation zone. The initial density of the floating tracer was always equal to unity.

To integrate Equation (2) given Equation (4), we used the method of characteristics [4,5]:

dR
dt

= U(R, t), R(0) = ξ,

dρ

dt
= −∂U(R, t)

∂R
ρ(t), ρ(0) = ρ0(ξ),

(12)



Symmetry 2023, 15, 2211 6 of 20

where ξ represents the initial coordinates of the floating marker. It is worth mentioning
that we used many particles (characteristics), and due to clustering, we had many particles
in the area of a high-density gradient.

In order to obtain the Eulerian density, the solution in Equation (12) needs to transform
as follows:

R(t) = R(t; ξ), ρ(t) = ρ(t; ξ),

Then, to exclude ξ, we can obtain the density field

ρ(R, t) = ρ(t) = ρ(t; ξ(R; t)). (13)

The system in Equation (12) of float tracer trajectories was integrated over time using
the Euler Ito scheme [10,18]. We assumed that the random velocity components were
constant in a sampling grid cell. Thus, we could solve Equation (12) analytically and
estimate the time when the particle reached the boundary of the cell. Then, we used
this solution as the initial condition in the next cell. We repeated this procedure until
reaching the next time layer. This procedure allowed us to solve stochastic differential equa-
tions with undifferentiated coefficients. For example, the system in Equation (12) has the
in-cell solution

ρijk = ρijk−1 exp

{
−

ñ

∑
k̃=1

∂U
(
ĩ, j̃, k̃

)
∂R

∆t̃k̃

}
.

Here, the indices with a tilde mark the cells through which the particle trajectory passes
before reaching the next time layer, and ∆t̃k̃ represents the times before reaching the particle
trajectory border of the next cell.

The method of the generation of the random velocity field is presented in [10,13,22].
We chose for the integration domain to be quite large to avoid the influence of the domain
boundaries on the behavior of the floating tracer trajectories.

4. Qualitative Diagnostics of Floating Tracer Clustering

In order to qualitatively assess the impact of the deterministic component of the
velocity field induced by the ellipsoidal vortex on the clustering, we used qualitative metrics
or diagnostics from the statistical topography. The area was occupied by the clustered
tracer or the clustering area (〈shom(t; ρ̄)〉) as well as the clustering mass (〈mhom(t; ρ̄)〉). Let
us consider the indicator of Liouville’s function:

ϕ(R, t; ρ̄) = δ(ρ(R, t)− ρ̄),

Then, the variable S(t; ρ̄), where

S(t; ρ̄) =
∫

dRθ(ρ(R, t)− ρ̄) =
∫

dR
∞∫

ρ

dρ′ ϕ(R, t; ρ′), (14)

characterizes the total area of the regions, where the floating tracer density exceeding a
predefined threshold ρ̄, θ(·) is the Heaviside (step) function, and the variable M(t; ρ̄), where

M(t; ρ̄) =
∫

dRρ(R, t)θ(ρ(R, t)− ρ̄) =
∫

dR
∞∫

ρ

dρ′ρ′ϕ(R, t; ρ′), (15)

is referred to as the cluster mass characterizing the mass of the floating tracers in these regions.
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Ensemble averaging of ϕ(R, t; ρ̄) gives the single point in space and time probabil-
ity density function P(R, t; ρ̄) [5,23]. Then, the averaging of Equations (14) and (15) on
ensemble realizations of the random velocity field yields

〈S(t; ρ̄)〉 =
∫

dR
∞∫

ρ

dρ′P(R, t; ρ′),

〈M(t; ρ̄)〉 =
∫

dR
∞∫

ρ

dρ′ρ′P(R, t; ρ′).

(16)

With the space and time homogeneous density field ρ(R, t), the single-point probability
density function is independent from R, and then Equation (16) is simplified as

〈shom(t; ρ̄)〉 = 〈θ(ρ(R, t)− ρ̄)〉 = P{ρ(R, t) > ρ̄}=
∞∫

ρ

dρ′P(t; ρ′),

〈mhom(t; ρ̄)〉 =
∞∫

ρ

dρ′ρ′P(t; ρ′).

(17)

Here, shom(t; ρ̄) and mhom(t; ρ̄) are the specific cluster area and specific cluster mass, re-
spectively [18].

For the random positive density field, the conditions for density clustering with the unity
probability (that is, any realization of the random velocity field) yields the corresponding limits:

〈shom(t; ρ̄)〉 → 0, 〈mhom(t; ρ̄)〉 → 1.

According to these relations, the area of the regions where the density exceeds the
specified threshold ρ̄ tends toward zero, and the mass concentrated into these regions
(clusters) tends toward unity. When the evolution time is longer than the diffusion timescale,
then we can use these estimates [5]:

〈shom(t, ρ̄)〉 = P{ρ(R, t) > ρ̄} ≈
√

ρ0

πρ̄t/τ
e−

1
4

t
τ ,

〈mhom(t, ρ̄)〉/ρ0 ≈ 1−
√

ρ̄

πρ0t/τ
e−

1
4

t
τ .

(18)

Here, τ = 1/D, where D is the corresponding effective diffusivity, which is related to Ds
and Dp as follows:

Dp = γ2
r D, Ds = (1− γr)

3D.

Regardless, the 〈shom(t; ρ̄)〉 and 〈mhom(t; ρ̄)〉 relations are valid only for the divergent
component, and they can be useful diagnostics to quantitatively estimate the degree of
floating tracer clustering.

According to the authors of [5], the effective diffusivity associated with the nondiver-
gent component is modified when the random velocity field is modulated by the shear
(γ) flow (Equation (A1)). In this case, the clustering process is absent. However, there is a
filamentation which is associated with the diffusion scattering of the initial tracer patch [5],
and the modified effective diffusivity (Dsγ) becomes

Dsγ = Ds +
2γ

3Ds
, (γ/Ds � 1);

Dsγ =
3

√
3
2

γ2Ds, (γ/Ds � 1),
(19)
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which shows that both under weak shear (γ/Ds � 1) and under strong shear (γ/Ds � 1),
the random component dominates over the diffusion scattering.

5. Results

In this section, we present the results of our numerical experiments, where the cluster-
ing of floating tracers was simulated given the various states of the ellipsoidal vortex and
the contributions of divergent and nondivergent components (Equation (4)).

First, let us consider the baseline experiment with no deterministic component
(Equation (5)). Figure 2 shows the spatial distributions of the floating tracer density
(Equation (13)) given various contributions of the divergent and nondivergent compo-
nents. With only the divergent component, the tracer clustered into coherent regions (see
Figure 2a). The floating tracer density reached 2× 1036. When the contribution of the
divergent component decreased, and the contribution of the nondivergent component in-
creased, we observed increasing patches with low values for the floating tracer density (see
Figure 2b,c). In addition, due to the nondivergent component, the patches of the floating
tracer with the highest density were scattered. With no divergent component, theoretical
tracer clustering was prohibited (see Figure 2d), but some regions still demonstrated higher
density values up to ρ∼102.

These clustering features were confirmed by the quantitative diagnostics of the clus-
tering (see Figure 2). The rate and degree of the floating tracer clustering were dependent
on the contribution of the divergent component. The higher the contribution of the di-
vergent component, the higher the rate of 〈mhom(t; ρ̄ > 1)〉, and the lower the rate of
〈shom(t; ρ̄ > 1)〉. When the contribution of the divergent component was small or absent
(γr = 0.1/0.0), the dependence of 〈mhom(t; ρ̄ > 1)〉 differed from that of a high contribution
from the divergent component. Given τ � D, 〈mhom(t; ρ̄ > 1)〉, when the contribution of
the divergent component was not small (γr = 1.0/0.5), the clustering metrics continued to
increase at a quite low rate. When γr = 0.1/0.0, in contrast, 〈mhom(t; ρ̄ > 1)〉 decreased at
a faster rate. This quantitatively reflects the decaying of the floating-tracer clustering when
the contribution of the nondivergent component increased up until a complete absence of
clusters when the nondivergent component dominated.

Let us consider now the cases where the velocity field consists of both a random
component and deterministic component. The latter component was induced by the el-
lipsoidal vortex (Equation (4)). We considered a horizontal plane cutting the ellipsoid
through the center. To start with, we considered the case of the steady ellipsoidal vortex. In
this case, the deterministic component did not result in chaotic behavior for the tracer’s
trajectories (see Figure 2b)). Figure 3 shows the spatial distributions of the floating tracer
density, depending on the contributions of the divergent component and the initial patch
of floating tracers placed within the steady ellipsoidal vortex (see Figure 3a)). When the
divergent component (Equation (4)) dominated, we observed regions with the highest
values of the floating tracer density of up to 2× 1036. This confirms the theoretical expo-
nential clustering of floating tracers. When the contribution of the divergent component
decreased, the number of regions with the highest floating tracer density decreased as
well, while the number of regions with low floating tracer densities increased. When the
contribution of the nondivergent component increased, we observed diffusive scattering of
the initial floating tracer patch, and the markers could leave the ellipsoidal vortex due to
filamenting of the boundary of the floating tracer patch [5,22]. To illustrate these features of
tracer trajectory behavior, the evolution of the floating tracer density was simulated during
τ = Dt � 1 for the case (γr = 0.1/0.0) (see Figure 3e,f). The initial floating tracer patch
was scattering, and the floating tracer could leave the ellipsoidal vortex. Then, it could be
advected by the background flow.
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Figure 2. Baseline experiments, where floating tracer clustering was induced by the random velocity
field only (Equation (5)). Instances of spatial distributions of the floating tracer density (Equation (13))
when (a) there was a divergent component only (γr = 1.0, τ = 10.94), (b) contributions of the
divergent and nondivergent components were equal (γr = 0.5, τ = 34.48), (c) the contribution
of the divergent component was small (γr = 0.1, τ = 34.48), and (d) there was a nondivergent
component only (γr = 0.0, τ = 34.48). Colored lines at the bottom frame denote the evolution of
the clustering areas 〈shom(t; ρ̄ > 1)〉 (lower curves) and the clustering mass 〈mhom(t; ρ̄ > 1)〉 (upper
curves), depending on various contributions of the divergent and nondivergent components. Red
lines denote 〈shom(t; ρ̄ > 1)〉 and 〈mhom(t; ρ̄ > 1)〉 curves, corresponding to the spatial distribution of
the floating tracer density (see Figure 2a). Purple lines denote 〈shom(t; ρ̄ > 1)〉 and 〈mhom(t; ρ̄ > 1)〉
curves, corresponding to the spatial distribution of the floating tracer density (see Figure 2b). Green
lines denote 〈shom(t; ρ̄ > 1)〉 and 〈mhom(t; ρ̄ > 1)〉 curves, corresponding to the spatial distribution
of the floating tracer density (see Figure 2c). Blue lines denote 〈shom(t; ρ̄ > 1)〉 and 〈mhom(t; ρ̄ > 1)〉
curves, corresponding to the spatial distribution of the floating tracer density (see Figure 2d). Finally,
black lines denote 〈shom(t; ρ̄ > 1)〉 and 〈mhom(t; ρ̄ > 1)〉 curves, corresponding to their analytical
estimates (Equation (18)), when there was a divergent component only (γr = 1.0, τ = 10.94) [17].

Qualitative diagnostics of the floating tracer clustering both for 〈shom(t; ρ̄ > 1)〉 and
〈mhom(t; ρ̄ > 1)〉 confirmed the results (see Figure 3). The rate and degree of the clustering
were higher when the contribution of the divergent component was high. We observed
increasing of the clustering mass and decreasing of the clustering area. On the other
hand, increasing of the contribution of the nondivergent component up to τ > 10 led
to a decrease in the floating tracer density within the ellipsoidal vortex. With time, we
observed pronounced decreasing of the floating tracer density in the ellipsoidal vortex, and
〈mhom(t; ρ̄ > 1)〉 decreased.
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Figure 3. The same as Figure 2, but with the deterministic velocity component (Equation (4)) induced
by a steady ellipsoidal vortex. Frames (a–d) corresponds the same valies of γr end τ as in Figure 2. For
cases (c,d), see the insets (e,f), respectively, at the time τ = 94.44. Colored lines denote the clustering
area 〈shom(t; ρ̄ > 1)〉 (lower curves) and the clustering mass 〈mhom(t; ρ̄ > 1)〉 (upper curves) given
various contributions from the divergent and nondivergent components. Curves of 〈mhom(t; ρ̄ > 1)〉
for the random velocity field only(Equation (5)) are denoted by the colored asterisks.

Figure 4 shows the spatial distribution of the floating tracer density for the case where
the floating tracer patch was initially located near the boundary of the steady ellipsoidal
vortex (see Figure 4a). In this case, the floating tracer clustering was observed because of the
contribution of the divergent component. Note that the floating tracers were clustering near
both the boundary of the ellipsoidal vortex and the boundary of the recirculation regions.
When the nondivergent component increased, we observed strong diffusive scattering
of the tracer (see Figure 4c,d). At the same time, anisotropy of the spatial distribution of
the floating tracer was manifested. High density values were observed mainly near the
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boundary of the vortex and recirculation zones, while the markers did not penetrate deep
into the vortex or centers of the recirculation zones.

Figure 4. The same as Figure 3, but the initial tracer patch was placed near the boundary of the steady
ellipsoidal vortex.

Quantitative diagnostics pointed out that the floating tracer clustered exponentially
when there was no nondivergent component (see Figure 4). At earlier times, a sharp increase
in the clustering mass was observed, and the 〈mhom(t; ρ̄ > 1)〉metric was non-decreasing.
For the non-asymptotic cases, when the contribution of the nondivergent component was
neither zero nor unity, and at a longer characteristic time τ � 1, we observed a significant
decrease in 〈mhom(t; ρ̄ > 1)〉, and thus the clusters did not fully form. Note that the rate of
decay depends on the contribution of the nondivergent component.

Let us consider the clustering of the floating tracer with the deterministic compo-
nent induced by the oscillating and rotating ellipsoidal vortex regimes (see Figure 2c,d).
Koshel et al. [13] established that for both cases, the tracer trajectories can manifest chaotic
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behavior. To start with, we considered the case of the oscillating vortex regime and placed
an initial tracer patch within the vortex or within the recirculation zone’s boundary.

Figure 5 shows the spatial distributions of the tracer density when the initial patch
was placed within the vortex. According to these distributions, the higher the contribution
of the divergent component, the more the tracer was clustered. Note that the initial tracer
patch was scattered along the semi-axes of the ellipsoidal vortex.

Figure 5. The same as Figure 3, but for the oscillating ellipsoidal vortex regime.

Quantitative diagnostics of the tracer clustering confirmed that the highest values of
the cumulative clustered mass w along with extremely small values for the cumulative
clustered area were observed when the contribution of the divergent component was quite
high (see Figure 5). At the same time, when the contribution of the divergent component
was minimal with time τ � 1, we observed little clustering. This process of no clustering
can also be seen in the curve for 〈mhom(t; ρ̄ > 1)〉.
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Figure 6 shows the spatial distributions of the tracer density when the initial tracer
patch was placed near the oscillating ellipsoidal vortex’s boundary. With a dominant
divergent component, the tracer clustering manifested itself prominently. The clusters
were generated mainly near the boundaries of the vortex and recirculation zones. The
clusters were, however, not generated deeper within the vortex core or the centers of the
recirculation zones. Increasing the contribution of the nondivergent component resulted in
diffusive scattering of the tracer and weakened clustering with spatial heterogeneity.

Figure 6. The same as Figure 5, but the initial tracer patch was placed near the boundary of the
oscillating ellipsoidal vortex.

Quantitative diagnostics of the clustering showed that again, when the divergent
component dominated, the clustering happened at higher rates (see Figure 6). As time
moved on, the τ � 1, 〈mhom(t; ρ̄ > 1)〉 curve continued its non-decreasing behavior. When
the contribution of the divergent component decreased, the clustering again was not able
to be sustained. This was confirmed by the 〈mhom(t; ρ̄ > 1)〉 curve for larger times τ � 1
(see Figure 6).
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To finalize this section, we considered clustering of the tracer in the rotating ellipsoidal
vortex regime. Figure 7 shows the spatial distributions of the tracer density when the
initial tracer patch was placed within the ellipsoidal vortex core. Clustering of the tracer
was similarly governed by the contribution of the divergent component. Reducing this
contribution led to a smaller probability of clustering. At the same time, increasing the
contribution of the nondivergent component facilitated diffusive scattering of the tracer.
However, even when the nondivergent component was dominant, there were still many
zones of nonzero values for the tracer density within the ellipsoidal vortex.

Figure 7. The same as Figure 3 but for the rotating ellipsoidal vortex.

According to the diagnostics of the clustering, we observed a high clustering rate and
then non-decreasing behavior from the clustering mass for the case when the contributions
of the random velocity component were equal to the deterministic one (γr = 0.5) (see
Figure 7). Note that if the divergent component was small, and at longer times τ � 1, the
〈mhom(t; ρ̄ > 1)〉 curve still showed no decreasing behavior, but it oscillated with the period
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of τ 6 dimensionless units of time. When the contribution of the divergent component was
equal to zero, the sharp clustering rate during the initial period changed to a slow decrease
in the clustering degree at τ � 1, similar to the previously described case with a period of
τ 6 dimensionless units of time.

Finally, let us consider the case where the initial tracer patch was placed near the
boundary of the rotating ellipsoidal vortex (see Figure 8). The spatial distributions of the
tracer density show that clustering occurred near the boundaries of the vortex and recircu-
lation zones similarly because of the large divergent component. When the contribution
of the divergent component decreased, the zones with the highest density values became
less pronounced. On the other hand, with increasing the nondivergent component, we
observed more pronounced diffusive scattering (see Figure 8c,d). When there was only the
nondivergent component, there were still multiple tracer aggregations in the recirculation
zones and partially in the vortex itself, but the density was rather small (see Figure 8d).

Figure 8. The same as Figure 7, but the initial tracer patch was placed near the boundary of the
rotating ellipsoidal vortex.
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Quantitative diagnostics of the clustering confirmed clustering with a dominant di-
vergent velocity component (see Figure 8). When γr = 1 or γr = 0.5, clustering became
weaker. However, the 〈mhom(t; ρ̄ > 1)〉 curve did not manifest decreasing behavior with
longer times τ � 1. On the other hand, increasing the contribution of the nondivergent
component resulted in a slow increase in the tracer mass and consequently in the decrease
in the 〈mhom(t; ρ̄ > 1)〉 curve with longer times τ � 1. Similarly, the larger contribution of
the nondivergent component, the more the cluster mass decreased.

6. Discussion

One of the aims of this investigation was to consider the results from [10,18] in more
detail by employing a simpler dynamical model of the background shearing flow. The
authors studied the floating tracer clustering in a compound velocity field, where the
random velocity component consisted of divergent and nondivergent parts and the deter-
ministic velocity component was taken from a gridded velocity field from eddy-resolving
numerical simulations of the Sea of Japan circulation. Various regimes of tracer aggregation
were reported and analyzed. However, due to the complexity of the comprehensive ocean
velocity field, a detailed analysis of the leading processes responsible for the observed
dynamical patterns was not fully addressed. The authors suggest that the observed features
associated with the qualitative diagnostics of the tracer clustering were mostly affected
by multiple eddies populating the deterministic velocity field. In the present study, we
considered a simpler model of a vortex, namely the velocity field induced by an ellipsoidal
vortex embedded into a deformation flow. In particular, we focused on the influence of the
ellipsoidal vortex motion regimes (oscillating and rotating) on the tracer clustering.

When comparing the clustering metrics depending on the balance parameter γr for the
steady ellipsoidal vortex case, it is shown that the clustering occurred only with a dominant
divergent velocity component. When γr was equal to 0.5, the floating tracer clustered
within the vortex. In other cases, clustering did not occur. Even though the clustering mass
increased initially (up to τ = 8Dt), then it started decreasing (τ � Dt), as evidenced by the
〈mhom(t; ρ̄ > 1)〉 curve. Compared with the baseline purely stochastic model, this suggests
that the presence of a steady ellipsoidal vortex is not conducive to tracer clustering. This
was most noticeable when the γr ratio was quite small.

In addition, tracer clustering is sensitive to the tracer’s initial conditions. When
the initial tracer patch was placed near the ellipsoidal vortex periphery, clustering was
weakened, as opposed to the case where the initial tracer patch was placed within the
vortex. This is because the recirculation zones near the separatrix experience the most
intense shearing flows. At early times (τ � 10Dt), the clustering rate in the steady state
vortex case was similar to the baseline purely stochastic case. At later times (τ � Dt), the
difference between these two cases increased, and the clustered mass in the steady state
vortex case was less than that in the baseline case.

When considering the case of an oscillating ellipsoidal vortex, we observed significant
changes. For two different sets of initial tracer conditions, the tracer clustering occurred
for both a dominant divergent velocity component (γr = 1.0) and for equal contribu-
tions of the divergent and nondivergent components (γr = 0.5). This was confirmed
by the non-decreasing 〈mhom(t; ρ̄ > 1)〉 curves for these two sets of initial conditions.
When increasing the influence of the nondivergent component (γr � 0.5), the tracer
clustering never happened (the 〈mhom(t; ρ̄ > 1)〉 curves attenuated in both cases with the
initial conditions).

A noticeably different case was the rotating ellipsoidal vortex. With a dominant
divergent velocity component or equal contributions from both velocity components, the
clustering rate was higher when compared with all the previous cases. Also, the clustering
process differed for the two sets of the tracer’s initial conditions. When the initial tracer
patch was placed within the rotating vortex, the clustering was stronger compared with
the case where the initial tracer patch was placed near the periphery of the recirculation
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zones. We also observed a high clustering rate with a dominating nondivergent component
(γr � 1.0).

We thus demonstrated pronounced differences between the tracer clustering occurring
in the steady ellipsoidal vortex regime and in the oscillating or rotating ellipsoidal vortex
regimes. When the ellipsoidal vortex was unsteady, the tracer trajectories manifested
chaotic behavior, which partly accounted for the differences. When the initial tracer patch
was placed within the ellipsoidal vortex, the clustering mass for the case of an unsteady
vortex was higher than that for the case of a steady ellipsoidal vortex.

Thus, we confirmed the hypothesis from [10] that clusters cannot survive strong
advection near eddies for long. When an ellipsoidal vortex is steady, the tracer is advected
from the vortex rather slowly. However, the tracer is also trapped in the neighborhood of
the separatrix for a long time. This region has strong shearing flows that prevent clustering.

When the ellipsoidal vortex is unsteady, the tracer is advected from the neighborhood
of the separatrix (where the strongest shearing flows are observed, which are detrimental
for clustering), which allows a larger part of the mass to remain clustered. This is observed
for the case of the initial tracer patch placed near the periphery of the ellipsoidal vortex. In
this case, due to the unsteady ellipsoidal vortex and tracer advection, the tracer leaves the
neighborhood of the separatrix away from strong shears. This prevents decreasing of the
clustering rate in contrast to the steady ellipsoidal vortex case.

7. Conclusions

This study investigated the influence of a background vortex flow on the clustering of
floating tracers. The vortex flow was induced by the interaction of an ellipsoidal vortex
with a deformation flow, which produces various vortex motion regimes: (1) steady state,
(2) oscillating, and (3) rotating of the ellipsoidal vortex. The unsteady ellipsoidal vortex in-
duced chaotic tracer trajectories. The regions where the chaotic behavior largely manifested
itself were hyperbolic points and separatrix. We focused on tracer clustering in velocity
fields where the deterministic velocity component permitted chaotic tracer trajectories.

The tracer clustering was governed by a random velocity field consisting of nondi-
vergent and divergent components. With a dominant divergent component, we observed
tracer clustering. On the other hand, with a dominant nondivergent component, the
clustering never occurred.

The spatial and time scales of the vortex motion exceeded those of the random velocity
field by an order of magnitude. For the deterministic velocity component induced by the
ellipsoidal vortex, the random velocity component therefore was mostly independent. We
used the method of characteristics to integrate the tracer density equation and the Euler Ito
scheme for tracer trajectories evolving in the random velocity field. The clustering area and
clustering mass from the statistical topography were used as the quantitative diagnostics
of the tracer clustering.

In the baseline case of a random velocity field only, we confirmed that when the
divergent component dominated, there were zones with a rather small total area and quite
high mass in the tracer density field. According to the quantitative metrics, the cumulative
mass of these zones was non-decreasing with time. When the contribution of the divergent
component relative to the nondivergent component was less than 0.5, we registered no
tracer clustering.

For the steady ellipsoidal vortex regime, we observed weaker tracer clustering. Even
with a higher contribution from the divergent component, the clustering rate and clustering
degree were not as strong compared with the baseline case. The most striking differences
were observed for the initial tracer patch placed near the boundary of the ellipsoidal
vortex. We also observed complete floating tracer clustering when the random velocity
field consisted of the divergent component only.

For the unsteady ellipsoidal vortex regimes, we observed tracer clustering when
the contribution of the divergent component was higher than or equal to that of the
nondivergent component. Even when the initial tracer patch was placed near the boundary
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of the recirculation zones, clustering still persisted. With a rotating ellipsoidal vortex, we
observed pronounced clustering as well. When the initial tracer patch was placed within
the rotating vortex, the clustering rate was higher than that for the baseline case during
earlier times. Thus, we suggested that the unsteady ellipsoidal vortex regimes promoted
(or at least did not prohibit) clustering due advecting the nascent clusters away from the
separatrix region, where the strongest shears existed.
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Appendix A. Ellipsoidal Vortex in the Deformation Flow

According to [11,13,19–21], let us consider the deformation flow in the dimension-
less coordinates

ue = (ex− γy, γx− ey) (A1)

where e and γ are dimensionless variables controlling the time scale and ue = (u, v) is a
dimensionless variable controlling the velocity scale.

We consider a vortex structure embedded in a deformation flow (Equation (A1)), and
the vortex is an ellipsoidal region V with the boundary

F(x, y, z, t) =
x̃2

a2(t)
+

ỹ2

b2(t)
+

z̃2

c2(t)
= 1, (A2)

where

x̃ = (x− x0) cos θ(t) + (y− y0) sin θ(t),

ỹ = −(x− x0) sin θ(t) + (y− y0) cos θ(t),

z̃ = η,

(A3)

and x0(t), y0(t), z0 = 0 is the vortex’s center and c(t) = BNc̄(t) , where c̄(t) is the semi-axes.
The vorticity is considered piecewise constant. There is a difference between the vorticity
inside the vortex and adjacent flow

q =

{
2γ, r /∈ V,
2α, r ∈ V,

(A4)

According to [13], the stream function is ψ = ψe + ψv, where ψe = (x2 + y2)γ/2−
exy− u0y + v0x. Thus, ψe and ψv satisfy the relations

∆ψe = 2γ; ∆ψv =

{
0, r /∈ V,

2(α− γ) = g, r ∈ V.
(A5)

 https://rscf.ru/en/project/23-27-00188/


Symmetry 2023, 15, 2211 19 of 20

For ψv, we have the following solutions[11,19–21]:

ψv(x, y, z, t) = − gabc
2

∞∫
λ

(1− x̃2

a2 + µ
− ỹ2

b2 + µ
− z̃2

c2 + µ
)

dµ√
∆̃(µ)

. (A6)

Here, z = z̃ = η, ∆̃(µ) = (a2 + µ)(b2 + µ)(c2 + µ). The lower limit of the integration
λ(x̃, ỹ, z̃, t) is defined as the root of the cubic equation

x̃2

a2 + λ
+

ỹ2

b2 + λ
+

z̃2

c2 + λ
= 1.

We take λ = 0 to be inside the ellipsoidal vortex and λ > 0 to be outside the vortex. The
fluid particle advection equations are

dx
dt

= u = ex− γy + u0 −
∂

∂y
ψv,

dy
dt

= v = γx− ey + v0 +
∂

∂x
ψv.

(A7)

According to [11,19–21], from the kinematic conditions, we take the relations for the
parameters and positions of the ellipsoid to be

ȧ = ae cos 2θ, ḃ = −be cos 2θ, ċ = 0,

θ̇ = −g
β0b2 − α0a2

a2 − b2 + γ− e
a2 + b2

a2 − b2 sin 2θ,

ẋ0 = ex0 − γy0 + u0, ẏ0 = γx0 − ey0 + v0,

(A8)

where

α0 = abc
∞∫

0

1
a2 + µ

dµ√
∆̃(µ)

, β0 = abc
∞∫

0

1
b2 + µ

dµ√
∆̃(µ)

, χ0 = abc
∞∫

0

dµ√
∆̃(µ)

. (A9)

The spatial derivatives of the stream function can be obtained by introducing new
coordinates as follows:

∂

∂x̃
ψv = x̃gabc

∞∫
λ

1
a2 + µ

dµ√
∆̃(µ)

,

∂

∂ỹ
ψv = ỹgabc

∞∫
λ

1
b2 + µ

dµ√
∆̃(µ)

,

(A10)

which are the velocity projections onto the main semi-axes of the ellipsoid. Taking into
account Equation (A3), we obtain

∂

∂x
ψv = cos θ

∂

∂x̃
ψv − sin θ

∂

∂ỹ
ψv,

− ∂

∂y
ψv = − sin θ

∂

∂x̃
ψv − cos θ

∂

∂ỹ
ψv.

(A11)
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