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Abstract: The two-sided and one-sided empirical Bayes test (EBT) rules for the parameter of a
generalized exponential distribution with contaminated data (errors in variables) are constructed by a
deconvolution kernel method, respectively. Under the type of the supersmooth error distributions and
the supersmooth errors with the error level can be controlled situations, the asymptotically optimal
uniformly over a class of prior distributions and uniform rates of convergence of the corresponding
regret for the proposed EBT rules are obtained with suitable conditions. The example study shows
that the assumptions and conditions of the main results of this paper are satisfied easily by calculating.
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1. Introduction

Much of the more recent literature has looked at the empirical Bayes test (EBT). EBT for
the parameter of some common distributions are investigated [1–4]. Under non-identical
components case, empirical Bayes testing for a lifetime guarantee is considered for the
double parameter exponential distribution [5]. Merging Bayesian and empirical Bayes
posterior distributions in total variation is discussed [6]. A double empirical Bayes deci-
sion is obtained for multi-experiment studies by means of an empirical Bayes analytical
method [7]. In order to study the relationship between empirical Bayes posterior distribu-
tions and false discovery rate control, a spike and slab empirical Bayes multiple testing is
constructed [8]. An empirical Bayes multiple testing procedure for the sparse sequence
model is investigated [9]. In earlier times, on the EBT for the continuous one-parameter
exponential family has lots of work and is asymptotically optimal and the optimal conver-
gence rates of EBT are obtained [10–14]. Most of the studies have discussed the empirical
Bayes decision problem in the case of non-contaminated data, which is not the case for
pure data cases. However, in practical application problems, contaminated data (errors in
variables) are involved in many fields, and it has been widely studied [15–19]. In recent lit-
erature, the one-sided empirical Bayes decision problem is investigated for the continuous
one-parameter exponential family with contaminated data [20].

Suppose that the random variable X has the generalized exponential distribution
(GED) with probability density function (PDF) of the following forms [21]

f (x|θ) = (µx + θ) exp(−θx− µx2/2), (1)

where θ is a unknown parameter with the natural space Θ = {θ > 0|
∫

Ω f (x|θ) dx = 1}. In
this article, we assume µ > 0 is a known constant, and the sample space is Ω = {x|x > 0}.

GED is also called linear exponential distribution, it is a combinatorial distribution,
and the exponential and Rayleigh distributions are considered as special cases of GED
when θ = 0 and µ = 0, respectively. The hazard function of GED is a linear function
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about time and age in linear exponential models, and it is one of the reasonable models for
lifetime distributions of random phenomena. Progressive type-II censored competing risks
data when the lifetimes are assumed to be a linear exponential distribution [21]. Recurrence
relations for single and product moments of generalized order statistics have been derived
with the linear exponential distribution [22]. The linear exponential distribution has been
used in the area of reliability and life-testing see, for example, Broadbent [23] and Bain [24].

The two-sided and one-sided EBT rules are constructed for GED with contaminated
data in this article. Deconvolution kernel method is employed to develop the two-sided and
one-sided EBT rules with contaminated data, respectively. For errors in the variables model,
deconvolution kernel method can eliminate the effect of the additive noise kernel density
estimation. Furthermore, under the supersmooth error distributions and the supersmooth
errors, the error level can be controlled, the asymptotically optimal and uniform rates of
convergence are obtained with suitable conditions.

In practical problems, we often encounter measurement errors due to observation
conditions, so the analysis of contaminated data is very important. For the pair random
variables (X, θ), assume that θ has a prior distribution G(θ), X is one dimensional real
random variable with a marginal density function fX|θ(x) when θ is given, (X, θ) is not
directly observable. We observe only Y, where Y = X + ε, and ε are the random error.
Suppose that ε follows a known distribution Fε on (−∞, ∞), and independent on (X, θ).

Firstly, we consider the two-sided test problem as follows

H0 : θ1 6 θ 6 θ2 ↔ H1 : θ < θ1 or θ > θ2 (2)

where θ1 and θ2 are known constants.
Define θ0 = (θ1 + θ2)/2, γ0 = (θ2 − θ1)/2, then (2) is equivalent to

H∗0 : |θ − θ0| 6 γ0 ↔ H∗1 : |θ − θ0| > γ0 (3)

For hypothesis test (3), let i = 0, 1. taking 0–1 weighted square loss function in the
following

Li(θ, di) = (1− i)a[(θ − θ0)
2 − γ2

0]I[|θ−θ0|>γ0]
+ ia[γ2

0 − (θ − θ0)
2]I[|θ−θ0|6γ0]

,

where a > 0 is a constant, and d = {d0, d1} is the decision space, d0 indicates accepting H∗0 ,
d1 indicates rejecting H∗0 .

When i = 0, then we obtain L0(θ, d0) = a
[
(θ − θ0)

2 − γ2
0

]
I[|θ−θ0|γ0]; when i = 1 then

we have L1(θ, d1) = a
[
γ2

0 − (θ − θ0)
2
]

I[[θ−θ0|≤γ0]
.

Let the parameter θ be distributed according to an unknown prior G(θ), and assume
that G(θ) belongs to the following class of distributions

ϑ = {G : G is a prior on Ω such that sup
x

∣∣∣ f (m)
X (x)

∣∣∣ ≤ B}, (4)

where f m
x (x) denotes the m order derivative of fX(x) =

∫
Θ fX|θ(x) dG(θ), which is the

marginal density of X, and m > 2 is an integer, B > 0 is a constant.
We define the randomized decision rule for hypothesis test (3) as follows

δ(y) = P(acceptingH∗0 |Y = y). (5)

Then, the Bayes risk of δ(y) is given by

R(δ(y), G(θ)) =
∫ ∞

−∞

∫
Θ
[L0(θ, d0)δ(y) + L1(θ, d1)(1− δ(y)] fY|θ(y) dG(θ) dy

= a
∫ ∞

−∞
βG(y)δ(y) dy + CG, (6)
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where
CG =

∫
Θ

L1(θ, d1) dG(θ), βG(y) =
∫

Θ
[(θ − θ0)

2 − γ2
0] fY|θ(y) dG(θ) (7)

with
fY(y) =

∫
Θ

fY|θ(y) dG(θ). (8)

and fY|θ(y) denotes the density of Y given θ, i.e., fY|θ(y) =
∫

fX|θ(y− x) dFε(x).

Let PX(x) =
∫

Θ e−θx− 1
2 µx2

dG(θ), and

P(1)
X (x) = −

∫
Θ
(µx + θ)e−θx− 1

2 µx2
dG(θ) = − fX(x),

thus, we have
∫ ∞

x fX(x) dx = PX(x).
From (7), we obtain

βG(y) =
∫ ∞

−∞
f (2)X (y− x) dFε(x) +

∫ ∞

−∞
Q(y− x) f (1)X (y− x) dFε(x)

+
∫ ∞

−∞
φ(y− x) fX(y− x) dFε(x)− µ

∫ ∞

−∞
Q(y− x)pX(y− x) dFε(x), (9)

where fX(x) =
∫

θ fX|θ(x)dG(θ) is the marginal PDF of random variable X, f (1)X (x) and

f (2)X (x) denote the first order and the second order derivative of fX(x), respectively.
In (9), let

Q(y− x) = 2u(y− x) + 2θ0 and

φ(y− x) = µ2(y− x)2 + 2µθ0(y− x) + 3µ + θ2
0 − γ2

0.

So from (9), we define the best Bayes decision minimizing R(δ(y), G(θ)) as follows

δG(y) =

{
1, if βG(y) ≤ 0,

0, elsewhere.
(10)

A test is called a Bayes test with respect to G(θ) if

R(δG, G) = inf
δ′

R
(
δ′, G

)
= a

∫ ∞

−∞
βG(y)δG(y)dy + CG. (11)

Since G(θ) is unknown in this paper, δG(y) is unavailable to use, so this leads us to
use the empirical Bayes approach in the following.

The rest of this article is organized as follows. In Section 2, the two-sided EBT rule
for GED with contaminated data is proposed; Section 3 is devoted to obtaining asymptotic
properties and the uniform convergence rate of two-sided EBT rule; the main results of
two-sided EBT are proved in Section 4; Section 5 investigated one-sided EBT rule for GED
with contaminated data; an example study is presented in Section 6.

2. The Proposed Two-Sided EBT Rule of GED with Contaminated Data

It is well-known that we usually make the following assumptions in the empirical
Bayes framework, let (Y1, θ1), (Y2, θ2), · · · , (Yn, θn), and (Y, θ) be independent pair of
random variables, the parameters θi (1 ≤ i ≤ n) and θ have a common prior distribution
G(θ); Yi(1 ≤ i ≤ n) and Y are distributed according to the same marginal distribution FY
with density function fY(y) =

∫
Θ fY|θ(y)dG(θ), Y1, · · · , Yn denotes historical samples and

Y is called the present sample.
Deconvolution is a very important problem. It is often encountered when modeling

unobservable data or to estimate conditional moments useful in likelihood calculations.
When dealing with non-parametric estimation of priors or in measurement error models,
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the sample data are noisy because of the measurement error; deconvolution kernel method
is adopted to eliminate the effect of the additive noise kernel density estimation. In order
to obtain the empirical Bayes decision, we employ the deconvolution kernel method in the
following by Fan [17–19].

Let ϕY(t) and ϕε(t) be the characteristic function (c.f.) of Y and ε, respectively. Note
that

fX(x) =
1

2π

∫ ∞

−∞
exp(−itx)

ϕY(t)
ϕε(t)

dt (12)

Thus, a deconvoluted kernel density estimation of f (r)X (x)(r = 0, 1, 2) is defined by

f (r)n (x) =
1

2π

∫ ∞

−∞
exp(−itx)(−it)r ϕK(thn)

ϕn(t)
ϕε(t)

dt, (13)

where 0 < hn → 0 as n → ∞ and ϕn(t) = 1
n ∑n

j=1 exp
(
itYj
)

is called the empirical c.f. of

random variable Y. Note that f (0)X (x) = fX(x) and f (0)n (x) = fn(x).
We can also rewrite (13) as kernel type of estimation as follows

f (r)n (x) =
1

nh1+r
n

n

∑
j=1

Knr

( x−Yj

hn

)
, r = 0, 1, 2. (14)

where

Knr(x) =
1

2π

∫ ∞

−∞
exp(−itx)(−it)r ϕK(t)

ϕε(t/hn)
dt

We define an estimator of the pX(x) of the random variable X by

pn(x) =
∫ x

−Mn
fn(t)dt, (15)

where fn(x) is the kernel density estimator given by (13), and Mn(→ ∞) is a sequence of
constants.

Hence, we define an estimator of the βG(y) as follows

βn(y) =
∫ ∞

−∞
f (2)n (y− x)dFε(x) +

∫ ∞

−∞
Q(y− x) f (1)n (y− x)dFε(x)

+
∫ ∞

−∞
φ(y− x) fn(y− x)dFε(x)− µ

∫ ∞

−∞
Q(y− x)pn(y− x)dFε(x). (16)

Furthermore, an empirical Byes test rule is defined as

δn(y) =
{

1, if βn(y) ≤ 0
0, elsewhere.

(17)

In the following, let E be the expectation with respect to the joint distribution of
(Y1, Y2, · · · , Yn). Then, the overall Bayes risk of δn(y) would be

R(δn, G) = a
∫ ∞

−∞
βG(y)E[δn(y)]dy + CG. (18)

By the definition, for any G(θ) ∈ ϑ, if sup
G∈ϑ

(R(δn, G)− R(δG, G)) = O(n−q), where

q > 0, then δn(y) is called asymptotically optimal uniformly with uniform convergence
rate O(n−q).
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3. Asymptotic Properties of Two-Sided EBT Rule

In this section, asymptotic properties of R(δn, G)− R(δG, G) be investigated, some
assumptions on the kernel function K(x) and the error variable ε are given in the following.

(A1) The K(x) is a symmetric function about zero on (−∞,+∞) and satisfies∫ ∞
−∞ K(x)dx = 1,

∫ ∞
−∞ xjK(x)dx = 0 for j = 1, · · · , (r− 1) and

∫ ∞
−∞ xrK(x)dx 6= 0 for

some integer r > 0,

(A2) ϕK(t) is a symmetric function, having m+ 2 bounded integral derivatives on (−∞,+∞),

(A3) ϕK(t) = 1 + O(|t|m) as t→ 0,

(A4) The characteristic function of ε satisfies ϕε(t) 6= 0 for any t,

(A5)
∫

Θ

∫ ∞
−∞ θ2 fX|θ(y− x)dFε(x)dG(θ) < ∞ uniformly in y, and

(A6) for some 0 < λ < 1,
∫ ∞
−∞|βG(y)|1−λdy < ∞ and∫ ∞

−∞|βG(y)|1−λ
[∫ ∞
−∞ |Q(y− x)|dFε(x)

]λ
dy < ∞ and∫ ∞

−∞|βG(y)|1−λ
[∫ ∞
−∞ |φ(y− x)|dFε(x)

]λ
dy < ∞, where βG(y) is given by (9).

Next, theorem below about the two-sided EBT establish the rates of convergence of
the regret R(δn, G) − R(δG, G), where R(δG, G) and R(δn, G) are given by (11) and (18),
respectively.

Theorem 1. For some integer m ≥ 2 and constants 0 < λ < 1, ϑ is defined by (4). Suppose that
K(x) and Fε(x) are such that (A1)–(A6) hold, and the following conditions are satisfied:

(B1) ϕK(t) = 0 for |t| ≥ 1,
(B2) |ϕs(t)||t|−β0 exp

(
|t|−β/γ

)
≥ γ0 as |t| → ∞ for some positive constants β, γ, γ0 and a

constant β0.

Then, by the choosing the bandwidth hn = (4/γ)1/β(log n)−1/β, we obtain

sup
G∈ϑ

(R(δn, G)− R(δG, G)) = O
(
(log n)−λ(m−2)/β

)
. (19)

Remark 1. If its characteristic function ϕε(t) satisfies condition (B2) of Theorem 1, then the
distribution of a random variable ε is called supersmooth of order β. The common examples of
supersmooth distributions are normal, Cauchy, mixture normal, etc. In practice, the conditions
of Theorem 1 are easy to verify. It can be seen from the result of the Theorem 1 that the rate of
convergence of EBT is very slow for very common error distributions, such as normal. Fan [17,18]
pointed out the supersmooth error distribution will result in a worse convergence rate than of the
smooth distribution.

It appears that the optimal rate of convergence for Gaussian deconvolution is extremely slow.
Since the normal distribution is frequently used in applications, we need to study how to large a noise
level is acceptable. Thus, considering the following model, let us assume that the data Y1, · · · , Yn
are independent identical distribution samples from

Y = X + ε, (20)

where ε = σ0 ε̃, σ0 parameterizes the noise level.
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Theorem 2. For some integer m ≥ 2 and constants 0 < λ < 1, ϑ is defined by (4). Suppose that
K(x) and Fε(x) are such that (A1)–(A6) hold with ε = σ0 ε̃. Then, let σ0 = O

(
n−1/(2m+1)

)
and

by choosing the bandwidth hn = O
(

n−1/(2m+1)
)

, we have

sup
G∈ϑ

(Rn − RG) = O
(

n−λ(m−2)/(2m+1)
)

.

Remark 2. Although all the data are contaminated with supersmooth errors, the results of Theo-
rem 2 can also be as good as that of the uncontaminated data case. Suppose that all the data are con-
taminated with supersmooth errors, while the error level can be controlled, namely, ϕε(t) = ϕε̃(σ0t).
Fan [19] had been considered model (20). Theorem 2 indicates that the convergence rate is also very
slow. The result of the following Lemma 3 is as good as ordinary smooth errors distribution but the
result of the following Lemma 4 cause to the worse convergence rate of empirical Bayes estimator.

4. Proofs

In this section, first we need some lemmas to prove the main results of this paper.
Lemmas 1 and 2 are due to Fan [17,18], Lemmas 3, and 4 are due to Fan [19]. The proof
of Lemma 4 can be found in Johns and Van Ryzin [10]. Theorems 1 and 2 shall be proved,
since the proofs of Theorems 1 and 2 are similar, only Theorem 1 is proved in detail. In the
following, c, c1, c2, · · · always stand for some positive constants and may be different even
with the same notations.

Lemma 1. Let f (r)n (x) be given by (14), under the assumptions (A1)–(A4) and the conditions
(B1)–(B2) of Theorem 1 are satisfied, by the choosing the bandwidth hn = (4/γ)1/β(log n)−1/β,
we have

sup
x

sup
G∈ϑ

E
(

f (r)n (x)− f (r)X (x)
)2
≤ c(log n)−2(m−r)/β, (21)

where f (r)X (x) denotes the r order derivative of fX(x) and ϑ is given by (4).

Lemma 2. Let pn(x) be given by (15), suppose that ϕK(t) is a symmetric function, having m + 3
bounded integrable derivatives on (−∞, ∞), and satisfying ϕK(t) = 1 + O

(
|t|m+1) as t → 0.

Under the assumption (A4) and the conditions (B1)–(B2) of Theorem 1 hold, with the choice
hn = (4/γ)−1/β(log n)−1/β of the bandwidth and Mn = n1/3, we have

sup
PX∈Ω∗

sup
G∈ϑ

E(pn(x)− pX(x))2 ≤ c(log n)−2(m+1)/β (22)

where ϑ is given by (4), and Ω∗ =
{

p : p′X(x) ∈ ϑ, p(−n) + 1− p(n) = o
(
(log n)−(m+1)/β

)}
.

Lemma 3. Let f (r)X (x) be given by (14). If the assumptions of (A1)–(A4) hold, let

σ0 = O
(

n−1/(2m+1)
)

, then by choosing the bandwidth hn = O
(

n−1/(2m+1)
)

, we have

sup
x∈Ω

sup
G∈ϑ

En

(
f (r)n (x)− f (r)X (x)

)2
≤ c
(

n−2(m−r)/(2m+1)
)

, (23)

where f (r)X (x) denote the r order derivative of fX(x) and ϑ is given by (4).

Lemma 4. Let pn(x) is given by (15), suppose that φ′′K(·) and φ′′ε (·)are bounded, respectively. Let

K(x) satisfy (A1)–(A4) with m = 2, and σ0 = O
(

n−1/5
)

, then we have

sup
x∈Ω

sup
G∈ϑ

En(pn(x)− pX(x))2 ≤ cn−1. (24)
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Lemma 5. Let R(δG, G) and R(δn, G) be defined by (11) and (18), respectively, then

0 ≤ R(δn, G)− R(δG, G) ≤ a
∫ ∞

−∞
|βG(y)|p(|βn(y)− βG(y)| ≥ |βG(y)|)dy,

where βG(y) and βn(y) are given by (9) and (16), respectively.

Proof of Theorem 1. By Lemma 5 and by the Markov inequality, for any 0 < λ < 1,

0 ≤ R(δn, G)− R(δG, G) ≤ a
∫ ∞

−∞
|βG(y)|p(|βn(y)− βG(y)| ≥ |βG(y)|)dy

≤ a
∫ ∞

−∞
|βG(y)|1−λE|βn(y)− βG(y)|λdy. (25)

By applying the Cr-inequality followed by Lyapunov’s inequality and using Fubini’s
Theorem, we obtain

E|βn(y)− βG(y)|λ ≤ c1

{
E
∣∣∣∣∫ ∞

−∞

(
f (2)n (y− x)− f (2)G (y− x)

)
dFε(x)

∣∣∣∣λ
+ E

∣∣∣∣∫ ∞

−∞
Q(y− x)

(
f (1)n (y− x)− f (1)G (y− x)

)
dFε(x)

∣∣∣∣λ
+ E

∣∣∣∣∫ ∞

−∞
φ(y− x)( fn(y− x)− fG(y− x))dFε(x)

∣∣∣∣λ
−µE

∣∣∣∣∫ ∞

−∞
Q(y− x)(pn(y− x)− pG(y− x))dFε(x)

∣∣∣∣λ
}

≤ c1

[∫ ∞

−∞
E
∣∣∣ f (2)n (y− x)− f (2)G (y− x)

∣∣∣dFε(x)
]λ

+ c1

[∫ ∞

−∞
|Q(y− x)|E

∣∣∣ f (1)n (y− x)− f (1)G (y− x)
∣∣∣dFε(x)

]λ

+ c1

[∫ ∞

−∞
|φ(y− x)|E| fn(y− x)− fG(y− x)|dFε(x)

]λ

+ c2

[∫ ∞

−∞
|Q(y− x)|E|pn(y− x)− pG(y− x)|dFε(x)

]λ

. (26)

Furthermore, by (25) and (26), we obtain

sup
G∈ϑ

(R (δn, G)− R(δG, G)) ≤
∫ ∞

−∞
|βG(y)|1−λ sup

G∈ϑ

E|βn(y)− βG(y)|λdy

≤ c1

∫ ∞

−∞
|βG(y)|1−λ ×

[∫ ∞

−∞
sup
G∈ϑ

E
∣∣∣ f (2)n (y− x)− f (2)G (y− x)

∣∣∣dFε(x)

]λ

dy

+ c1

∫ ∞

−∞
|βG(y)|1−λ ×

[∫ ∞

−∞
|Q(y− x)| sup

G∈ϑ

E
∣∣∣ f (1)n (y− x)− f (1)G (y− x)

∣∣∣dFε(x)

]λ

dy

+ c1

∫ ∞

−∞
|βG(y)|1−λ ×

[∫ ∞

−∞
|φ(y− x)| sup

G∈ϑ

E| fn(y− x)− fG(y− x)|dFε(x)

]λ

dy

+ c2

∫ ∞

−∞
|βG(y)|1−λ ×

[∫ ∞

−∞
|Q(y− x)| sup

G∈ϑ

E|pn(y− x)− pG(y− x)|dFε(x)

]λ

dy

= An + Bn + Cn + Dn (27)
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From Lemmas 1 and 2, by the assumption conditions of Theorem 1, we have

An ≤ c3(log n)−λ(m−2)/β
∫ ∞

−∞
|βG(y)|1−λdy ≤ c(log n)−λ(m−2)/β, (28)

Bn ≤ c4(log n)−λ(m−1)/β
∫ ∞

−∞
|βG(y)|1−λ

[∫ ∞

−∞
|Q(y− x)|dFε(x)

]λ

dy

≤ c(log n)−λ(m−1)/β, (29)

Cn ≤ c5(log n)−λm/β
∫ ∞

−∞
|βG(y)|1−λ

[∫ ∞

−∞
|φ(y− x)|dFε(x)

]λ

dy ≤ c(log n)−λm/β, (30)

Dn ≤ c6(log n)−λ(m+1)/β
∫ ∞

−∞
|βG(y)|1−λ

[∫ ∞

−∞
|Q(y− x)|dFε(x)

]λ

dy

≤ c(log n)−λ(m+1)/β (31)

Substituted (27) by (28) to (31), we obtain

sup
G∈ϑ

(R(δn, G)− R(δG, G)) = O
(
(log n)−λ(m−2)/β

)
So the proof of Theorem 1 was completed.

Proof of Theorem 2. The proof is similar to that of Theorem 1 above, except that we let
Lemmas 3 and 4 in the place of Lemmas 1 and 2 in the proof of Theorem 1, respectively.

5. One-Sided EBT Rule and Its Asymptotic Properties

In this section, we study one-sided EBT for the parameter θ of GED with contaminated
data. Considering the problem of testing the hypotheses H′0 : θ ≤ θ0 versus H′1 : θ > θ0,
where θ0 be a known positive constant. Let linear loss function of testing the hypotheses
as follows

L0
(
θ, d′0

)
= a(θ − θ0)I(θ > θ0), L1

(
θ, d′1

)
= a(θ − θ0)I(θ ≤ θ0), (32)

where a is a positive constant and d =
{

d′0, d′1
}

is the action space, d′0 indicates accepting
H′0, d′1 indicates rejecting H′0, I[A] is the indicator of the set A.

The same as above, assume that X is not directly observable and because of mea-
surement error or the nature of environment, we can only observe Y = X + ε, where the
error variable ε has a known distribution Fε on (−∞, ∞). It is assumed that ε and (X, θ) are
independent. It is assumed that the parameter θ is a realization of a random variable having
an unknown prior distribution G(θ) over the natural parameter space Θ. Let randomized
decision rule for the preceding testing problem is δ∗(y) = P{ accepting H′0 | Y = y

}
. For

one-sided test, we assume that G(θ) belongs to the following class of distributions

ϑ∗ =

{
G : G is a prior on Ω such that sup

x

∣∣∣ f (m)
X (x)

∣∣∣ ≤ B
}

, (33)

where f (m)
X (x) denotes the m order derivative of fX(x) =

∫
Θ fX|θ(x)dG(θ), which is the

marginal density of X , and m ≥ 1 is an integer, B > 0 is a constant.
Let R(δ∗, G) denotes the Bayes risk of the test δ∗ when G is the prior distribution, it

can be expressed as

R(δ∗(y), G(θ)) =
∫

Θ

∫
Ω
[L0(θ, d0)δ

∗(y) + L1(θ, d1)(1− δ∗(y))] fY|θ(y)dydG(θ)

= a
∫

Ω
β∗G(y)δ

∗(y)dy + CG, (34)
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where
CG =

∫
Θ

L1(θ, d1)dG(θ), β∗G(y) =
∫

Θ
(θ − θ0) fY|θ(y)dG(θ). (35)

From (35), we obtain

β∗G(y) = µ
∫ ∞

−∞
pX(y− x)dFε(x)−

∫ ∞

−∞
τ(y− x) fX(y− x)dFε(x)

−
∫ ∞

−∞
f (1)X (y− x)dFε(x), (36)

where τ(y− x) = µ(y− x) + θ0.
Therefore, the Bayes test δ∗G can be presented as

δ∗G(y) =
{

1, if β∗G(y) ≤ 0
0, if β∗G(y) > 0

. (37)

The Bayes risk of δ∗G(y) is

R(δ∗G, G) = inf
δ∗

R(δ∗, G) = a
∫

Ω
β∗G(y)δ

∗
G(y)dy + CG. (38)

Thus, we defined the estimation of β∗G(y) as

β∗n(y) = µ
∫ ∞

−∞
pn(y− x)dFε(x)−

∫ ∞

−∞
τ(y− x) fn(y− x)dFε(x)

−
∫ ∞

−∞
f (1)n (y− x)dFε(x). (39)

Furthermore, one-sided empirical Byes test rule is defined by

δ∗n(y) =
{

1, if β∗n(y) ≤ 0
0, elsewhere.

(40)

Then, the overall Bayes risks of δ∗n(y) would be

R(δ∗n, G) = a
∫

Ω
β∗n(y)E[δ∗n(y)]dy + CG. (41)

It is necessary state that Lemmas 1–4 still hold over a class of new prior distributions
ϑ∗ for one-sided EB decision problem. So by Lemmas 1–5, Theorem below establish the
rates of convergence of the regret R(δ∗n, G)− R

(
δ∗G, G

)
, where R

(
δ∗G, G

)
and R(δ∗n, G) are

given by (38) and (41), respectively. For one-sided EBT, we assume that the following
conditions are satisfied:

(C1)
∫

Θ

∫ ∞
−∞ |θ| fX|θ(y− x)dFε(x)dG(θ) < ∞ uniformly in y, and

(C2) for some 0 < λ < 1,
∫ ∞
−∞

∣∣β∗G(y)∣∣1−λdy < ∞ and∫ ∞
−∞

∣∣β∗G(y)∣∣1−λ
[∫ ∞
−∞ |τ(y− x)|dFε(x)

]λ
dy < ∞, where β∗G(y) is given by (36).

Theorem 3. For any 0 < λ < 1, let ϑ∗ be defined by (33), suppose that K(x), such that (A1)–(A4)
and (B1)–(B2) of Theorem 1 hold and satisfying conditions (C1) and (C2). Then, by choosing the
bandwidth hn = (4/γ)1/β(log n)−1/β, we obtain

sup
G∈g∗

(R(δ∗n, G)− R(δ∗G, G)) = O
(
(log n)−λ(m−1)/β

)
. (42)
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Theorem 4. For any 0 < λ < 1 and some integer m ≥ 1, let ϑ∗ be defined by (33), suppose that
K(x) and Fε(x) are such that (A1)–(A4) hold with ε = σ0 ε̃, and satisfying conditions (C1) and (C2).
Then, let σ0 = O

(
n−1/(2m+1)

)
and by choosing the bandwidth hn = O

(
n−1/(2m+1)

)
, we have

sup
G∈ϑ∗

(R(δ∗n, G)− R(δ∗G, G)) = O
(

n−λ(m−1)/(2m+1)
)

. (43)

Remark 3. For one-sided EBT, Similar to Theorem 1, the supersmooth distribution of a random
variable ε is also considered to Theorem 3, its characteristic function ϕε(t) satisfies condition (B2).
Under all the data are contaminated while the error level can be controlled situation, for model (20),
by Lemmas 1–5, Theorem 4, Theorem 4 obtained the rate of convergence of one-sided EBT, this result
can also be as good as that of the uncontaminated data case.

Proof of Theorem 3. By Lemma 5 and by the Markov inequality, for 0 < λ < 1 ,

0 ≤ R(δ∗n, G)− R(δ∗G, G) ≤ a
∫ ∞

−∞
|β∗G(y)|p(|β∗n(y)− β∗G(y)| ≥ |β∗G(y)|)dy

≤ a
∫ ∞

−∞
|β∗G(y)|

1−λE|β∗n(y)− β∗G(y)|
λdy. (44)

By applying the Cr-inequality followed by Lyapunov’s inequality and using Fubini’s
Theorem, we obtain

E|β∗n(y)− β∗G(y)|
λ ≤c1

{
E
∣∣∣∣∫ ∞

−∞

(
f (1)n (y− x)− f (1)G (y− x)

)
dFε(x)

∣∣∣∣λ
+ E

∣∣∣∣∫ ∞

−∞
τ(y− x)( fn(y− x)− fG(y− x))dFε(x)

∣∣∣∣λ
−µE

∣∣∣∣∫ ∞

−∞
(pn(y− x)− pG(y− x))dFε(x)

∣∣∣∣λ
}

≤c1

[∫ ∞

−∞
E
∣∣∣ f (1)n (y− x)− f (1)G (y− x)

∣∣∣dFε(x)
]λ

+ c1

[∫ ∞

−∞
|τ(y− x)|E| fn(y− x)− fG(y− x)|dFε(x)

]λ

+ c2

[∫ ∞

−∞
E|pn(y− x)− pG(y− x)|dFε(x)

]λ

. (45)

Furthermore, by (44) and (45), we obtain

sup
G∈ϑ∗

(R(δ∗n, G)− R(δ∗G, G)) ≤
∫ ∞

−∞
|β∗G(y)|

1−λ sup
G∈ϑ∗

E|β∗n(y)− β∗G(y)|
λdy

≤c1

∫ ∞

−∞
|β∗G(y)|

1−λ ×
[∫ ∞

−∞
sup
G∈ϑ∗

E
∣∣∣ f (1)n (y− x)− f (1)G (y− x)

∣∣∣dFε(x)

]λ

dy

+ c1

∫ ∞

−∞
|β∗G(y)|

1−λ ×
[∫ ∞

−∞
|τ(y− x)| sup

G∈ϑ∗
E| fn(y− x)− fG(y− x)|dFε(x)

]λ

dy

+ c2

∫ ∞

−∞
|β∗G(y)|

1−λ ×
[∫ ∞

−∞
sup
G∈ϑ∗

E|pn(y− x)− pG(y− x)|dFε(x)

]λ

dy

= An + Bn + Cn. (46)



Symmetry 2023, 15, 511 11 of 13

From Lemmas 1 and 2, by the assumption conditions of Theorem 3, we have

An ≤ c3(log n)−λ(m−1)/β
∫ ∞

−∞
|β∗G(y)|

1−λdy ≤ c(log n)−λ(m−1)/β, (47)

Bn ≤ c4(log n)−λm/β
∫ ∞

−∞
|β∗G(y)|

1−λ
[∫ ∞

−∞
|τ(y− x)|dFε(x)

]λ

dy ≤ c(log n)−λm/β, (48)

Cn ≤ c6(log n)−λ(m+1)/β
∫ ∞

−∞
|β∗G(y)|

1−λdy ≤ c(log n)−λ(m+1)/β. (49)

Substituted (46) by (47) to (49), we obtain

sup
G∈ϑ∗

(R(δ∗n, G)− R(δ∗G, G)) = O
(
(log n)−λ(m−1)/β

)
.

So the proof of Theorem 3 was completed.

Proof of Theorem 4. The proof is similar to that of Theorem 3 above, except that we let
Lemmas 3 and 4 in the place of Lemmas 1 and 2 in the proof of Theorem 3, respectively.

6. An Example Study

In this section, an example study is presented to verify the GED and the prior distri-
bution which satisfies theorems in this paper exist. Suppose that the probability density
function of random variable X as follows

f (x | θ) = (θ + 2x)e−(θx+x2), (50)

where θ is a given parameter, and the sample space is Ω = {x | x > 0}, the parameter
space is Θ = {θ | θ > 0}. Let the prior distribution of parameter θ is

g(θ) =
1

Γ(r)
θ−(r+1)e−1/θ , (51)

where r is a positive known parameter and θ is a positive unknown parameter. By calculat-
ing we obtain

fX(x) =
∫ ∞

0
f (x | θ)g(θ)dθ = −e−x2

[
r

(x + 1)r+1 +
2x

(x + 1)r

]
= −e−x2

q(x),

where q(x) = r
(x+1)r+1 +

2x
(x+1)r .

Obviously, f (m)
X (x) is existence, and f (m)

X (x) = −e−x2
p(x)

(x+1)2m(r+1) , where p(x) is polynomial

with respect to x and ∂(p(x)) ≤ 2m−1(r + 1) − 1. Since lim
x→∞

f (m)
X (x) = 0,

∣∣∣ f (m)
X (x)

∣∣∣ is

bounded on x ∈ Ω, where m ≥ 1 is an integer. Thus, G(θ) ∈ ϑ and G(θ) ∈ ϑ∗ are satisfied.
Let the supersmooth error distribution Fε be N(0,1), it is easy to check that ϕε(t)

satisfies the condition (B2) of Theorem 1. Moreover, we can take bn =
√

2(log n)−1/2.
For the two-sided EBT case, we used the following kernel function

K(x) =
6144 sin x

πx5 +
18320 cos x

πx6 − 3225600 sin x
πx7 + · · · − 3360× 13!

πx16 cos x, (52)

where −∞ < x < ∞, and we choose the Fourier transform of the above kernel is

ϕK(t) =
(

1− t2
)4

I[|t|≤1].
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Then, the deconvolution kernel density estimators (14) are the following kernels, for
the type of supersmooth error distribution case,

Knl(x) =
1

2π

∫ ∞

−∞
(cos tx− i sin tx)(it)l

(
1− t4

)4
exp

(
t2

2h2
n

)
dt (53)

Similar to [20], it is easily shown that assumptions and conditions of Theorems 1 and 2
are satisfied with the above specifications.

For one-sided EBT case, we choose ϕK(t) =
(
1− t2)3 I[|t|≤1], then the Fourier transform

of ϕK(t) is a second order kernel as follows

K(x) =
48 cos x

πx4

(
1− 15

x2

)
− 144 sin x

πx5

(
2− 15

x2

)
,−∞ < x < ∞. (54)

The corresponding deconvolution kernel density estimators (14) are kernel in the
following

Knl(x) =
(−1)l

π

∫ 1

0
tl(cos tx)1−l(sin tx)l

(
1− t2

)3
exp

(
t2

2h2
n

)
dt, l = 0, 1. (55)

Then, similar to literature [20], it is easily shown that assumptions and conditions of
Theorem 3 and 4 are satisfied with the above specifications.

Actually, we can take ϕK(t) =
(
1− t2)k I[|t|61], when k ≥ 4, at the same time it may

suit for one-sided and two-sided EBT. However, if k = 3, the second order kernel (53) only
satisfies kernel conditions of Theorems 3 and 4.

7. Conclusions

In this paper, we had studied the empirical Bayes decision for the parameter of a
generalized exponential distribution with contaminated data, two-sided and one-sided
empirical Bayes test rules were constructed by a deconvolution kernel method, respectively.
For the type of the supersmooth error distributions the asymptotically optimal uniformly
over a class of prior distributions and uniform rates of convergence of the corresponding
regret for the proposed EBT rules are obtained under the conditions of Theorems 1 and 3.
Furthermore, we also investigated the supersmooth errors with the error level can be
controlled case, Y = X + ε, where ε = σ0 ε̃, σ0 parameterizes the noise level, that is,
ϕε(t) = ϕε̃(σ0t), and obtained Theorems 2 and 4. As an example, let the supersmooth error
distribution Fε be N(0,1) , we proved the assumptions and conditions of the main results of
this paper are satisfied easily by calculating.

In many practical problems, not all the observations are contaminated, but there
may be a partially contaminated case. Suppose that only 100p% (0 < p < 1) of the data
are measured with error and the remaining data are error free. We consider the mode
Y = X + ε , taking P(ε = 0) = 1− p and P(ε = ε∗) = p, where ε∗ is an error variable
with distribution Fε∗ and the characteristic function ϕε∗ . Thus, the characteristic function of
ε is denoted by ϕε(t) = (1− p) + pϕε∗(t). In this regard, we can consider extending the
current research work to this situation, which is believed to be a very interesting topic.
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