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Abstract: This paper is concerned with the existence of positive solutions to the fourth-order bound-
ary value problem u(4)(x) = f (x, u(x), u′′(x)) on the interval [0, 1] with the boundary condition
u(0) = u(1) = u′′(0) = u′′(1) = 0, which models a statically bending elastic beam whose two ends
are simply supported. Without assuming that the nonlinearity f (x, u, v) is nonnegative, an existence
result of positive solutions is obtained under the inequality conditions that |(u, v)| is small or large
enough. The discussion is based on the method of lower and upper solutions.
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1. Introduction

In this paper, we discuss the existence of a positive solution for the fourth-order bound-
ary value problem (BVP) u(4)(x) = f (x, u(x), u′′(x)), x ∈ I,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(1)

where I = [0, 1], f : I × [0, ∞)× (−∞, 0] → R is continuous. BVP(1) models the defor-
mations of an elastic beam whose two ends are simply supported in an equilibrium state,
and u represents the deformation of the beam, u′′ in f is the bending moment term which
represents bending effect, see [1–5].

Since 1986, many researchers have studied the existence of solutions to this problem,
see [1–12] and reference therein. Firstly, Aftabizadeh [1] showed the existence of solutions
that f is a bounded function. Yang [2] extended Aftabizadeh’s result and showed BVP(1)
has a solution under f that satisfies a linear growth condition. Del Pino and Manasevich [5]
further extended Yang’s result, and they obtained existence and uniqueness theorems
under a non-resonance condition involving a two-parameter linear eigenvalue problem
and a linear growth condition on f . Later, De Coster et al. [6] and Li [9] extended the
two-parameter non-resonance conditions in [5]. Agarwal [3] and Kaufmann [12] obtained
the existence results by using the Schauder fixed point theorem under f satisfies certain
growth conditions. Korman [4], Ma et al. [7], Cabada [8] and Li [10] discussed the existence
of solutions by using monotone iterative technique assumed that BVP(1) has a pair of
ordered lower and upper solutions and f satisfies certain monotone conditions between the
lower and upper solutions. Recently, Li and Gao [11] obtained existence and uniqueness
results under certain inequality conditions of f , and the inequality conditions allow f to
grow superlinearly on u and u′′.

Generally, for BVP(1) in statically elastic beams, only its positive solution is practical
significance, see Figure 1.
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Figure 1. Simply Supported Beam.

Under the acting of the load f , the bean is deformed down, and the displacement u(x)
of the beam at x is positive for x ∈ (0, 1). Hence, the solutions of the simply supported
beam equations are usually positive. For the case that f is nonnegative, some authors
have researched the existence of positive solutions, see [13–19]. Early, Ma and Wang [13]
considered the special case of BVP(1) that f does not contain u′′: the simple fourth-order
boundary value problem u(4)(x) = f (x, u(x)), x ∈ I,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(2)

They using the fixed point theorems of cone mapping obtained the existence of positive
solutions of BVP(2) under f is nonnegative and f (x, u) is superlinear or sublinear growth
on u at 0 and +∞. Later, Bai and Wang [15], Li [16], Liu [18] and Yao [19] improved and
extended these results by choosing a cone in C(I) and using the fixed-point index theory
in cones. For general BVP(1), Li [17] obtained the existence and no existence results of
positive solutions under f that are nonnegative and satisfy some inequality conditions
involving the first eigenvalue-line of the corresponding two-parameter linear eigenvalue
problem by counting the fixed-point index of the corresponding integral operator in a cone
of C2(I). Ma and Xu [14] obtained the existence of positive solutions under f is nonnegative
and f (x, u, v) satisfies asymptotically linear conditions as |(u, v)| → 0 and |(u, v)| → ∞
by using Krein–Rutman theorem and the global bifurcation theory of positive operators
obtained the existence of positive solutions.

The above authors who studied the existence of positive solutions of BVP(1.1) all
required that the nonlinear term f is nonnegative. When f is not nonnegative, the cor-
responding integral operator of BVP(1) is not a positive operator and the method in
references [13–19] is not applicable. The purpose of this paper is to obtain the existence of
positive solutions for general BVP(1) without assuming that f is nonnegative. Under the
inequality conditions of f when |(u, v)| is small or large enough, we obtained an existence
result of positive. Our main result is as follows:

Theorem 1. Let f : I× [0, ∞)× (−∞, 0]→ R be continuous and satisfy the following conditions

(F1) For every x ∈ I and v ∈ (−∞, 0], f (x, u, v) is increasing on u in [0, ∞);

(F2) there exist constant α, β ≥ 0 satisfying α
π4 +

β

π2 ≥ 1 and δ > 0 such that

f (x, u, v) ≥ αu− βv, for u ≥ 0, v ≤ 0 and |(u, v)| ≤ δ;

(F3) there exist constant α1, β1 ≥ 0 satisfying α1
π4 +

β1
π2 < 1 and H > 0 such that

f (x, u, v) ≤ α1u− β1v, for u ≥ 0, v ≤ 0 and |(u, v)| ≥ H.

Then BVP(1) has at least one positive solution.

Note that the straight line
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`1 =

{
(α, β) ∈ R2

∣∣∣ α

π4 +
β

π2 = 1
}

(3)

on α and β is the first eigenvalue-line of the two-parameter linear eigenvalue problem
corresponding to BVP(1) u(4)(x) = αu(x)− βu′′(x), x ∈ I,

u(0) = u(1) = u′′(0) = u′′(1) = 0
(4)

(see [5], Proposition 2.1), the coefficient conditions of the inequalities in (F2) and (F3)
are optimal.

The proofs of Theorem 1 are based on the method of lower and upper solutions. A
lower solution v of BVP(1.1) means that v ∈ C4(I) and satisfies v(4)(x) ≤ f (x, v(x), v′′(x)), x ∈ I,

v(0) ≤ 0, v(1) ≤ 0, v′′(0) ≥ 0, v′′(1) ≥ 0,

and an upper solution w of BVP(1.1) means that w ∈ C4(I) and satisfies w(4)(x) ≥ f (x, w(x), w′′(x)), x ∈ I,

w(0) ≥ 0, w(1) ≥ 0, w′′(0) ≤ 0, w′′(1) ≤ 0.

The method of lower and upper solutions for BVP(1) is, by finding a pair of lower
solution v0 and upper w0 with v0 ≤ w0 and v′′0 ≥ w′′0 , to obtain a solution u0 satisfied
v0 ≤ u0 ≤ w0 and v′′0 ≥ u′′0 ≥ v′′0 , see [7,10]. The advantages of this method are that it is
no any restriction for the growth of f (x, u, v) with respect to u and v, and that ones can
find the solution u0 with monotone iteration technique starting from v0 and w0 under some
monotonicity conditions of f . The disadvantage is that it is not easy to find the required
pair of upper and lower solutions. In Theorem 1, we give the concrete conditions (F2) and
(F3) for finding the lower solution v0 and the upper solution w0.

In [20], Minhós, Gyulov and Santos established a theorem of upper and lower solutions
for the more general fourth-order boundary value problem u(4)(x) = f (x, u(x), u′(x), u′′(x), u′′′(x)), x ∈ I,

u(0) = u(1) = u′′(0) = u′′(1) = 0,

provided a pair of lower and upper solutions, see [20] (Theorem 1). However, the definition
of upper and lower solutions in [20] is different from ours, and our upper and lower
solutions do not meet the conditions of the pair of upper and lower solutions in [20]. Hence,
Theorem 1 is not covered by [20] (Theorem 1).

In Section 3, we will use the method of lower and upper solutions and a truncation
function technique to prove Theorem 1. Some preliminaries to discuss BVP(1) are presented
in Section 2.

2. Preliminaries

As usual, we use C(I) to denote the Banach space of all continuous function u
on I with maximum norm ‖u‖ = maxx∈I |u(x)|. For n ∈ N, we use Cn(I) to denote
the Banach space of all nth-order continuous differentiable function u with the norm
‖u‖Cn = max{‖u‖, ‖u′‖, . . . , ‖u(n)‖}.
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To prove Theorem 1, we first consider the linear fourth-order boundary value problem
(LBVP)  u(4)(x) + β u′′(x)− α u(x) = h(x), x ∈ I,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(5)

where α, β ∈ R and h ∈ C(I) are given.

Lemma 1. Let α, β ≥ 0 and α
π4 + β2

π2 < 1. Then for every h ∈ C(I), LBVP(5) has a unique
solution u ∈ C4(I). Moreover, when h ≥ 0, the solution u satisfies: u ≥ 0, u′′ ≤ 0.

Proof. Let λ1, λ2 be the roots of the polynomial P(λ) = λ2 + βλ− α , that is

λ1, λ2 =
−β±

√
β2 + 4α

2
.

By the assumption we easy to obtain that: λ1 ≥ 0 ≥ λ2 > −π2 . Let Gi(x, y)(i = 1, 2) be
the Green’s function of the linear boundary value problem

−u′′(x) + λi u(x) = 0, u(0) = u(1) = 0.

By Lemma 2.1 of [16], Gi(x, y) ≥ 0 for every x, y ∈ I. Since

u(4)(x) + βu′′(x)− αu(x) =
(
− d2

dx2 + λ1

) (
− d2

dx2 + λ2

)
u,

setting v = −u′′+λ2u, then LBVP(5) becomes to the second-order boundary value problem{ −v′′(x) + λ1 v(x) = h(x), x ∈ I,

v(0) = v(1) = 0.
(6)

Obviously, BVP(6) has a unique solution v ∈ C2(I) given by

v(x) =
∫ 1

0
G1(x, z) h(z)dz, x ∈ I. (7)

Hence, solving the the second-order boundary value problem{ −u′′(x) + λ2 u(x) = v(x), x ∈ I,

v(0) = v(1) = 0,
(8)

it follows that LBVP(5) has a unique solution u ∈ C4(I) give by

u(x) =
∫ 1

0
G2(x, y)v(y)dy =

∫ 1

0

∫ 1

0
G2(x, y)G1(y, z)h(z)dzdy. (9)

When h ≥ 0, by (9) and the nonnegativity of the Green functions G1 and G2, u ≥ 0. By
(7), v ≥ 0. Since v = −u′′ + λ2u and λ2 ≤ 0, we obtain that u′′ = −v + λ2u ≤ 0.

Let f : I × R× R → R be continuous and bounded. Then there exists a constant
M > 0 such that

| f (x, u, v)| ≤ M, (x, u, v) ∈ I ×R×R. (10)

We consider the nonlinear boundary value problem u(4)(x) + β u′′(x)− α u(x) = f (x, u(x), u′′(x)), x ∈ I,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(11)
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Lemma 2. Let α, β ≥ 0 and α
π4 +

β2

π2 < 1 and f : I ×R×R→ R be continuous and bounded.
Then BVP(11) has at least one solution u ∈ C4(I).

Proof. For every h ∈ C(I), by Lemma 1, LBVP(5) has a unique solution u := Sh ∈ C4(I)
given by (9). This defines a linear bounded operator S : C(I)→ C4(I), and it is called the
solution operator of LBVP(5). By the compactness of the embedding C4(I) ↪→ C2(I), S :
C(I)→ C2(I) is a linear completely continuous operator. We denote the norm of the linear
S : C(I)→ C2(I) by ‖S‖B(C(I), C2(I)). Define a nonlinear mapping F : C2(I)→ C(I) by

F(u)(x) := f (x, u(x), u′′(x)), x ∈ I, u ∈ C2(I).

Clearly, F : C2(I)→ C(I) is continuous and bounded. By (10), F satisfies

‖F(u)‖ ≤ M, u ∈ C2(I). (12)

Hence, the composite mapping A = S ◦ F : C2(I)→ C2(I) is completely continuous. Let
R ≥ ‖S‖B(C(I), C2(I))M and set Ω = {u ∈ C2(I) : ‖u‖C2≤R}. Clearly, Ω is bounded convex
closed set of C2(I). For every u ∈ Ω, by (12) we have

‖Au‖C2 = ‖S(F(u))‖ ≤ ‖S‖B(C(I), C2(I))‖F‖ ≤ ‖S‖B(C(I), C2(I))M ≤ R.

Hence, Au ∈ Ω. This means that A(Ω) ⊂ Ω. By the Schauder fixed-point theorem [21],
A has a fixed-point u0 ∈ Ω. Since u0 = Au0 = S(F(u0)), by the definition of S, u0 is the
unique solution of LBVP(5) for h = F(u0) ∈ C(I). Hence, u0 ∈ C4(I) satisfies Equation (11),
and it is a solution of BVP(11).

3. Proofs of the Main Result

Proof of Theorem 1. We use the method of lower and upper solutions and a truncation
function technique to prove Theorem 1.

Firstly, we construct a pair of positive lower solution v0 and upper solution w0 of
BVP(1), such that v0 ≤ w0 and v0

′′ ≥ w0
′′.

Let α1, β1, H be the constant in Condition (F3). Set

C0 = max{| f (x, u, v)− (α1u− β1v)| | x ∈ I, u ≥ 0, v ≤ 0, |(u, v)| ≤ H }+ 1,

then by Condition (F3),

f (x, u, v) ≤ α1u− β1v + C0, x ∈ I, u ≥ 0, v ≤ 0. (13)

By Lemma 1, the boundary value problem u(4)(x) + β1 u′′(x)− α1 u(x) = C0, x ∈ I,

u(0) = u(1) = u′′(0) = u′′(1) = 0.
(14)

has a unique solution w0 ∈ C4(I), and it satisfies w0 ≥ 0 and w′0 ≤ 0. By (13) and
Equation (14), we easily see that w0 is an upper solution of BVP(1).

Let δ be the constant in Condition (F2). Choose a constant by

σ = min
{

δ√
1 + π4

,
C0

π4 − β1π2 − α1

}
(15)

and define a function by v0(x) = σ sin πx. We show that v0 is a lower solution of BVP(1).
For every x ∈ I, since
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v0(x) = σ sin πx ≥ 0, v0
′′(x) = −π2σ sin πx ≤ 0,

|(v0(x), v0
′′(x))| = σ

√
1 + π4 sin πx ≤ δ,

form (F2) it follows that,

f (x, v0(x), v0
′′(x)) ≥ αv0(x)− βv0

′′(x)

= (α + βπ2)σ sin πx ≥ π4σ sin πx = v0
(4)(x).

Hence v0 is a lower solution of BVP(1). We show that

v0 ≤ w0, v0
′′ ≥ w0

′′. (16)

Consider the function u = w0 − v0. Noting w0 is a solution of BVP(14), we have

h(x) := u(4)(x) + β1 u′′(x)− α1 u(x)

= C0 − (v0
(4)(x) + β1 v0

′′(x)− α1 v0(x) )

= C0 − (π4 − β1π2 − α1) σ sin πx

≥ C0 − (π4 − β1π2 − α1) σ

≥ 0, x ∈ I.

This means that h ≥ 0 and u ∈ C4(I) is a solution of LBVP(5). By Lemma 2, u ≥ 0 and
u′′ ≤ 0. Hence (16) holds.

Secondly, we make a bounded truncation function f ∗ of f through the lower solution
v0 and upper solution w0.

Define functions ξ, η : I ×R→ R by

ξ(x, u) = min{max{v0(x), u}, w0(x)},

η(x, v) = min{max{w′′0 (x), v}, v′′0 (x)},
(17)

Then ξ, η : I ×R→ R are continuous and satisfy

v0(x) ≤ ξ(t, u) ≤ w0(x), (x, u) ∈ I ×R,

w′′0 (x) ≤ η(x, v) ≤ v′′0 (x), (x, v) ∈ I ×R.
(18)

Define a truncating function of f by

f ∗(x, u, v) = f (t, ξ(x, u), η(x, v)) +
v− η(x, v)

v2 + 1
, (x, u, v) ∈ I ×R2. (19)

By (17) and (18), f ∗ : I ×R×R→ R is continuous and bounded.

Next, we consider the boundary value problem u(4)(x) = f ∗(x, u(x), u′′(x)), t ∈ I,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(20)

and prove its solution is also the solution of BVP(1).
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By Lemma 2, BVP(20) has a solution u0 ∈ C4(I). We show that

w0
′′ ≤ u0

′′ ≤ v0
′′. (21)

In fact, if w0
′′ 6≤ u0

′′, then for the function

φ(x) = u0
′′(x)− w0

′′(x), x ∈ I, (22)

min0≤x≤1 φ(t) < 0. Since φ(0), φ(1) ≥ 0, there exists x0 ∈ (0, 1) such that min0≤x≤1 φ(x) =
φ(x0). By the properties of φ at minimum points, we have

φ(x0) < 0, φ′(x0) = 0, φ′′(x0) ≥ 0.

from this and (22) it follows that

u0
′′(x0) < w0

′′(x0), u(4)
0 (x0) ≥ w(4)

0 (x0). (23)

Hence by definition (17), we have

η(x0, u0
′′(x0)) = w0

′′(x0). (24)

By Equations (20) and (18), (24), Condition (F1) and the definition of the upper solution w0,
we have

u(4)
0 (x0) = f ∗(x0, u0(x0), u0

′′(x0))

= f (x0, ξ(x0, u0(x0)), η(x0, u0
′′(x0))) +

u0
′′(x0)− η(x0, u0

′′(x0))

u0′′2(x0) + 1

= f (x0, ξ(x0, u0(x0)), w0
′′(x0)) +

u0
′′(x0)− w0

′′(x0)

u0′′2(x0) + 1

< f (x0, ξ(x0, u0(x0)), w0
′′(x0))

≤ f (x0, w0(x0), w0
′′(x0))

≤ w(4)
0 (x0).

Namely, u(4)
0 (x0) < w(4)

0 (x0), this contradict the second inequality of (23). Hence,
w0
′′ ≤ u0

′′.
With a similar argument, we can show that u0

′′ ≤ v0
′′. Thus, (21) holds. Furthermore,

from (21) we show that
v0 ≤ u0 ≤ w0. (25)

Consider the function u = u0 − v0. Since

−u′′(x) = −(u0
′′(x)− v0

′′(x)) ≥ 0, x ∈ I; u(0), u(1) ≥ 0,

by the maximum principle of second-order differential operators, u ≥ 0. That is, v0 ≤ u0.
Similarly, u0 ≤ w0. Hence, (25) holds.

Now, from (21), (25) and definition (17), it follows that

ξ(x, u0(x)) = u0(x), η(x, u0
′′(x)) = u0

′′(x), x ∈ I.
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Hence by Equation (20), we have

u(4)
0 (x) = f ∗(x, u0(x), u0

′′(x))

= f (x, ξ(x, u0(x)), η(x, u0
′′(x))) +

u0
′′(x)− η(x, u0

′′(x))
u0′′2(x) + 1

= f (x, u0(x), u0
′′(x)), x ∈ I.

That is, u0 is a solution of BVP(1) and it is positive.
The proof of Theorem 1 is completed.

Example 1. Consider the following fourth-order boundary value problem u(4)(x) = 2
√

u(x)− 3u′′(x)− 5u′′2(x), x ∈ I,

u(0) = u(1) = u′′(0) = u′′(1) = 0 .
(26)

Clearly, this problem has a trivial solution u ≡ 0. In addition, we can easily verify that the
nonlinearity of BVP(26)

f (x, u, v) = 2
√

u− 3v− 5v2, u ≥ 0, v ≤ 0 (27)

satisfies the conditions (F1)–(F3). By Theorem 1, BVP(26) has at least one positive solution.
Since the nonlinearity f defined by (27) is not nonnegative, this conclusion cannot be
obtained from the known results in [13–19].

4. Conclusions

In this paper, we obtained the existing result of positive solutions for the bending
elastic beam equation BVP(1) by applying the method of lower and upper solutions. The
method of lower and upper solutions is an important technique to solve BVP(1). The key to
applying this method is to find a pair of lower solution v0 and upper w0 satisfied v0 ≤ w0
and v0

′′ ≥ w0
′′. Some authors mentioned in Section 1 discussed the existence of solutions

under the assumption that the equation has such a pair of lower and upper solutions, and
they did not provide the search method or existence conditions for such a pair of lower
and upper solutions. In Theorem 1, we give the concrete conditions to obtain such a pair of
lower and upper solutions, these are (F2) and (F3). Condition (F2) implies that

v0(x) = σ sin πx ( 0 < σ < δ/
√

1 + π4 )

is a lower solution of BVP(1), where δ is the constant in (F2); and (F3) implies that the
unique positive solution w0 of LBVP(14) is a upper solution of BVP(1). By Lemma 1, we
showed that when σ is small enough, v0 and w0 satisfy

v0 ≤ w0, v0
′′ ≥ w0

′′.

Hence, in Section 3 we proved that when f also satisfies the condition (F1), BVP(1) has a
positive solution u0 satisfied

v0 ≤ u0 ≤ w0, v0
′′ ≥ u0

′′ ≥ w0
′′.

This conclusion allows f with negative values, and the previous works on the existence
of positive solutions only discussed the case that f is nonnegative. Our conclusion de-
velops the study on the existence of positive solutions of the static simply supported
beam equations.
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