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Abstract: The article provides an α-cut-based method that solves linear fractional programming
problems with fuzzy variables and unrestricted parameters. The parameters and variables are
considered as asymmetric triangular fuzzy numbers, which is a generalization of the symmetric
case. The problem is solved by using α-cut of fuzzy numbers wherein the α- and r-cut are applied
to the objective function and constraints, respectively. This reduces the problem into an equivalent
biobjective model which leads to the upper and lower bounds of the given problem. Afterwards,
the membership functions corresponding to various values of r ∈ (0, 1] are obtained using the
optimal values of the biobjective model. The proposed method is illustrated by taking an example
from the literature to highlight the fallacy of an existing approach. Finally, a fuzzy linear fractional
transportation problem is modelled and solved using the aforementioned technique.

Keywords: linear fractional problem; unrestricted parameters; α-cut; fuzzy numbers

1. Introduction

Linear programming problems (LPPs) are a significant type of optimization problems.
These LPPs are used to solve various real-world problems such as production planning,
hospital management, transportation problems, diet planning, profit maximization, re-
source management, etc. Linear fractional programming problems (LFPPs) are LPPs where
the objective function is a ratio between two linear functions. Such LFPPs are widely used
in economic and commercial models to maximize profit and minimize cost, simultaneously.
In the literature, out of several ways to deal with LFPPs, some methods are analytical while
some are numerical.

In a significant development, Charnes and Cooper [1] solved LFPPs by using an
analytical variable transformation method that reduced the problem into LPPs with some
added constraints. Tantawy [2] considered an iterative method to find an optimal solution
by sequentially moving from an initial interior point to another feasible solution until the
optimal solution is reached. Meanwhile, Chadha and Chadha [3] proved some results
regarding the dual of an LFPP and expressed the dual to be an LPP, which was further
solved to get a solution to the initial problem. Later, Rizk-Allah et al. [4] provided a new
algorithm for linear and nonlinear fractional programming problems, viz., chaotic crow
search algorithm. In addition to these, there are various methods based on the simplex
approach to find solutions of LFPPs. Sharma and Bansal [5] used the branch-and-bound
process along with the simplex technique to solve LFPPs. Next, Pandey and Punnen [6]
generalized and extended existing simplex algorithms.
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LFPPs can be used to frame many real-world problems, but in most cases, the data
provided to the decision-maker are not clearly defined and precise. Generally, there is
some form of uncertainty associated with the data. These uncertainties can be overcome by
incorporating the fuzzy sense introduced by Zadeh [7] in the parameters, constraints or
variables. Nowadays, fuzzy linear fractional programming problems (FLFPPs) are used in-
stead of LFPPs to cater to real-world scenarios. Over time, a number of different techniques
have been explored by researchers to solve FLFPPs. Hladík [8] and Borza et al. [9] studied
generalized LFPPs with interval uncertainties. Later, Pandian and Jayalakshmi [10] solved
LFPPs by a denominator restriction method, which further extended to a decomposition
restriction method that solved the FLFPP by converting the problem into three crisp-level
LFPPs. Further, Das and Mandal [11] as well as Das et al. [12] converted FLFPPs into crisp
multiobjective LFPPs, which were then solved to obtain a solution. In one of their studies,
Sharma et al. [13] considered multiobjective fractional programming problems for fixed
aspiration levels using symmetric fuzzy parameters. Dutta et al. [14,15] worked on the sen-
sitivity of FLFPPs and also investigated the impact of tolerance on both LFPPs and FLFPPs.
Recently, Borza and Rambely [16] solved the FLFPPs with crisp variables and coefficients
as TFNs by using a combination of the max-min method and an α-cut-based approach.

Veeramani and Sumathi [17] suggested a method that converted the problem into a
multiobjective LFPP and then solved it using the fuzzy programming approach. However,
Mehra et al. [18] proposed the novel concept of (α, β)-acceptable optimal solution of an
FLFPP having fuzzy coefficients. Further, Das et al. [19] proposed a new ordering for TFNs
and used this to reduce an FLFPP into a triobjective problem. Meanwhile, Chinnadurai and
Muthukumar [20] considered an FLFPP with all parameters and variables as triangular
fuzzy numbers (TFNs) and proposed an α-cut-based numerical approach to solve the
problem by converting it into an equivalent biobjective model. They erroneously claimed
to propose a method for any general FLFPP. Subsequently, Ebrahimnejad et al. [21] worked
on a similar numerical approach with non-negative trapezoidal fuzzy numbers. In the
present study, a counterexample is cited, which shows that the approach in [20] can be
used only when all the parameters are non-negative TFNs. Further, we have established
the conditions for the proposed α-cut-based method to solve the above-mentioned FLFPPs
having unrestricted parameters, which overcomes the shortcoming in [20].

The rest of the paper is structured as follows: Section 2 is dedicated to notations,
definitions and arithmetic operations, used throughout this paper. Section 3 describes the
formulation of a standard FLFPP having asymmetric TFNs. In Section 4, the approach
in [20] is presented along with a counterexample to highlight its shortcoming. The moti-
vation for the new approach and the limitations of existing approaches are indicated in
Section 5. Next, Section 6 explains the proposed approach. Later, a numerical illustration
and a real-world application are worked out using the proposed method in Section 7. The
results are discussed in Section 8. Finally, conclusions and future scope are addressed in
Section 9.

2. Notations and Definitions

Some preliminary notations and definitions used in the article are presented in
this section.

Definition 1 ([20]). If X is a collection of objects denoted generically by x, then a fuzzy set Ã in
X is a set of ordered pairs: {(x, µÃ(x))|x ∈ X}, µÃ is called the membership function of Ã which
maps X to [0, 1], and µÃ(x) is called the membership degree of x in Ã.

Definition 2 ([20]). The (crisp) set of elements that belong to the fuzzy set Ã at least to the degree
α ∈ (0, 1] is called the α-cut of Ã and is defined as:

(Ã)α = {x ∈ X | µÃ(x) ≥ α}.
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Definition 3 ([22]). A fuzzy set Ã in R is said to be a fuzzy number if

(i) ∃ r ∈ R such that µÃ(r) = 1;
(ii) ∀α ∈ (0, 1], (Ã)α is a closed interval in R, i.e., (Ã)α = [(Ã)L

α , (Ã)U
α ] ( R;

(iii) the set R0 = {r ∈ R|µÃ(r) > 0} is a finite subset of R.

Arithmetic operations on closed intervals of R
Let I1 = [a1, a2] and I2 = [b1, b2] be two closed intervals of R; we define:

(i) I1 + I2 = [a1 + b1, a2 + b2].
(ii) I1 − I2 = [a1 − b2, a2 − b1].

(iii) ∀k ∈ R, k.I1 =

{
[ka1, ka2], k ≥ 0,
[ka2, ka1], k < 0.

(iv) I1 I2 = [p1, p2]
where p1 = min{a1b1, a1b2, a2b1, a2b2} and

p2 = max{a1b1, a1b2, a2b1, a2b2}.
(v) I1/I2 = [q1, q2]

where q1 = min{a1/b1, a1/b2, a2/b1, a2/b2} and

q2 = max{a1/b1, a1/b2, a2/b1, a2/b2}, provided 0 /∈ I2.

Remark 1. In particular, for I2 = [b1, b2]; 0 < b1 ≤ b2,

[q1, q2] =


[a1/b2, a2/b1], a1 ≥ 0,
[a1/b1, a2/b1], a1 < 0 & a2 ≥ 0,
[a1/b1, a2/b2], a2 < 0.

(vi) I1 ≥ I2 iff a1 ≥ b1 and a2 ≥ b2.

Ordering of fuzzy numbers: [20]. The ordering of fuzzy numbers is defined as follows:

(i) Ã � B̃ iff ∀ α ∈ (0, 1], (Ã)α ≥ (B̃)α,
i.e., ∀ α ∈ (0, 1], (Ã)L

α ≥ (B̃)L
α and (Ã)U

α ≥ (B̃)U
α .

(ii) Ã � 0 iff ∀ α ∈ (0, 1], (Ã)L
α ≥ 0.

Definition 4 ([21]). A triangular fuzzy number (TFN) Ã = (a, a′, a′′) where a ≤ a′ ≤ a′′, is a
fuzzy set in R if its membership function is given by

µÃ(x) =



x− a
a′ − a

, a < x < a′,

1, x = a′,
a′′ − x
a′′ − a′

, a′ < x < a′′,

0, otherwise.

For a TFN Ã = (a, a′, a′′):

(i) (Ã)α = [(Ã)L
α , (Ã)U

α ] = [a + α(a′ − a), a′′ − α(a′′ − a′)].
(ii) Ã is a non-negative TFN (Ã � 0) iff a + α(a′ − a) ≥ 0 ∀α ∈ (0, 1], i.e., a ≥ 0.
(iii) Ã is a positive TFN (Ã � 0) iff a + α(a′ − a) > 0 ∀α ∈ (0, 1].

Clearly Ã � 0 =⇒ Ã � 0.
(iv) When a′ − a = a”− a′= d, it is said to be symmetric else asymmetric TFN

(see Figure 1, [23]).



Symmetry 2023, 15, 419 4 of 22

Figure 1. Triangular fuzzy numbers: (a) asymmetric TFN; (b) symmetric TFN.

Definition 5. A fuzzy number Ã is said to be a negative TFN (Ã ≺ 0) if Ã is not a non-
negative TFN.

Let us denote the set of all TFNs in R as T(R). Further, let T(R+) and T(R++) be the collection
of all non-negative and all positive TFNs, respectively, in R. It follows that

T(R++) ( T(R+) ( T(R).

Definition 6 ([22]). Let Ã be a fuzzy set defined on the universal set X. Then, for some α ∈
(0, 1], α A is a fuzzy set defined on X as α A = {(x, µ(α A)(x)) |x ∈ X}, where

µ(α A)(x) =

α, x ∈ (Ã)α,

0, x /∈ (Ã)α.

Theorem 1 (First Decomposition Theorem [22]).
For every fuzzy set Ã, Ã =

⋃
α∈[0,1]

α A.
The first decomposition theorem states that any fuzzy set can be represented using its α-cut alone.
Hence, to define arithmetic operations on TFNs, only the α-cut of the resulting fuzzy number
is sufficient.

Arithmetic operations on α-cut of fuzzy numbers [20]:

Let Ã1 and Ã2 ∈ T(R) with α-cut (Ã1)α = [(Ã1)
L
α , (Ã1)

U
α ] and (Ã2)α = [(Ã2)

L
α , (Ã2)

U
α ],

respectively. Then, ∀α ∈ (0, 1], the fuzzy arithmetic operations between Ã1 and Ã2 using
the α-cut are defined as follows:

(i) Addition: (Ã1 ⊕ Ã2)α = (Ã1)α + (Ã2)α

=
[
(Ã1)

L
α + (Ã2)

L
α , (Ã1)

U
α + (Ã2)

U
α )
]
.

(ii) Subtraction: (Ã1 	 Ã2)α = (Ã1)α − (Ã2)α

=
[
(Ã1)

L
α − (Ã2)

U
α , (Ã1)

U
α − (Ã2)

L
α)
]
.

(iii) Scalar multiplication:

For any k ∈ R, (k⊗ Ã1)α = k(Ã1)α =

{[
k(Ã1)

L
α , k(Ã1)

U
α

]
, k ≥ 0,[

k(Ã1)
U
α , k(Ã1)

L
α

]
, k < 0.

(iv) Multiplication: (Ã1 ⊗ Ã2)α = (Ã1)α(Ã2)α

=
[
(P̃)L

α , (P̃)U
α

]
, where

(P̃)L
α = min

{
(Ã1)

L
α(Ã2)

L
α , (Ã1)

L
α(Ã2)

U
α , (Ã1)

U
α (Ã2)

L
α , (Ã1)

U
α (Ã2)

U
α

}
and

(P̃)U
α = max

{
(Ã1)

L
α(Ã2)

L
α , (Ã1)

L
α(Ã2)

U
α , (Ã1)

U
α (Ã2)

L
α , (Ã1)

U
α (Ã2)

U
α

}
.

Remark 2. Let Ã2 ∈ T(R++), i.e., 0 < (Ã2)
L
α ≤ (Ã2)

U
α , then

(P̃)L
α = min

{
(Ã1)

L
α(Ã2)

L
α , (Ã1)

L
α(Ã2)

U
α

}
and (P̃)U

α = max
{
(Ã1)

U
α (Ã2)

L
α , (Ã1)

U
α (Ã2)

U
α

}
.
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(v) Division: (Ã1 � Ã2)α = (Ã1)α/(Ã2)α

=
[
(Q̃)L

α , (Q̃)U
α

]
, where

(Q̃)L
α = min

{
(Ã1)

L
α /(Ã2)

L
α , (Ã1)

L
α /(Ã2)

U
α , (Ã1)

U
α /(Ã2)

L
α , (Ã1)

U
α /(Ã2)

U
α

}
and

(Q̃)U
α = max

{
(Ã1)

L
α /(Ã2)

L
α , (Ã1)

L
α /(Ã2)

U
α , (Ã1)

U
α /(Ã2)

L
α , (Ã1)

U
α /(Ã2)

U
α

}
,

provided 0 /∈ (Ã2)α.

Remark 3. Let Ã1, Ã2 ∈ T(R+), then[
(Q̃)L

α , (Q̃)U
α

]
= [(Ã1)

L
α /(Ã2)

U
α , (Ã1)

U
α /(Ã2)

L
α ], provided 0 /∈ (Ã2)α.

3. Formulation of Fuzzy Linear Fractional Programming Problem

A standard FLFPP with asymmetric fuzzy parameters ãij, b̃i, c̃j, d̃j, ẽ, f̃ ∈ T(R) and
variables x̃j = (xj, xj

′, xj
′′) ∈ T(R+) for i = 1, 2, · · · , m and j = 1, 2, · · · , n is as follows:

(M1) Max Z̃(X̃) =
P̃(X̃)

Q̃(X̃)
=

n

∑
j=1

c̃j ⊗ x̃j ⊕ ẽ

n

∑
j=1

d̃j ⊗ x̃j ⊕ f̃
where

n

∑
j=1

d̃j ⊗ x̃j ⊕ f̃ � 0,

subject to
n

∑
j=1

ãij ⊗ x̃j � b̃i for i = 1, 2, · · · , m,

x̃j � 0 for j = 1, 2, · · · , n.

Definition 7. Let X̃ = (x̃1, x̃2, ..., x̃n) be a feasible solution of an FLFPP, then X̃ is said to be an
optimal solution if for any other feasible solution Ỹ, Z̃(Ỹ) � Z̃(X̃).

Definition 8. Let S be the collection of all the feasible solutions of an FLFPP and
S1 = {X̃ ∈ S |P̃(X̃) � 0}, clearly, S1 ⊆ S.
Conventionally, we assume that S1 6= ∅ for a given FLFPP.

Proposition 1. If X̃ is an element of S1, then Z̃(X̃) � 0.

Proof. For α ∈ (0, 1], consider (Z̃(X̃))α = [(Z̃(X̃))L
α , (Z̃(X̃))U

α ] =
(P̃(X̃))α

(Q̃(X̃))α
, where

(P̃(X̃))α = [(P̃(X̃))L
α , (P̃(X̃))U

α ] and (Q̃(X̃))α = [(Q̃(X̃))L
α , (Q̃(X̃))U

α ].

Given X̃ ∈ S1, it implies that

0 � P̃(X̃), i.e., 0 ≤ (P̃(X̃))L
α ≤ (P̃(X̃))U

α . (1)

As X̃ ∈ S as well, we have 0 ≺ Q̃(X̃), which is equivalent to saying

0 < (Q̃(X̃))L
α ≤ (Q̃(X̃))U

α . (2)

Since 0 ≤ (P̃(X̃))L
α ≤ (P̃(X̃))U

α and 0 < (Q̃(X̃))L
α ≤ (Q̃(X̃))U

α , after using interval arith-
metic, the above fraction reduces as:

[(Z̃(X̃))L
α , (Z̃(X̃))U

α ] =

[
(P̃(X̃))L

α

(Q̃(X̃))U
α

,
(P̃(X̃))U

α

(Q̃(Ỹ))L
α

]
.

Using (1) and (2), we can conclude that (Z̃(X̃))L
α =

(P̃(X̃))L
α

(Q̃(X̃))U
α
≥ 0.

Hence, using the ordering of fuzzy numbers Z̃(X̃) � 0.
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Proposition 2. If S1 6= ∅ and an optimal solution Ỹ∗ of (M1) exists, then Ỹ∗ ∈ S1.

Proof. Let, if possible, Ỹ∗ ∈ S be an optimal solution of (M1). Further, to prove that
Ỹ∗ ∈ S1, we can equivalently show that any feasible solution X̃ /∈ S1 cannot be an optimal
solution, provided S1 6= ∅.
Let an arbitrary Ỹ ∈ S1. From Proposition 1, it follows that Z̃(Ỹ) � 0.
Then, ∀α ∈ (0, 1], this yields(

Z̃(Ỹ)
)

α
= [(Z̃(Ỹ))L

α , (Z̃(Ỹ))U
α ] where 0 ≤ (Z̃(Ỹ))L

α ≤ (Z̃(Ỹ))U
α . (3)

Similarly, (P̃(X̃))α = [(P̃(X̃))L
α , (P̃(X̃))U

α ].
As X̃ /∈ S1, then for some fixed α0 ∈ (0, 1], two cases arise as follows:

Case 1: (P̃(X̃))L
α0
≤ (P̃(X̃))U

α0
< 0.

The α0-cut of Z̃(X̃) becomes

(Z̃(X̃))α0 = [(Z̃(X̃))L
α0

, (Z̃(X̃))U
α0
] =

[(P̃(X̃))L
α0

, (P̃(X̃))U
α0
]

[(Q̃(X̃))L
α0

, (Q̃(X̃))U
α0 ]

.

By using interval arithmetic, this further reduces to

[(Z̃(X̃))L
α0

, (Z̃(X̃))U
α0
] =

[
(P̃(X̃))L

α0

(Q̃(X̃))L
α0

,
(P̃(X̃))U

α0

(Q̃(X̃))U
α0

]
, which gives (Z̃(X̃))L

α0
≤ (Z̃(X̃))U

α0
< 0.

(4)
From (3) and (4), we obtain,

(Z̃(X̃))L
α0
≤ (Z̃(X̃))U

α0
< 0 ≤ (Z̃(Ỹ))L

α0
≤ (Z̃(Ỹ))U

α0
.

This further yields

(Z̃(X̃))L
α0

< (Z̃(Ỹ))L
α0

and (Z̃(X̃))U
α0

< (Z̃(Ỹ))U
α0

. (5)

From (5), we obtain that ∃ Ỹ ∈ S such that Z̃(Ỹ) ≤ Z̃(X̃) does not hold, hence, by
Definition 7 such X̃ cannot be an optimal solution.

Case 2: (P̃(X̃))L
α0

< 0, (P̃(X̃))U
α0
≥ 0.

Observe that

(Z̃(X̃))α0 = [(Z̃(X̃))L
α0

, (Z̃(X̃))U
α0
] =

[(P̃(X̃))L
α0

, (P̃(X̃))U
α0
]

[(Q̃(X̃))L
α0

, (Q̃(X̃))U
α0 ]

.

This implies

[(Z̃(X̃))L
α0

, (Z̃(X̃))U
α0
] =

[
(P̃(X̃))L

α0

(Q̃(X̃))L
α0

,
(P̃(X̃))U

α0

(Q̃(X̃))L
α0

]
where (Z̃(X̃))L

α0
< 0 ≤ (Z̃(X̃))U

α0
. (6)

From (3) and (6), clearly, we have

(Z̃(X̃))L
α0

< 0 ≤ (Z̃(Ỹ))L
α0

.

This implies that ∃ Ỹ ∈ S such that Z̃(Ỹ) ≤ Z̃(X̃) is invalid. Thus, by Definition 7, X̃ is not
an optimal solution. Finally, we can see that X̃ /∈ S1 cannot be an optimal solution, hence
the result.
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4. Limitation of Chinnadurai and Muthukumar’s [20] Approach

In this section, the approach used by Chinnadurai and Muthukumar [20] is presented
and a counterexample is framed to point out its limitation. The authors tackled the FLFPP by
applying an α- and r-cut on the objective function and constraints, respectively. Thereafter,
the objective function in (M1) reduced into two subproblems as follows:

Lower bound:

Max Z̃L
α,r =

n

∑
j=1

(c̃j)
L
α(x̃j)

L
α + (ẽ)L

α

n

∑
j=1

(d̃j)
U
α (x̃j)

U
α + ( f̃ )U

α

where
n

∑
j=1

(d̃j)
U
α (x̃j)

U
α + ( f̃ )U

α > 0,

subject to

n

∑
j=1

(ãi,j)
L
r (x̃j)

L
r ≤ (b̃i)

L
r ,

n

∑
j=1

(ãi,j)
U
r (x̃j)

U
r ≤ (b̃i)

U
r for i = 1, 2, ..., m,

(x̃j)
L
α ≥ 0,

(x̃j)
L
r ≥ 0 for j = 1, 2, ..., n.

Upper bound:

Max Z̃U
α,r =

n

∑
j=1

(c̃j)
U
α (x̃j)

U
α + (ẽ)U

α

n

∑
j=1

(d̃j)
L
α(x̃j)

L
α + ( f̃ )L

α

where
n

∑
j=1

(d̃j)
U
α (x̃j)

L
α + ( f̃ )L

α > 0,

subject to

n

∑
j=1

(ãi,j)
L
r (x̃j)

L
r ≤ (b̃i)

L
r ,

n

∑
j=1

(ãi,j)
U
r (x̃j)

U
r ≤ (b̃i)

U
r for i = 1, 2, ..., m,

(x̃j)
L
α ≥ 0,

(x̃j)
L
r ≥ 0 for j = 1, 2, ..., n.

Counterexample

Consider the following FLFPP to highlight the error in [20].

(M) MaxZ̃(Ã) =

{
(−200,−100, 0)⊗ (a, b, c)⊕ (0, 300, 500)⊗ (a1, b1, c1)

⊕ (100, 150, 250)⊗ (a2, b2, c2)⊕ (−250,−150,−40)⊗ (a3, b3, c3)

}
(1, 1.5, 2)⊗ (a, b, c)⊕ (0, 1, 3)⊗ (a1, b1, c1)⊕ (1, 2, 3)
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subject to {
(−25, 0, 15)⊗ (a, b, c)⊕ (2, 20, 42)⊗ (a1, b1, c1)

⊕ (−10, 0, 10)⊗ (a2, b2, c2)⊕ (a3, b3, c3)

}
� (30, 40, 45),

(10, 30, 40)⊗ (a2, b2, c2)⊕ (−20,−10, 0)⊗ (a3, b3, c3) � (10, 20, 40),

(a, b, c)⊕ (a1, b1, c1) � (1, 2, 3),

(a2, b2, c2)⊕ (a3, b3, c3) � (2.5, 4, 5),

a ≥ 0, b− a ≥ 0, c− b ≥ 0, a1 ≥ 0, b1 − a1 ≥ 0, c1 − b1 ≥ 0,

a2 ≥ 0, b2 − a2 ≥ 0, c2 − b2 ≥ 0, a3 ≥ 0, b3 − a3 ≥ 0, c3 − b3 ≥ 0.

Clearly, (1, 1.5, 2)⊗ (a, b, c)⊕ (0, 1, 3)⊗ (a1, b1, c1)⊕ (1, 2, 3) � 0, ∀ (a, b, c), (a1, b1, c1) � 0.
Upon solving this problem for some fixed α, r-cut by using the method in [20], we get the
lower- and upper-bound objective functions as:

Max Z̃U
(α,r) =

{
(−100α)((1− α)c + αb)+ (500− 200α)((1− α)c1 + αb1)

(250− 100α)((1− α)c2 + αb2) + (−110α− 40)((1− α)c3 + αb3)

}
(0.5α + 1)((1− α)a + αb) + (α)((1− α)a1 + αb1) + (α + 1)

and

Max Z̃L
(α,r) =

{
(100α− 200)((1− α)a + αb)+ (300α)((1− α)a1 + αb1)

(50α + 100)((1− α)a2 + αb2) + (100α− 250)((1− α)a3 + αb3)

}
(2− 0.5α)((1− α)c + αb) + (3− 2α)((1− α)c1 + αb1) + (3− α)

subject to{
(25α− 25)((1− α)a + αb)+ (18α + 2)((1− α)a1 + αb1)+

(10α− 10)((1− α)a2 + αb2)+ ((1− α)a3 + αb3)

}
≤ 10α + 30,{

(15− 15α)((1− α)c + αb) + (42− 22α)((1− α)c1 + αb1)+

(10− 10α)((1− α)c2 + αb2) + ((1− α)c3 + αb3)

}
≤ 45− 5α,

(20α + 10)((1− α)a2 + αb2) + (10α− 20)((1− α)a3 + αb3) ≤ 10α + 10,

(40− 10α)((1− α)c2 + αb2) + (−10α)((1− α)c3 + αb3) ≤ 40− 20α,

((1− α)a + αb) + ((1− α)a1 + αb1) ≤ α + 1,

((1− α)c + αb) + ((1− α)c1 + αb1) ≤ 3− α,

((1− α)a2 + αb2) + ((1− α)a3 + αb3) ≤ 2.5 + 1.5α,

((1− α)c2 + αb2) + ((1− α)c3 + αb3) ≤ 5− α,

a ≥ 0, b− a ≥ 0, c− b ≥ 0, a1 ≥ 0, b1 − a1 ≥ 0, c1 − b1 ≥ 0,

a2 ≥ 0, b2 − a2 ≥ 0, c2 − b2 ≥ 0, a3 ≥ 0, b3 − a3 ≥ 0, c3 − b3 ≥ 0.



(A)

However, if we use the arithmetic operations as defined in Section 2, the lower- and
upper-bound objectives are obtained as:
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Max Z̃U
(α,r) =

{
(−100α)((1− α)a + αb)+ (500− 200α)((1− α)c1 + αb1)

(250− 100α)((1− α)c2 + αb2) + (−110α− 40)((1− α)a3 + αb3)

}
(0.5α + 1)((1− α)a + αb) + (α)((1− α)a1 + αb1) + (α + 1)

and

Max Z̃L
(α,r) =

{
(100α− 200)((1− α)c + αb)+ (300α)((1− α)a1 + αb1)

(50α + 100)((1− α)a2 + αb2) + (100α− 250)((1− α)c3 + αb3)

}
(2− 0.5α)((1− α)c + αb) + (3− 2α)((1− α)c1 + αb1) + (3− α)

subject to{
(25α− 25)((1− α)c + αb)+ (18α + 2)((1− α)a1 + αb1)+

(10α− 10)((1− α)c2 + αb2)+ ((1− α)a3 + αb3)

}
≤ 10α + 30,{

(15− 15α)((1− α)c + αb) + (42− 22α)((1− α)c1 + αb1)+

(10− 10α)((1− α)c2 + αb2) + ((1− α)c3 + αb3)

}
≤ 45− 5α,

(20α + 10)((1− α)a2 + αb2) + (10α− 20)((1− α)c3 + αb3) ≤ 10α + 10,

(40− 10α)((1− α)c2 + αb2) + (−10α)((1− α)a3 + αb3) ≤ 40− 20α,

((1− α)a + αb) + ((1− α)a1 + αb1) ≤ α + 1,

((1− α)c + αb) + ((1− α)c1 + αb1) ≤ 3− α,

((1− α)a2 + αb2) + ((1− α)a3 + αb3) ≤ 2.5 + 1.5α,

((1− α)c2 + αb2) + ((1− α)c3 + αb3) ≤ 5− α,

a ≥ 0, b− a ≥ 0, c− b ≥ 0, a1 ≥ 0, b1 − a1 ≥ 0, c1 − b1 ≥ 0,

a2 ≥ 0, b2 − a2 ≥ 0, c2 − b2 ≥ 0, a3 ≥ 0, b3 − a3 ≥ 0, c3 − b3 ≥ 0.



(B)

Observation 1: Model (A) obtained by using the approach in [20] is different from the
model (B) which is derived by using the arithmetic operations mentioned in Section 2. The
difference is highlighted in bold format. From models (A) and (B), we can observe that the
error in the model (A) occurs due to negative coefficients. This shows that the approach
in [20] is not in accordance with the fuzzy arithmetic operations and hence, erroneous.
Thus, the reduced model will yield misleading results. This can also be seen by solving
both models and then comparing the results as in Table 1 for a fixed r = 0.8 and various
values of α.

Table 1.
[

ZL
(α,0.8), ZU

(α,0.8)

]
using the approach in [20] vs. the proposed method.

α (r = 0.8) Using [20]’s Approach Using Proposed Method

0 [55.93, 4488.5] [31.64, 4104.5]
0.1 [63.33, 2950.46] [41.58, 2723.34]
0.2 [71.72, 2004.02] [52.5, 1868.13]
0.3 [81.26, 1376.24] [64.55, 1296.96]
0.4 [92.14, 939.04] [77.93, 896.148]
0.5 [104.6, 687.623] [92.8464, 669.767]
0.6 [118.907, 523.997] [109.597, 523.438]
0.7 [135.446, 398.5] [128.539, 409.5]
0.8 [158.878, 310.475] [150.131, 319.305]
0.9 [195.465, 274.194] [190.876, 278.843]

0.99 ≈ 1 [243.252, 243.252] [243.252, 243.252]

The optimal values of the lower- and upper-bound objectives for r = 0.8 obtained
using both approaches are shown graphically in Figure 2 for comparison. Hence, the
approach used in [20] is not applicable when negative parameters are involved in the
problem (M1).



Symmetry 2023, 15, 419 10 of 22

Figure 2. Comparison of optimal values of (M) for both the approaches.

5. Shortcomings of Existing Models and Motivation for the Proposed Approach

In real-world situations, we may come across FLFPPs having negative parameters.
Since the approach used in [20] has some inconsistencies, there is a need to obtain an
extended method that is applicable to FLFPPs with negative parameters as well. The
motivation behind this article was to find a generalized method which provides a solution
to an FLFPP with asymmetric fuzzy parameters which are unrestricted in sign.

The shortcomings of existing approaches along with the advantages of the proposed
approach are listed below in Table 2.

Table 2. Comparison of proposed and existing approaches.

Approach Shortcomings Advantages of the Proposed Method
over the Existing Approaches

1. Das and Mandal [11], Das et al. [12,19] Fuzzy products and fractions are
defined approximately.

α-cut of fuzzy numbers and the
decomposition theorem are used to

define fuzzy arithmetic.

2. Borza et al. [16] Variables are crisp. Variables are TFNs.

3. Veeramani and Sumathi [17], Das et al. [19] Applicable only when all the
parameters are TFNs.

Applicable for any FLFPP with fuzzy
numbers defined using α-cut.

4. Mehra et al. [18]

Gives an (α, β)-acceptable optimal
value for some fixed pair of

α, β ∈ (0.5, 1], α, β being cuts on the
objective function and constraints,

respectively.

Optimal values are obtained
∀ α, r ∈ (0, 1], α, r being cuts on the
objective function and constraints,

respectively.

5. Chinnadurai and Muthukumar [20] Inconsistent when negative parameters
are used.

Applicable even when negative
parameters are involved.

6. Ebrahimnejad et al. [21] Only applicable to problems with
non-negative parameters.

Applicable irrespective of the nature of
parameters involved.

7. Das [24] The methodology lacks
theoretical support.

Proposed technique is designed using
fuzzy arithmetic and backed by

various propositions.

6. Proposed α-Cut-Based Method

To solve (M1), we use α as the satisfaction level on the objective function but for each
constraint, different levels of satisfaction can be applied. For simplicity’s sake, the same
satisfaction level r is used for all the constraints, throughout this paper.
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For some fixed α and r ∈ (0, 1], after applying α-cut on the objective function and r-cut on
all the constraints, we get the resulting model as:

Max Z̃(α,r) =
[
Z̃L
(α,r), Z̃U

(α,r)
]

=

(
P̃(X̃)

)
α(

Q̃(X̃)
)

α

=

[
n

∑
j=1

(
c̃j ⊗ x̃j

)L
α
+ ẽL

α ,
n

∑
j=1

(
c̃j ⊗ x̃j

)U
α
+ ẽU

α

]
[

n

∑
j=1

(
d̃j ⊗ x̃j

)L
α
+ f̃ L

α ,
n

∑
j=1

(
d̃j ⊗ x̃j

)U
α
+ f̃ U

α

] where
n

∑
j=1

(
d̃j ⊗ x̃j

)L
α
+ f̃ L

α > 0,

subject to
n

∑
j=1

[(
ãij ⊗ x̃j

)L
r ,
(
ãij ⊗ x̃j

)U
r

]
≤
[(

b̃i)
L
r , (b̃i

)U
r

]
for i = 1, 2, · · · , m,

xj ≥ 0, xj
′ − xj ≥ 0, xj

′′ − xj
′ ≥ 0 for j = 1, 2, · · · , n.

Since S1 6= ∅, if an optimal solution X̃ exists, then by Proposition 2, X̃ ∈ S1. Hence, we
need to solve the model for solutions in the set S1 only. Therefore, to solve the model,
we use the conditions of S1, given by P̃(X̃) � 0 and Q̃(X̃) � 0. This further implies that
∀α ∈ (0, 1], 0 ≤ P̃(X̃)

L
α ≤ P̃(X̃)

U
α and 0 < Q̃(X̃)

L
α ≤ Q̃(X̃)

U
α . Using arithmetic operations

for closed intervals, we obtain the following model:

(FLFPP) Max
[
Z̃L

α,r, Z̃U
α,r
]
=


n

∑
j=1

(
c̃j ⊗ x̃j

)L
α
+
(
ẽ
)L

α

n

∑
j=1

(
d̃j ⊗ x̃j

)U
α
+
(

f̃
)U

α

,

n

∑
j=1

(
c̃j ⊗ x̃j

)U
α
+
(
ẽ
)U

α

n

∑
j=1

(
d̃j ⊗ x̃j

)L
α
+
(

f̃
)L

α


where

n

∑
j=1

(
d̃j ⊗ x̃j

)L
α
+
(

f̃
)L

α
> 0,

subject to
n

∑
j=1

(
ãij ⊗ x̃j

)L
r ≤

(
b̃i)

L
r ,

n

∑
j=1

(
ãij ⊗ x̃j

)U
r ≤ (b̃i

)U
r for i = 1, 2, · · · , m,

xj ≥ 0, xj
′ − xj ≥ 0, xj

′′ − xj
′ ≥ 0 for j = 1, 2, · · · , n.

The above problem is then split into two separate problems, viz.,

Lower-bound objective: Max Z̃L
α,r =

n

∑
j=1

(c̃j ⊗ x̃j)
L
α + (ẽ)L

α

n

∑
j=1

(d̃j ⊗ x̃j)
U
α + ( f̃ )U

α

where
n

∑
j=1

(d̃j ⊗ x̃j)
U
α + ( f̃ )U

α > 0,

subject to all the constraints of (FLFPP).
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Upper-bound objective: Max Z̃U
α,r =

n

∑
j=1

(c̃j ⊗ x̃j)
U
α + (ẽ)U

α

n

∑
j=1

(d̃j ⊗ x̃j)
L
α + ( f̃ )L

α

where
n

∑
j=1

(d̃j ⊗ x̃j)
L
α + ( f̃ )L

α > 0,

subject to all the constraints of (FLFPP).

The variables x̃j are considered to be non-negative TFNs, while there are no restrictions
on the parameters c̃j, d̃j and ãij for i = 1, 2, . . . , m and j = 1, 2, . . . , n. Therefore, after using
Remark 2, both the bounds and the constraints are further reduced as follows:
Lower-bound objective:

(LB) Max Z̃L
α,r =

n

∑
j=1

min
{
(c̃j)

L
α(x̃j)

L
α , (c̃j)

L
α(x̃j)

U
α

}
+ (ẽ)L

α

n

∑
j=1

max
{
(d̃j)

U
α (x̃j)

L
α , (d̃j)

U
α (x̃j)

U
α

}
+ ( f̃ )U

α

where
n

∑
j=1

max
{
(d̃j)

U
α (x̃j)

L
α , (d̃j)

U
α (x̃j)

U
α

}
+ ( f̃ )U

α > 0,

subject to
n

∑
j=1

min
{
(ãij)

L
r (x̃j)

L
r , (ãij)

L
r (x̃j)

U
r
}
≤ (b̃i)

L
r ,

n

∑
j=1

max
{
(ãij)

U
r (x̃j)

L
r , (ãij)

U
r (x̃j)

U
r
}
≤ (b̃i)

U
r for i = 1, 2, · · · , m,

xj ≥ 0, xj
′ − xj ≥ 0, xj

′′ − xj
′ ≥ 0 for j = 1, 2, · · · , n.

Upper-bound objective:

(UB) Max Z̃U
α,r =

n

∑
j=1

max
{
(c̃j)

U
α (x̃j)

L
α , (c̃j)

U
α (x̃j)

U
α

}
+ (ẽ)U

α

n

∑
j=1

min
{
(d̃j)

L
α(x̃j)

L
α , (d̃j)

L
α(x̃j)

U
α

}
+ ( f̃ )L

α

where
n

∑
j=1

min
{
(d̃j)

L
α(x̃j)

L
α , (d̃j)

L
α(x̃j)

U
α

}
+ ( f̃ )L

α > 0,

subject to all the constraints of the (LB).

Remark 4. The membership function of the given objective function for some fixed value of r ∈
(0, 1] is obtained by plotting a graph between the intervals [Z̃L

α,r, Z̃U
α,r] corresponding to α ∈ (0, 1].

The proposed method works for any FLFPP irrespective of the nature of the parameters.

7. Illustrative Examples

In this section, an example from the literature and a real-world application in the
transportation sector, having unrestricted parameters, are worked out to illustrate the
proposed method.



Symmetry 2023, 15, 419 13 of 22

Example 1 ([20]). Consider the following FLFPP:

Maximize Z̃ =
(0, 1, 2)⊗(x1, x′1, x′′1 )⊕ (−2,−1, 0)⊗(x2, x′2, x′′2 )⊕ (0, 1, 2)
(0, 1, 2)⊗(x1, x′1, x′′1 )⊕ (0, 1, 2)⊗(x2, x′2, x′′2 )⊕ (1, 2, 3)

subject to

(0, 1, 2)⊗(x1, x′1, x′′1 )⊕ (0, 1, 2)⊗(x2, x′2, x′′2 ) � (1, 2, 3),

(0, 1, 2)⊗(x1, x′1, x′′1 )⊕ (−2,−1, 0)⊗(x2, x′2, x′′2 ) � (0, 1, 2),

(x1, x′1, x′′1 ) � 0, (x2, x′2, x′′2 ) � 0.

For some fixed values of α, r ∈ (0, 1], using the algorithm in Section 6, the lower-bound
and upper-bound objectives of the problem are as follows:

Lower-bound objective:

(LB1) Max Z̃L
α,r =

(c̃1)
L
α(x̃1)

L
α + (c̃2)

L
α(x̃2)

U
α + (ẽ)L

α

(d̃1)
U
α (x̃1)

U
α + (d̃2)

U
α (x̃2)

U
α + ( f̃ )U

α
subject to

(ã11)
L
r (x̃1)

L
r + (ã12)

L
r (x̃2)

L
r ≤ (b̃1)

L
r ,

(ã21)
L
r (x̃1)

L
r + (ã22)

L
r (x̃2)

U
r ≤ (b̃2)

L
r ,

(ã11)
U
r (x̃1)

U
r + (ã12)

U
r (x̃2)

U
r ≤ (b̃1)

U
r ,

(ã21)
U
r (x̃1)

U
r + (ã22)

U
r (x̃2)

L
r ≤ (b̃2)

U
r ,

xi ≥ 0, x′i − xi ≥ 0, x′′i − x′i ≥ 0 for i = 1, 2.

( As c̃2 and ã22 are negative. )

Upper-bound objective:

(UB1) Max Z̃U
α,r =

(c̃1)
U
α (x̃1)

U
α + (c̃2)

U
α (x̃2)

L
α + (ẽ)U

α

(d̃1)L
α(x̃1)L

α + (d̃2)L
α(x̃2)L

α + ( f̃ )L
α

subject to all the constraints of (LB1).

Substituting values of all α, r-cut, the bounds are rewritten as:

Lower-bound objective:

(LB1-1) Max Z̃L
α,r =

(α)(x1 + (x′1 − x1)α) + (−2 + α)(x′′2 − (x′′2 − x′2)α) + (α)

(2− α)(x′′1 − (x′′1 − x′1)α) + (2− α)(x′′2 − (x′′2 − x′2)α) + (3− α)

subject to

(r)(x1 + (x′1 − x1)r) + (r)(x2 + (x′2 − x2)r) ≤ (1 + r),

(r)(x1 + (x′1 − x1)r) + (−2 + r)(x′′2 − (x′′2 − x′2)r) ≤ r,

(2− r)(x′′1 − (x′′1 − x′1)r) + (2− r)(x′′2 − (x′′2 − x′2)r) ≤ (3− r),

(2− r)(x′′1 − (x′′1 − x′1)r) + (−r)(x2 + (x′2 − x2)r) ≤ (2− r),

xi ≥ 0, x′i − xi ≥ 0, x′′i − x′i ≥ 0 for i = 1, 2.

Upper-bound objective:

(UB1-1) Max Z̃U
α,r =

(2− α)(x′′1 − (x′′1 − x′1)α) + (−α)(x2 + (x′2 − x2)α) + (2− α)

(α)(x1 + (x′1 − x1)α) + (α)(x2 + (x′2 − x2)α) + (1 + α)

subject to all the constraints of (LB1-1).

Upon taking different values of α, r ∈ (0, 1], the optimal value of both the lower-bound
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and upper-bound objectives are indicated in Tables 3 and 4, respectively. Using these tables,
the surface plots of objective values against (α, r) are shown in Figures 3 and 4 for the
lower-bound and upper-bound objectives, respectively.

Figure 5 represents the membership function of objective function Z̃ when particular
values are considered for r = 0.1, 0.5 and 0.7.

Table 3. Optimal values of the objective function Z̃L
α,r.

r\α 0 0.2 0.4 0.6 0.8 1

0 0 0.087 0.1905 0.3158 0.4706 0.6667
0.1 0 0.087 0.1905 0.3158 0.4706 0.6667
0.2 0 0.087 0.1905 0.3158 0.4706 0.6667
0.3 0 0.087 0.1905 0.3158 0.4706 0.6667
0.4 0 0.087 0.1905 0.3158 0.4706 0.6667
0.5 0 0.087 0.1905 0.3158 0.4706 0.6667
0.6 0 0.087 0.1905 0.3158 0.4706 0.6667
0.7 0 0.087 0.1905 0.3158 0.4706 0.6667
0.8 0 0.087 0.1905 0.3158 0.4706 0.6667
0.9 0 0.087 0.1905 0.3158 0.4706 0.6667

0.99 ≈ 1 0 0.087 0.1905 0.3158 0.4706 0.6667

Table 4. Optimal values of the objective function Z̃U
α,r.

r\α 0 0.2 0.4 0.6 0.8 1

0 4.0000 2.9032 2.0513 1.4286 0.9836 0.6667
0.1 4.2807 2.9032 2.0513 1.4286 0.9836 0.6667
0.2 4.6389 3.0000 2.0513 1.4286 0.9836 0.6667
0.3 5.1092 3.2143 2.1225 1.4286 0.9836 0.6667
0.4 5.7500 3.5279 2.2857 1.4583 0.9836 0.6667
0.5 6.6667 4.0333 2.5140 1.5750 0.9836 0.6667
0.6 8.0714 4.8279 2.8571 1.7500 1.0000 0.6667
0.7 10.4615 6.2081 3.6152 2.0417 1.1111 0.6667
0.8 15.3333 9.0569 5.1813 2.6820 1.3333 0.6667
0.9 30.1818 17.7983 9.9863 5.0157 2.0000 0.6667

0.99 ≈ 1 300.028 177.031 97.4943 47.4623 17.2443 0.6667

Figure 3. Surface plot of optimal values corresponding to Z̃L
α,r.
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Figure 4. Surface plot of optimal values corresponding to Z̃U
α,r.

Figure 5. Membership function of the objective function Z̃ (Example 1) for r = 0.1, 0.5 and 0.7.

Observation 2: In Table 5, the optimal values of the lower- and upper-bound objectives
are compared using r = 0.9 and different values of α, using the approach in [20] and the
proposed approach. The lower-bound objective values are identical for all α but the upper-
bound objective values exhibit the fallacy in Chinnadurai and Muthukumar’s [20] approach.
This shows that the optimal values obtained using the method in [20] are misleading and
different from the actual ones.

Table 5.
[

ZL
(α,0.9), ZU

(α,0.9)

]
using the approach in [20] vs. proposed method.

α (r = 0.9) Approach in [20] Proposed Method

0 [0, 30.182] [0, 30.181]
0.2 [0.087, 18.409] [0.087, 17.798]
0.4 [0.191, 10.8052] [0.191, 9.986]
0.6 [0.316, 5.807] [0.316, 5.0157]
0.8 [0.471, 2.545] [0.471, 2.00]

0.99≈1 [0.679, 0.679] [0.667, 0.667]

Figure 6 shows the contrast between the optimal values for the upper-bound objective
evaluated using both approaches.
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Figure 6. Comparison of ZU
(α,0.9) values.

Example 2. Application in transportation sector.

A leading textile company has a well-established network of stores and factory outlets.
Due to industrialisation and urbanisation, the demand for their goods at three factory
outlets O1, O2 and O3 is expected to increase. As the future requirement is imprecise and
uncertain, TFNs are used to represent the foreseen requirements at these outlets as given in
Table 6. To meet these requirements, the company decides to establish two new storages
S1 and S2. The storage capacities are estimated and are indicated in Table 7. Tables 8 and 9
give the presumed profit and cost of transport per unit of product from the ith store to the
jth outlet.

The company aims to obtain the maximum value of expected profit–cost ratio (PCR)
for transporting their goods between these selected storage facilities and the outlets with a
view to seek future prospects.

Table 6. Requirement at the outlets.

Outlet O1 O2 O3

Requirement R̃1 = (7, 9, 10) R̃2 = (6, 7, 8) R̃3 = (10, 12, 13)

Table 7. Capacity of the stores.

Store S1 S2

Store capacity S̃1 = (9, 10, 11) S̃2 = (14, 18, 20)

Table 8. Profit c̃ij per unit product sold from the outlets (in thousands).

Store\Outlets O1 O2 O3

S1 $(0, 10, 20) $(−1, 2, 5) $(5, 6, 7)
S2 $(4, 4.5, 5) $(1, 6, 12) $(−10, 0, 5)

Table 9. Transportation cost d̃ij (in thousands).

Store\Outlets O1 O2 O3

S1 $(3, 6, 9) $(9, 10, 11) $(0, 2, 5)
S2 $(4.5, 5, 5.5) $(6, 8, 14) $(1.5, 1.5, 3)
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Let x̃ij = (xl
ij, xij, xu

ij) be the units of products transported between the ith store and the jth
outlet. The proposed technique is applied to forecast the maximum PCR value. The fuzzy
linear fractional programming model framed using Tables 6–9 is as follows:

Maximize Z̃ =


(0, 10, 20)⊗ (xl

11, x11, xu
11)⊕ (−1, 2, 5)⊗ (xl

12, x12, xu
12)

⊕(5, 6, 7)⊗ (xl
13, x13, xu

13)⊕ (4, 4.5, 5)⊗ (xl
21, x21, xu

21)

⊕ (1, 6, 12)⊗ (xl
22, x22, xu

22)⊕ (−10, 0, 5)⊗ (xl
23, x23, xu

23)


(3, 6, 9)⊗ (xl

11, x11, xu
11)⊕ (9, 10, 11)⊗ (xl

12, x12, xu
12)

⊕(0, 2, 5)⊗ (xl
13, x13, xu

13)⊕ (4.5, 5, 5)⊗ (xl
21, x21, xu

21)

⊕ (6, 8, 14)⊗ (xl
22, x22, xu

22)⊕ (1.5, 1.5, 3)⊗ (xl
23, x23, xu

23)


subject to (xl

11, x11, xu
11)⊕ (xl

12, x12, xu
12)⊕ (xl

13, x13, xu
13) � (9, 10, 11),

(xl
21, x21, xu

21)⊕ (xl
22, x22, xu

22)⊕ (xl
23, x23, xu

23) � (14, 18, 20),

(xl
11, x11, xu

11)⊕ (xl
21, x21, xu

21) � (7, 9, 10),

(xl
12, x12, xu

12)⊕ (xl
22, x22, xu

22) � (6, 7, 8),

(xl
13, x13, xu

13)⊕ (xl
23, x23, xu

23) � (10, 12, 13),

xl
ij ≥ 0, xij − xl

ij ≥ 0, xu
ij − xij ≥ 0 where i = 1, 2 and j = 1, 2, 3.

The decision-maker can fix the satisfaction levels α, r ∈ (0, 1], for the objective function and
constraints, respectively. Using the algorithm in Section 6, the lower and upper bounds of
the problem are obtained as follows:

Lower-bound objective:

(LB2) Max Z̃L
α,r =



{
(c̃11)

L
α(x̃11)

L
α + (c̃12)

L
α(x̃12)

L
α + (c̃13)

L
α(x̃13)

L
α

+ (c̃21)L
α(x̃21)L

α + (c̃22)L
α(x̃22)L

α + (c̃23)L
α(x̃23)

U
α

}
{
(d̃11)

U
α (x̃11)

U
α + (d̃12)

U
α (x̃12)

U
α + (d̃13)

U
α (x̃13)

U
α

+ (d̃21)
U
α (x̃21)

U
α + (d̃22)

U
α (x̃22)

U
α + (d̃23)

U
α (x̃23)

U
α

} , α ≥ 1
3 ,

{
(c̃11)

L
α(x̃11)

L
α + (c̃12)

L
α(x̃12)

U
α + (c̃13)

L
α(x̃13)

L
α

+ (c̃21)L
α(x̃21)L

α + (c̃22)L
α(x̃22)L

α + (c̃23)L
α(x̃23)

U
α

}
{
(d̃11)

U
α (x̃11)

U
α + (d̃12)

U
α (x̃12)

U
α + (d̃13)

U
α (x̃13)

U
α

+ (d̃21)
U
α (x̃21)

U
α + (d̃22)

U
α (x̃22)

U
α + (d̃23)

U
α (x̃23)

U
α

} , α < 1
3

subject to

3

∑
j=1

(x̃ij)
L
r ≤ (S̃i)

L
r ,

3

∑
j=1

(x̃ij)
U
r ≤ (S̃i)

U
r for i = 1, 2,

2

∑
i=1

(x̃ij)
L
r ≥ (R̃j)

L
r ,

2

∑
i=1

(x̃ij)
U
r ≥ (R̃j)

U
r for j = 1, 2, 3,

xl
ij ≥ 0, xij − xl

ij ≥ 0, xr
ij − xij ≥ 0 where i = 1, 2 and j = 1, 2, 3.
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(As (c̃12)
L
α and (c̃23)

L
α are negative for some values of α ∈ (0, 1].)

Upper-bound objective:

(UB2) Max Z̃U
α,r =

{
(c̃11)

U
α (x̃11)

U
α + (c̃12)

U
α (x̃12)

U
α + (c̃13)

U
α (x̃13)

U
α

+ (c̃21)
U
α (x̃21)

U
α + (c̃22)

U
α (x̃22)

U
α + (c̃23)

U
α (x̃23)

U
α

}
{
(d̃11)

L
α(x̃11)

L
α + (d̃12)

L
α(x̃12)

L
α + (d̃13)

L
α(x̃13)

L
α

+ (d̃21)
L
α(x̃21)L

α + (d̃22)
L
α(x̃22)L

α + (d̃23)
L
α(x̃23)L

α

}
subject to all the constraints of (LB2).

Substituting all α, r-cut values, we get the bounds as:

Lower-bound objective:

(LB2-1) Max Z̃L
α,r=




(10α)

(
xl

11 + α(x11 − xl
11)
)
+ (3α− 1)

(
xl

12 + α(x12 − xl
12)
)
+

(5 + α)
(
xl

13 + α(x13 − xl
13)
)
+ (4 + 0.5α)

(
xl

21 + α(x21 − xl
21)
)
+

(5α + 1)
(
xl

22 + α(x22 − xl
22)
)
+ (10α− 10)

(
xu

23 − α(xu
23 − x23)

)


(9− 3α)
(
xu

11 − α(xu
11 − x11)

)
+ (11− α)

(
xu

12 − α(xu
12 − x12)

)
+

(5− 3α)
(
xu

13 − α(xu
13 − x13)

)
+ (5)

(
xu

21 − α(xu
21 − x21)

)
+

(14− 6α)
(
xu

22 − α(xu
22 − x22)

)
+ (3− 1.5α)

(
xu

23 − α(xu
23 − x23)

)


, α ≥ 1
3 ,


(10α)

(
xl

11 + α(x11 − xl
11)
)
+ (3α− 1)

(
xu

12 − α(xu
12 − x12)

)
+

(5 + α)
(
xl

13 + α(x13 − xl
13)
)
+ (4 + 0.5α)

(
xl

21 + α(x21 − xl
21)
)
+

(5α + 1)
(
xl

22 + α(x22 − xl
22)
)
+ (10α− 10)

(
xu

23 − α(xu
23 − x23)

)


(9− 3α)
(
xu

11 − α(xu
11 − x11)

)
+ (11− α)

(
xu

12 − α(xu
12 − x12)

)
+

(5− 3α)
(
xu

13 − α(xu
13 − x13)

)
+ (5)

(
xu

21 − α(xu
21 − x21)

)
+

(14− 6α)
(
xu

22 − α(xu
22 − x22)

)
+ (3− 1.5α)

(
xu

23 − α(xu
23 − x23)

)


, α < 1
3

subject to(
xl

11 + r(x11 − xl
11)
)
+
(
xl

12 + r(x12 − xl
12)
)
+
(
xl

13 + r(x13 − xl
13)
)
≤ 9 + r,(

xl
21 + r(x21 − xl

21)
)
+
(
xl

22 + r(x22 − xl
22)
)
+
(
xl

23 + r(x23 − xl
23)
)
≤ 14 + 4r,(

xu
11 − r(xu

11 − x11)
)
+
(
xu

12 − r(xu
12 − x12)

)
+
(
xu

13 − r(xu
13 − x13)

)
≤ 11− r,(

xu
21 − r(xu

21 − x21)
)
+
(
xu

22 − r(xu
22 − x22)

)
+
(
xu

23 − r(xu
23 − x23)

)
≤ 20− 2r,(

xl
11 + r(x11 − xl

11)
)
+
(
xl

21 + r(x21 − xl
21)
)
≥ 7 + 2r,(

xl
12 + r(x12 − xl

12)
)
+
(
xl

22 + r(x22 − xl
22)
)
≥ 6 + r,

(xl
13 + r(x13 − xl

13)
)
+
(
xl

23 + r(x23 − xl
23)
)
≥ 10 + 2r,(

xu
11 − r(xu

11 − x11)
)
+
(
xu

21 − r(xu
21 − x21)

)
≥ 10− r,(

xu
12 − r(xu

12 − x12)
)
+
(
xu

22 − r(xu
22 − x22)

)
≥ 8− r,(

xu
13 − r(xu

13 − x13)
)
+
(
xu

23 − r(xu
23 − x23)

)
≥ 13− r,

xl
ij ≥ 0, (xij − xl

ij) ≥ 0, (xu
ij − xij) ≥ 0 where i = 1, 2 and j = 1, 2, 3.

Upper-bound objective:

(UB2-1) Max Z̃L
α,r=


(20− 10α)

(
xu

11 − α(xu
11 − x11)

)
+ (5− 3α)

(
xu

12 − α(xu
12 − x12)

)
+

(7− α)
(
xu

13 − α(xu
13 − x13)

)
+ (5− 0.5α)

(
xu

21 − α(xu
21 − x21)

)
+

(12− 6α)
(
xu

22 − α(xu
22 − x22)

)
+ (5− 5α)

(
xu

23 − α(xu
23 − x23)

)


(3 + 3α)
(
xl

11 + α(x11 − xl
11)
)
+ (9 + α)

(
xl

12 + α(x12 − xl
12)
)
+

(2α)
(
xl

13 + α(x13 − xl
13)
)
+ (4.5 + 0.5α)

(
xl

21 + α(x21 − xl
21)
)
+

(6 + 2α)
(
xl

22 + α(x22 − xl
22)
)
+ (1.5)

(
xl

23 + α(x23 − xl
23)
)


subject to all the constraints of (LB2-1).

The optimal value of lower-bound and upper-bound objectives corresponding to various
values of α, r ∈ (0, 1] are indicated in Tables 10 and 11, respectively. The surface plots of
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objective values against (α, r) are shown in Figures 7 and 8 for lower-bound and upper-
bound objectives, respectively.

Table 10. Optimal values of the objective function Z̃L
α,r.

r\α 0 0.2 0.4 0.6 0.8 1

0 0.2646 0.3872 0.5345 0.7136 0.9392 1.2535
0.1 0.2698 0.3783 0.5259 0.7054 0.9305 1.2416
0.2 0.2751 0.3696 0.5174 0.6973 0.9220 1.2300
0.3 0.2803 0.375 0.5090 0.6893 0.9138 1.2188
0.4 0.2856 0.3803 0.5006 0.6813 0.9058 1.2079
0.5 0.2908 0.3857 0.5059 0.6733 0.8980 1.1974
0.6 0.2961 0.391 0.5112 0.6654 0.8904 1.1872
0.7 0.3013 0.3963 0.5165 0.6705 0.8830 1.1773
0.8 0.3065 0.4016 0.5219 0.6757 0.8758 1.1676
0.9 0.3117 0.4069 0.5271 0.6808 0.8805 1.1583

0.99 ≈ 1 0.3668 0.4723 0.5964 0.7448 0.9252 1.1492

Table 11. Optimal values of the objective function Z̃U
α,r.

r\α 0 0.2 0.4 0.6 0.8 1

0 5.0725 3.8951 2.9670 2.2298 1.6412 1.2535
0.1 5.1101 3.8636 2.9452 2.2141 1.6290 1.2416
0.2 5.1483 3.8329 2.9240 2.1987 1.6170 1.2300
0.3 5.1870 3.8540 2.9033 2.1836 1.6052 1.2188
0.4 5.2262 3.8750 2.8831 2.1688 1.5937 1.2079
0.5 5.2659 3.8961 2.8979 2.1544 1.5824 1.1974
0.6 5.3062 3.9171 2.9126 2.1402 1.5716 1.1872
0.7 5.3470 3.9381 2.9273 2.1505 1.5603 1.1773
0.8 5.3884 3.9599 2.9420 2.1608 1.5496 1.1676
0.9 5.4303 3.9862 2.9566 2.1710 1.5566 1.1583

0.99 ≈ 1 5.3044 3.9771 2.9816 2.2897 1.7139 1.1492

Figure 7. Surface plot of optimal values corresponding to Z̃L
α,r.
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Figure 8. Surface plot of optimal values corresponding to Z̃U
α,r.

The choice of satisfaction level where α = r = 1 corresponds to the crisp case and
the maximum PCR is predicted to be 1.149. In realistic scenarios, such crisp values lack
much significance as uncertainty is involved. Thus, for some fixed satisfaction levels of the
objective and constraints, respectively, a range of PCR values are evaluated and examined.
For example, if the decision-maker selects r = 0.5 as the satisfaction level of constraints and
α = 0.8 for the objective function, then the anticipated PCR range is [0.898, 1.5824]. This
gives a better picture to the company for looking into future prospects.

Moreover, for a fixed satisfaction level of the constraints, the membership function
of foreseen PCR can be obtained using different α values. For some given values of r, i.e.,
r = 0.1, 0.5 and 0.7, the corresponding membership function is shown in Figure 9.

Figure 9. Membership function of the objective function Z̃ (Example 2) for r = 0.1, 0.5 and 0.7.

8. Results and Discussion

In Example 1, we solved an FLFPP with unrestricted parameters and later compared
the results with the approach in [20]. For example, when we fixed r = 0.9 and α = 0.4, the[

ZL
(0.4,0.9), ZU

(0.4,0.9)

]
value obtained using [20]’s approach was [0.191, 10.8052] whereas us-

ing the proposed approach, we obtained
[

ZL
(0.4,0.9), ZU

(0.4,0.9)

]
= [0.191, 9.986]. This contrast

in ZU
(α,0.9) values for both approaches could be observed for the rest of α values as well, as

indicated in Table 5. Thereafter, Example 2 modelled a real-life transportation problem
as an FLFPP to forecast the maximum PCR based on the given data. The decision-maker
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could predict a range of PCR values using Tables 10 and 11; for instance, when α = 0.4 and
r = 0.8 were selected then the predicted PCR range was [0.5219, 2.9420]. Finally, it could be
noticed from Figures 5 and 9 that the membership function corresponding to different α
and r values gave rise to TFNs. This validated the proposed α-cut-based approach.

9. Conclusions and Future Scope

In this article, the limitation of Chinnadurai and Muthukumar’s [20] approach was
indicated by a counterexample and then the method was extended and generalized for
FLFPPs having parameters that are unrestricted in sign. The method was demonstrated
using (α, r)-cuts by fixing some value of α and r ∈ (0, 1]. The FLFPP was reduced to a crisp
biobjective problem that comprised the lower- and upper-bound objectives, which were
solved to obtain a numerical solution. Various values of α and r ∈ (0, 1] were fixed and
the corresponding solutions were obtained. These solutions were then used to plot the
membership function of the initial objective function corresponding to fixed values of r.
Examples 1 and 2 were solved to illustrate the proposed approach.

In future work, the same model can be extended for the class of problems where
S1 = ∅. For simplicity, we considered parameters and variables to be TFNs. For further
studies, FLFPPs having parameters as intuitionistic fuzzy or type-2 fuzzy numbers can be
investigated. A wide variety of fractional programming problems are nonlinear in nature
and may have multiple objective functions or criteria associated with them. The proposed
approach can be amalgamated with goal/fuzzy programming or the TOPSIS method to
tackle the problem.
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