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Abstract: As nonassociative fuzzy logic connectives, it is important to study fuzzy rough set models
using overlap functions that replace the role of t-norms. Overlap functions and t-norms are logical
operators with symmetry. Recently, intuitionistic fuzzy rough set and multi-granulation fuzzy rough
set models have been proposed based on overlap functions. However, some results (that contain
five propositions, two definitions, six examples and a proof) must be improved. In this work, we
improved the existing results. Moreover, to extend the existing fuzzy rough sets, a new fuzzy covering
rough set model was constructed by using the generalized overlap function, and it was applied to the
diagnosis of medical diseases. First, we improve some existing results. Then, in order to overcome
the limitations of the fuzzy covering rough set model based on overlap functions, a fuzzy β-covering
rough set model based on generalized overlap functions was established. Third, some properties
of the fuzzy β-covering rough set model based on generalized overlap functions are discussed.
Finally, a multi-criteria decision-making (MCDM) method of the fuzzy β-covering rough set based
on generalized overlap functions was proposed. Taking medical disease diagnosis as an example, the
comparison with other methods shows that the proposed method is feasible and effective.

Keywords: rough set; overlap function; fuzzy set

1. Introduction

In order to solve the limitation problem of classical rough sets in processing truth-type
data, D. Dubois and H. Prade [1] proposed a fuzzy rough set model in 1992 by using the
pair of fuzzy operators of the “minimum” and “maximum”. Subsequently, in order to
expand the application ability of the “minimum” and “maximum” operators in fuzzy rough
sets, N.N. Morsi and M.M. Yakout [2] constructed new fuzzy rough sets using continuous
triangular modules and their induced residual implication. This attracted the attention of
many scholars. Therefore, all kinds of existing generalized fuzzy rough set models and
corresponding theories were also developed around continuous triangular modules [3,4]. In
practical applications, fuzzy rough sets have made remarkable achievements in knowledge
reduction, fault diagnosis, management decision, etc. For example, J.Q. Wang et al. [5]
used three-way fuzzy rough sets in MCDM. Y.J. Lin et al. [6] applied fuzzy rough sets
to multi-label learning. The existing fuzzy rough set models are mainly based on fuzzy
relations and fuzzy coverings. Since any fuzzy covering can induce the corresponding
fuzzy relation, and the fuzzy neighborhood induced by fuzzy covering has good noise
reduction function, the study of rough sets based on fuzzy covering has been extensive.

Recently, fuzzy covering rough set theory [3,7,8] was generalized to fuzzy β-covering
rough set theory by L.M. Ma [9] by replacing 1 with a parameter β (β ∈ (0, 1]). Based
on Ma’s work, more and more researchers were attracted for fuzzy β-covering rough
set theory. For example, several types of fuzzy covering-based rough set models were
constructed [10,11]: attribute reduction (i.e., feature selection) and decision making were
studied under fuzzy β-covering rough sets [4,12], and others [13]. However, the existing
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research focuses on associative fuzzy operators (triangular modules), which have certain
limitations when processing unassociative data. It is necessary to further establish a fuzzy
rough set model based on unassociative logical operators.

The overlap function was proposed by H. Bustince et al. [14] in 2009, mainly arising
from practical problems, such as image processing and classification. In theory, B. Bedre-
gal et al. [15] studied some important properties of overlap functions, such as migration,
idempotence and homogeneity. G.P. Dimuro and B. Bedregal [16] studied the Archimedean
property, elimination law and limiting properties of overlap functions. As a nonassociative
binary function, an overlap function can overcome the limitation of associativity in con-
tinuous triangular modules in practical problems. At present, some scholars have begun
to study the fuzzy rough set model based on overlap functions. In particular, X.F. Wen
and X.H. Zhang [17] presented four types of fuzzy β-covering rough sets under overlap
functions, which extended the existing models. In [18], the authors extended overlap
functions and fuzzy β-covering rough sets to the intuitionistic fuzzy (IF) environment [19].
The research ideas of Refs. [17,18] are very important, but we found that several results
(including five propositions, two definitions, six examples and a proof) were incorrect
after checking the paper carefully. These results were the basis of a rough set model, and the
inaccuracy of the results led to the reader’s incorrect understanding and application of the
model.Moreover, the existing work used overlap functions to established fuzzy rough sets.
As a generalization of overlap functions, generalized overlap functions have a stronger
application ability. Therefore, the generalization of overlap functions is used to extend
fuzzy rough set theory in this paper, which is the main motivation of this paper.

In this paper, some results, including four propositions, two definitions, six examples
and a proof for [17,18], were improved. Moreover, the generalized overlap function has
a stronger application ability, and if it is combined with a fuzzy β-covering rough set to
build a more generalized fuzzy β-covering rough set model, the practical application range
of the fuzzy rough set will be expanded. Therefore, on the basis of previous studies, the
work in this paper expands the existing model from the perspective of generalized overlap
functions and fuzzy β-covering, and it illustrates the feasibility and advantages of the new
model through its application in multi-attribute decision making.

The rest of this paper is organized as follows. Section 2 reviews some fundamental
definitions about overlap functions, fuzzy sets and fuzzy covering-based rough sets. In
Section 3, we improve some results from [17,18]. In Section 4, a fuzzy β-covering rough
set model based on generalized overlap functions is established, and its corresponding
properties are proposed. Section 5, a decision-making method for the fuzzy β-covering
rough set based on generalized overlap functions is proposed. Section 6 summarizes the
full text and proposes follow-up research ideas.

2. Basic Definitions

This section recalls some fundamental definitions related to overlap functions, fuzzy
sets and fuzzy covering-based rough sets. In the following we suppose that U is a nonempty
and finite set called the universe.

2.1. Overlap Functions and Fuzzy Sets

Definition 1 ([20]). A bivariate function O : [0, 1]2 → [0, 1] is called an overlap function if for
every a, b, c ∈ [0, 1], the following conditions holds:

(O1) O(a, b) = O(b, a) (symmetry);

(O2) O(a, b) = 0⇔ ab = 0;

(O3) O(a, b) = 1⇔ ab = 1;

(O4) O(a, b) ≤ O(a, c) if b ≤ c;

(O5) O is continuous.
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Definition 2 ([21]). Let O : [0, 1]2 → [0, 1] be an overlap function, then, for every a, b ∈ [0, 1],
the bivariate function RO : [0, 1]2 → [0, 1] is defined by

RO(a, b) = max{c ∈ [0, 1] | O(a, c) ≤ b}

where RO is the residual implication induced from the overlap function O.

In [22], a mapping A : U → [0, 1] is defined as a fuzzy set, where A(x) is the degree of
membership of x ∈ U to A. Moreover, the fuzzy power set of U is denoted by F(U).

Some basic operations on F(U) are shown as follows [23]: If A, B ∈ F(U), then

(1) A ⊆ B iff A(x) ≤ B(x) for all x ∈ U;

(2) A = B iff A ⊆ B and B ⊆ A;

(3) A ∪ B = {〈x, A(x) ∨ B(x)〉 : x ∈ U};
(4) A ∩ B = {〈x, A(x) ∧ B(x)〉 : x ∈ U};
(5) A′ = {〈x, 1− A(x) : x ∈ U}.

2.2. Fuzzy Rough Sets Based on Overlap Functions

Ma [9] presented the notion of fuzzy β-covering approximation space.

Definition 3 ([9]). Let U be an arbitrary universal set and F(U) be the fuzzy power set of U.
For each β ∈ (0, 1], we call Ĉ = {C1, C2, . . . , Cm}, with Ci ∈ F(U) (i = 1, 2, . . . , m), a fuzzy
β-covering of U if (

⋃m
i=1 Ci)(x) ≥ β for each x ∈ U. We also call (U, Ĉ) a fuzzy β-covering

approximation space (β-FCAS for short).

Under a fuzzy β-covering approximation space, Wen and Zhang [17] proposed (multi-
granulation) fuzzy β-covering rough sets as follows:

Definition 4 ([17]). Let (U, C̃) be a β-FCAS, O be an overlap function and RO be the residual
implication induced from the overlap function O. For any A ∈ F(U), the lower approximation
C̃−

Ñβ
x
(A) and upper approximation C̃+

Ñβ
x
(A) of A related to O under C̃ are denoted as follows: for

any x ∈ U,

C̃−
Ñβ

x
(A)(x) = in f

y∈U
RO(Ñβ

x (y), A(y)),

C̃+

Ñβ
x
(A)(x) = sup

y∈U
O(Ñβ

x (y), A(y)),

where Ñβ
x =

⋂{C ∈ C̃ : C(x) ≥ β}.

Definition 5 ([17]). Let (U, C̃i) (i = 1, 2, 3, · · · , m) be a β-FCAS, O be an overlap function and
RO be the residual implication induced from the overlap function O. For any A ∈ F(U), the
multi-granulation optimistic fuzzy lower approximation C−o

∑m
i (Ñβ

x )i
(A) and upper approximation

C+o
∑m

i (Ñβ
x )i

(A) of A related to O under C̃ are denoted as follows: for any x ∈ U,

C−o
∑m

i (Ñβ
x )i

(A)(x) =
m∨

i=1
in f
y∈U

RO((Ñβ
x )i(y), A(y)),

C+o
∑m

i (Ñβ
x )i

(A)(x) =
m∧

i=1
sup
y∈U

O((Ñβ
x )i(y), A(y)),

where (Ñβ
x )i = {C ∈ C̃i : C(x) ≥ β}.

Definition 6 ([17]). Let (U, C̃i) (i = 1, 2, 3, · · · , m) be a β-FCAS, O be an overlap function and
RO be the residual implication induced from the overlap function O. For any A ∈ F(U), the
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multi-granulation pessimistic fuzzy lower approximation C
−p

∑m
i (Ñβ

x )i
(A) and upper approximation

C
+p

∑m
i (Ñβ

x )i
(A) of A related to O under C̃ are denoted as follows: for any x ∈ U,

C
−p

∑m
i (Ñβ

x )i
(A)(x) =

m∧
i=1

in f
y∈U

RO((Ñβ
x )i(y), A(y)),

C
+p

∑m
i (Ñβ

x )i
(A)(x) =

m∨
i=1

sup
y∈U

O((Ñβ
x )i(y), A(y)),

where (Ñβ
x )i = {C ∈ C̃i : C(x) ≥ β}.

In [18], Wen et al. extended overlap functions and fuzzy rough sets to the intuitionistic
fuzzy statement.

3. A Further Study on Fuzzy Rough Sets Based on Overlap Functions in [17,18]

Several fuzzy rough sets based on overlap functions have been established in [17,18].
However, in [17], we found that Propositions 4(i), 4(vii), 5(i), 5(vi) and 5(vii); Definition
11; and Example 3 contained mistakes after checking the paper carefully. We give some
corrections of them in this section. In the following, O is the overlap function and RO is the
residual implication of O. Firstly, we show that Proposition 4(i) in [17] is incorrect.

(Proposition 4(i) in [17]). Let (U, C̃) be an FCAS. For each A ∈ F(U), C̃−
Ñβ

x
(A) ⊆ A ⊆

C̃+

Ñβ
x
(A).

Example 1. Let U = {x1, x2, x3, x4, x5, x6}, C̃ = {C1, C2, C3, C4, C5, C6} and β = 0.5, where

C1 = 0.6
x1

+ 0.5
x2

+ 0.8
x3

+ 0.4
x4

+ 0.5
x5

+ 0.8
x6

,

C2 = 0.4
x1

+ 0.6
x2

+ 0.4
x3

+ 0.1
x4

+ 0.4
x5

+ 0.4
x6

,

C3 = 0.4
x1

+ 0.3
x2

+ 0.7
x3

+ 0.3
x4

+ 0.3
x5

+ 0.7
x6

,

C4 = 0.3
x1

+ 0.7
x2

+ 0.3
x3

+ 0.7
x4

+ 0.3
x5

+ 0.3
x6

,

C5 = 0.6
x1

+ 0.8
x2

+ 0.6
x3

+ 0.5
x4

+ 0.6
x5

+ 0.6
x6

,

C6 = 0.2
x1

+ 0.1
x2

+ 0.7
x3

+ 0.1
x4

+ 0.1
x5

+ 0.7
x6

.

Hence, C̃ is a fuzzy 0.5-covering. Therefore, we can calculate all Ñ0.5
xi

(i = 1, 2, · · · , 6)
as follows:

Ñ0.5
x1

= 0.6
x1

+ 0.5
x2

+ 0.6
x3

+ 0.4
x4

+ 0.5
x5

+ 0.6
x6

,

Ñ0.5
x2

= 0.3
x1

+ 0.5
x2

+ 0.3
x3

+ 0.1
x4

+ 0.3
x5

+ 0.3
x6

,

Ñ0.5
x3

= 0.2
x1

+ 0.1
x2

+ 0.6
x3

+ 0.1
x4

+ 0.1
x5

+ 0.6
x6

,

Ñ0.5
x4

= 0.3
x1

+ 0.7
x2

+ 0.3
x3

+ 0.5
x4

+ 0.3
x5

+ 0.3
x6

,

Ñ0.5
x5

= 0.6
x1

+ 0.5
x2

+ 0.6
x3

+ 0.4
x4

+ 0.5
x5

+ 0.6
x6

,

Ñ0.5
x6

= 0.2
x1

+ 0.1
x2

+ 0.6
x3

+ 0.1
x4

+ 0.1
x5

+ 0.6
x6

.

For any a, b ∈ [0, 1], suppose an overlap function O = a2b2 and its residual implication

RO =

{
1, a2 ≤ b;√

b
a2 , a2 > b.

Hence, for A = 0.5
x1

+ 0.3
x2

+ 0.7
x3

+ 0.6
x4

+ 0.2
x5

+ 0.3
x6

, we have
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C̃−
Ñ0.5

x
(A) = 0.8944

x1
+ 1.0000

x2
+ 0.9129

x3
+ 0.7825

x4
+ 0.8944

x5
+ 0.9129

x6
,

C̃+
Ñ0.5

x
(A) = 0.1764

x1
+ 0.0441

x2
+ 0.1764

x3
+ 0.0900

x4
+ 0.1764

x5
+ 0.1764

x6
.

Therefore, C̃−
Ñβ

x
(A) * A, A * C̃+

Ñβ
x
(A) and C̃−

Ñβ
x
(A) * C̃+

Ñβ
x
(A), which illustrates that

Proposition 4(i) in [17] is incorrect.

Next, we present a condition under which C̃−
Ñβ

x
(A) ⊆ A ⊆ C̃+

Ñβ
x
(A) for each A ∈ F(U).

Proposition 1. Let (U, C̃) be an FCAS. If O(1, a) ≥ a (∀a ∈ [0, 1]) and Ñβ
x (x) = 1 (∀x ∈ U),

then for each A ∈ F(U), C̃−
Ñβ

x
(A) ⊆ A ⊆ C̃+

Ñβ
x
(A).

Proof. For any x ∈ U, we have C̃+

Ñβ
x
(A)(x) = sup

y∈U
O(Ñβ

x (y), A(y)) ≥ O(Ñβ
x (x), A(x)) =

O(1, A(x)) ≥ A(x). Hence, A ⊆ C̃+

Ñβ
x
(A).

On the other hand, for any x ∈ U, RO(1, x) = max{z : O(1, z) ≤ x}, denote
RO(1, x) = z0, then O(1, z0) ≤ x. If z0 > x, then O(1, z0) ≥ z0x, which is contrary
to z0 > x. Hence, z0 ≤ x, i.e., RO(1, x) = max{z : O(1, z) ≤ x} ≤ x. Therefore,
C̃−

Ñβ
x
(A)(x) = in f

y∈U
RO(Ñβ

x (y), A(y)) ≤ RO(Ñβ
x (x), A(x)) = RO(1, A(x)) ≤ A(x), i.e.,

C̃−
Ñβ

x
(A) ⊆ A.

(Proposition 4(vii) in [17]). Let (U, C̃) be an FCAS, Ai ∈ F(U) (i ∈ I). If O is continuous and
monotonic, then C̃+

Ñβ
x
(
⋃

i∈I Ai) =
⋂

i∈I C̃+

Ñβ
x
(Ai), C̃+

Ñβ
x
(
⋂

i∈I Ai) =
⋂

i∈I C̃+

Ñβ
x
(Ai).

Example 2 (Continued from Example 1). Let B = 0.4
x1

+ 0.6
x2

+ 0.8
x3

+ 0.3
x4

+ 0.9
x5

+ 0.7
x6

. Then
we have

C̃−
Ñ0.5

x
(B) = 1.0000

x1
+ 1.0000

x2
+ 1.0000

x3
+ 1.0000

x4
+ 1.0000

x5
+ 1.0000

x6
,

C̃+
Ñ0.5

x
(B) = 0.2304

x1
+ 0.0900

x2
+ 0.2304

x3
+ 0.1764

x4
+ 0.2304

x5
+ 0.2304

x6
.

Therefore,

C̃−
Ñ0.5

x
(A
⋃

B) = 1.0000
x1

+ 1.0000
x2

+ 1.0000
x3

+ 1.0000
x4

+ 1.0000
x5

+ 1.0000
x6

,

C̃+
Ñ0.5

x
(A
⋃

B) = 0.2304
x1

+ 0.0900
x2

+ 0.2304
x3

+ 0.1764
x4

+ 0.2304
x5

+ 0.2304
x6

,

C̃−
Ñ0.5

x
(A
⋂

B) = 0.8944
x1

+ 1.0000
x2

+ 0.9129
x3

+ 0.7825
x4

+ 0.8944
x5

+ 0.9129
x6

,

C̃+
Ñ0.5

x
(A
⋂

B) = 0.1764
x1

+ 0.0441
x2

+ 0.1764
x3

+ 0.0441
x4

+ 0.1764
x5

+ 0.1764
x6

.

So we have C̃+

Ñβ
x
(A
⋃

B) 6= C̃+

Ñβ
x
(A)

⋂
C̃+

Ñβ
x
(B), C̃+

Ñβ
x
(A
⋂

B) 6= C̃+

Ñβ
x
(A)

⋂
C̃+

Ñβ
x
(B).

Proposition 2. Let (U, C̃) be an FCAS, Ai ∈ F(U) (i ∈ I). If O is continuous and monotonic,
then C̃+

Ñβ
x
(
⋃

i∈I Ai) =
⋃

i∈I C̃+

Ñβ
x
(Ai), C̃+

Ñβ
x
(
⋂

i∈I Ai) ⊆
⋂

i∈I C̃+

Ñβ
x
(Ai).

Proof. The proof of Proposition 2 is trivial.

(Proposition 5(i) in [17]). Let C̃i (i = 1, 2, · · · , m) be an FCAS with C = {C̃1, · · · , C̃m}. For
each A ∈ F(U), C−o

∑m
i (Ñβ

x )i
(A) ⊆ A ⊆ C+o

∑m
i (Ñβ

x )i
(A), where (Ñβ

x )i is the fuzzy β-neighborhood

of C̃i.
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Example 3. Let U = {x1, x2, x3, x4, x5, x6}, C̃1 = {C11, C12, C13, C14, C15, C16},
C̃2 = {C21, C22, C23, C24, C25, C26} and β = 0.5, where

C11 = 0.6
x1

+ 0.5
x2

+ 0.8
x3

+ 0.4
x4

+ 0.5
x5

+ 0.8
x6

, C21 = 0.7
x1

+ 0.6
x2

+ 0.5
x3

+ 0.4
x4

+ 0.1
x5

+ 0.6
x6

;

C12 = 0.4
x1

+ 0.6
x2

+ 0.4
x3

+ 0.1
x4

+ 0.4
x5

+ 0.4
x6

, C22 = 0.5
x1

+ 0.3
x2

+ 0.3
x3

+ 0.7
x4

+ 0.4
x5

+ 0.8
x6

;

C13 = 0.4
x1

+ 0.3
x2

+ 0.7
x3

+ 0.3
x4

+ 0.3
x5

+ 0.7
x6

, C23 = 0.4
x1

+ 0.3
x2

+ 0.5
x3

+ 0.5
x4

+ 0.2
x5

+ 0.4
x6

;

C14 = 0.3
x1

+ 0.7
x2

+ 0.3
x3

+ 0.7
x4

+ 0.3
x5

+ 0.3
x6

, C24 = 0.3
x1

+ 0.7
x2

+ 0.8
x3

+ 0.2
x4

+ 0.6
x5

+ 0.1
x6

;

C15 = 0.6
x1

+ 0.8
x2

+ 0.6
x3

+ 0.5
x4

+ 0.6
x5

+ 0.6
x6

, C25 = 0.2
x1

+ 0.3
x2

+ 0.5
x3

+ 0.6
x4

+ 0.1
x5

+ 0.5
x6

;

C16 = 0.2
x1

+ 0.1
x2

+ 0.7
x3

+ 0.1
x4

+ 0.1
x5

+ 0.7
x6

, C26 = 0.8
x1

+ 0.5
x2

+ 0.7
x3

+ 0.2
x4

+ 0.3
x5

+ 0.7
x6

.

Hence, C̃1 and C̃2 are fuzzy 0.5-coverings. For any a, b ∈ [0, 1], suppose an overlap function

O = a2b2 and its residual implication RO =

{
1, a2 ≤ b;√

b
a2 , a2 > b.

Hence, for A = 0.5
x1

+ 0.3
x2

+

0.7
x3

+ 0.6
x4

+ 0.2
x5

+ 0.3
x6

, we have

C̃1
−
Ñ0.5

x
(A) = 0.8944

x1
+ 1.0000

x2
+ 0.9129

x3
+ 0.7825

x4
+ 0.8944

x5
+ 0.9129

x6
,

C̃1
+
Ñ0.5

x
(A) = 0.1764

x1
+ 0.0441

x2
+ 0.1764

x3
+ 0.0900

x4
+ 0.1764

x5
+ 0.1764

x6
,

C̃2
−
Ñ0.5

x
(A) = 0.9129

x1
+ 1.0000

x2
+ 1.0000

x3
+ 1.0000

x4
+ 0.7454

x5
+ 1,0000

x6
,

C̃2
+
Ñ0.5

x
(A) = 0.0625

x1
+ 0.0784

x2
+ 0.1225

x3
+ 0.0900

x4
+ 0.3136

x5
+ 0.0441

x6
.

Therefore,

C−o
∑2

i (Ñβ
x )i

(A) = 0.9129
x1

+ 1.0000
x2

+ 1.0000
x3

+ 1.0000
x4

+ 0.8944
x5

+ 1.0000
x6

,

C+o
∑2

i (Ñβ
x )i

(A) = 0.0625
x1

+ 0.0441
x2

+ 0.1225
x3

+ 0.0900
x4

+ 0.1764
x5

+ 0.0441
x6

.

Hence, C−o
∑m

i (Ñβ
x )i

(A) * A, A * C+o
∑m

i (Ñβ
x )i

(A) and C−o
∑m

i (Ñβ
x )i

(A) * C+o
∑m

i (Ñβ
x )i

(A).

Proposition 3. Let C̃i (i = 1, 2, · · · , m) be an FCAS with C = {C̃1, · · · , C̃m}. If O(1, a) ≥ a
(∀a ∈ [0, 1]) and Ñβ

x (x) = 1 (∀x ∈ U), then for each A ∈ F(U), C−o
∑m

i (Ñβ
x )i

(A) ⊆ A ⊆

C+o
∑m

i (Ñβ
x )i

(A), where (Ñβ
x )i is the fuzzy β-neighborhood of C̃i.

Proof. By Proposition 1, the proof is immediate.

In Proposition 5(vi) and 5(vii) in [17], the authors gave some single inclusion relations.
Inspired by the related properties in rough sets and fuzzy rough sets, we found that they
could be improved.

(Proposition 5(vi) and 5(vii) in [17]). Let (U, C̃) be an FCAS, A, B ∈ F(U). The following
statements hold:

(vi) If RO is continuous and right monotonic, then C−o
∑m

i (Ñβ
x )i

(A
⋂

B) ⊆ C−o
∑m

i (Ñβ
x )i

(A)⋂
C−o

∑m
i (Ñβ

x )i
(B).

(vii) If O is continuous and monotonic, then C+o
∑m

i (Ñβ
x )i

(A
⋃

B) ⊇ C+o
∑m

i (Ñβ
x )i

(A)
⋃
C+o

∑m
i (Ñβ

x )i
(B).
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Proposition 4. Let (U, C̃) be an FCAS, A, B ∈ F(U). The following statements hold:

(1) If RO is continuous and right monotonic, thenC−o
∑m

i (Ñβ
x )i

(A
⋂

B) = C−o
∑m

i (Ñβ
x )i

(A)
⋂
C−o

∑m
i (Ñβ

x )i
(B).

(2) If O is continuous and monotonic, then C+o
∑m

i (Ñβ
x )i

(A
⋃

B) = C+o
∑m

i (Ñβ
x )i

(A)
⋃
C+o

∑m
i (Ñβ

x )i
(B).

Proof. The proof of Proposition 4 is trivial.

Finally, we improved other results in [17], which are listed as follows:

(1) In Definition 11 on page 6, “P̃−(A)(x) =
∧

y∈U
(1− Ñβ

x (y)
∨

A(y))” should be changed

to “P̃−(A)(x) =
∧

y∈U
((1− Ñβ

x (y))
∨

A(y))”.

(2) In Example 3 on page 8, “C̃−
Ñβ

x
(A)(x) = 0.04

x1
+ 0.04

x2
+ 0.04

x3
+ 0.04

x4
+ 0.04

x5
+ 0.04

x6
” should

be changed to “C̃−
Ñβ

x
(A) = 0.04

x1
+ 0.04

x2
+ 0.04

x3
+ 0.04

x4
+ 0.04

x5
+ 0.04

x6
”.

(3) In Example 3 on page 8, “C̃+

Ñβ
x
(A)(x) = 0.71

x1
+ 0.63

x2
+ 0.71

x3
+ 0.71

x4
+ 0.84

x5
+ 0.71

x6
”

should be changed to “C̃+

Ñβ
x
(A) = 0.71

x1
+ 0.63

x2
+ 0.71

x3
+ 0.71

x4
+ 0.84

x5
+ 0.71

x6
”.

(4) In Example 4 on page 10, “C̃+

Ñβ
x
(A)(x)” and “C̃+

Ñβ
x
(C̃+

Ñβ
x
(A)(x))” should be changed

to “C̃+

Ñβ
x
(A)” and “C̃+

Ñβ
x
(C̃+

Ñβ
x
(A))”. The similar problems in Examples 5 and 6 in [17]

are as follows.

(5) In Example 5 on page 11, the authors used a fuzzy β-covering with different values
for β, β = 0.5 and β = 0.6, to calculate C−o

∑m
i (Ñβ

x )i
(A) and C+o

∑m
i (Ñβ

x )i
(A). This is incorrect,

and it can be explained as follows.

In Example 5 in [17], the authors used the fuzzy β-covering C̃ = {C1, C2, C3, C4, C5}
as follows:

C1 = 0.7
x1

+ 0.6
x2

+ 0.4
x3

+ 0.5
x4

+ 0.1
x5

+ 0.6
x6

,

C2 = 0.5
x1

+ 0.3
x2

+ 0.3
x3

+ 0.7
x4

+ 0.4
x5

+ 0.8
x6

,

C3 = 0.4
x1

+ 0.3
x2

+ 0.5
x3

+ 0.5
x4

+ 0.2
x5

+ 0.4
x6

,

C4 = 0.3
x1

+ 0.7
x2

+ 0.8
x3

+ 0.2
x4

+ 0.6
x5

+ 0.1
x6

,

C5 = 0.2
x1

+ 0.3
x2

+ 0.5
x3

+ 0.6
x4

+ 0.1
x5

+ 0.5
x6

.

Then the authors state that C̃ is a fuzzy 0.5-covering and also a fuzzy 0.6-covering. By
Ñ0.6

x and Ñ0.5
x , the authors calculated

C−o
∑m

i (Ñβ
x )i

(A)(x) = 0.04
x1

+ 0.04
x2

+ 0.04
x3

+ 0.04
x4

+ 0.04
x5

+ 0.04
x6

;

C+o
∑m

i (Ñβ
x )i

(A)(x) = 0.71
x1

+ 0.63
x2

+ 0.71
x3

+ 0.71
x4

+ 0.84
x5

+ 0.71
x6

.

In fact, the process of Example 5 in [17] is incorrect. In Definition 18 in [17], the authors

gave C−o
∑m

i (Ñβ
x )i

(A) =
m∨

i=1
in f
y∈U

RO((Ñβ
x )i(y), A(y)) and C+o

∑m
i (Ñβ

x )i
(A) =

m∧
i=1

sup
y∈U

O((Ñβ
x )i(y),

A(y)), which implies different fuzzy β-coverings C̃1, C̃2, · · · , C̃m with the same β. However,
the authors used the same fuzzy coverings with different values for β, which is contradictory
with Definition 18 in [17]. Hence, Example 5 in [17] is incorrect.
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Several results in [18] must be improved, we list them as follows:

(1) In Definition 11 on page 5, “sup x ∈ UI(R(x, y), A(x))” should be changed to
“sup x ∈ UT(R(x, y), A(x))”.

(2) In the proof of Proposition 1 on page 6, “y = (y1, y2)” in (Õ5) should be changed to
“yi = (yi1, yi2)”.

(3) In Example 1 on page 6, “for x = (x1, x2), y = (y1, y2)” should by changed to “for
x = (x1, x2), y = (y1, y2) ∈ L∗”.

(4) In Example 2 on page 6, “for x =< x1, x2), y = (y1, y2 >” should by changed to “for
x = (x1, x2), y = (y1, y2) ∈ L∗”.

(5) In Example 2 on page 6,

“Rõ(x, y) =



〈1, 0〉, x3
1 ≤ y1 and x3

2 ≤ y2;

〈1− y1/3
2 , y1/3

2 〉, x3
1 ≤ y1 and x3

2 < y2;

〈y1/3
1 , 0〉, x3

1 > y1 and x3
2 ≥ y2;

〈y1/3
1 , y1/3

2 〉, x3
1 > y1 and x3

2 < y2."

should be changed to

“Rõ(x, y) =



〈1, 0〉, x3
1 ≤ y1 and x3

2 ≤ y2;

〈1− y1/3
2 , y1/3

2 〉, x3
1 ≤ y1 and x3

2 > y2;

〈y1/3
1 , 0〉, x3

1 > y1 and x3
2 ≥ y2;

〈y1/3
1 , y1/3

2 〉, x3
1 > y1 and x3

2 < y2."

(6) In Example 2 on page 6,

“Rõ(x, y) =



〈1, 0〉, x1 ≤ y2
1 and x2 ≤ y2

2;

〈1− y2
2, y2

2〉, x1 ≤ y2
1 and x2 < y2

2;

〈y2
1, 0〉, x1 > y2

1 and x2 ≥ y2
2;

〈y2
1, y2

2〉, x1 > y2
1 and x2 < y2

2."

should be changed to

“Rõ(x, y) =



〈1, 0〉, x1 ≤ y2
1 and x2 ≤ y2

2;

〈1− y2
2, y2

2〉, x1 ≤ y2
1 and x2 > y2

2;

〈y2
1, 0〉, x1 > y2

1 and x2 ≥ y2
2;

〈y2
1, y2

2〉, x1 > y2
1 and x2 < y2

2."

4. A Novel Fuzzy Covering Rough Set Model Based on Generalized Overlap Functions

Based on [17,18], we extended the existing fuzzy β-covering rough sets to a novel fuzzy
covering rough set model based on generalized overlap functions. This section mainly takes
the generalized overlap function as the bridge, establishes the fuzzy β-covering rough set
model based on the generalized overlap function and studies the corresponding properties.
Firstly, the notion of generalized overlap function is presented as follows.

Definition 7 ([20]). A bivariate function O′ : [0, 1]2 → [0, 1] is called a generalized overlap
function if, for every a, b, c ∈ [0, 1], the following conditions hold:
(O1) O′(a, b) = O′(b, a) (symmetry);

(O2) if ab = 0, then O′(a, b) = 0;

(O3) if ab = 1, then O′(a, b) = 1;

(O4) if b ≤ c, then O′(a, b) ≤ O′(a, c);

(O5) O′ is continuous.
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Let O′ : [0, 1]2 → [0, 1] be a generalized overlap function, then, for every a, b ∈ [0, 1],
the bivariate function RO′ : [0, 1]2 → [0, 1] is defined by

IO′(a, b) = max{c ∈ [0, 1] | O′(a, c) ≤ b},

where IO′ is the residual implication induced from the generalized overlap function O′.
For example, for any a, b ∈ [0, 1], O′(a, b) = max{0, x2 + y2 − 1} is a generalized overlap

function IO′(a, b) =
{

1, x2 ≤ y;√
1 + y− x2, otherwise.

Then, the fuzzy β-covering rough set model based on the generalized overlap function
is established as follows.

Definition 8. Let (U, C̃) be a β-FCAS, O′ be a generalized overlap function and IO′ be the residual
implication induced from the generalized overlap function O′. For any A ∈ F(U), the lower
approximation C(A) and upper approximation C(A) of A related to O′ under C̃ are denoted as
follows: for any x ∈ U,

C(A)(x) = supy∈UO′(Ñβ
x (y), A(y)),

C(A)(x) = in fy∈U IO′(Ñβ
x (y), A(y)).

Example 4. Let U = {x1, x2, x3, x4, x5, x6}, C̃ = {C1, C2, C3, C4, C5} and β = 0.5, where

C1 =
0.7
x1

+
0.6
x2

+
0.4
x3

+
0.5
x4

+
0.1
x5

+
0.6
x6

, C2 =
0.5
x1

+
0.3
x2

+
0.3
x3

+
0.7
x4

+
0.4
x5

+
0.8
x6

,

C3 =
0.4
x1

+
0.3
x2

+
0.5
x3

+
0.5
x4

+
0.2
x5

+
0.4
x6

, C4 =
0.3
x1

+
0.7
x2

+
0.8
x3

+
0.2
x4

+
0.6
x5

+
0.1
x6

,

C5 =
0.2
x1

+
0.3
x2

+
0.5
x3

+
0.6
x4

+
0.1
x5

+
0.5
x6

.

From Definition 8, we have C̃ is a fuzzy β-covering. Assume A = 0.27
x1

+ 0.54
x2

+ 0.95
x3

+

0.96
x4

+ 0.15
x5

+ 0.97
x6

, O′(x, y) = min{
√

x,
√

y} and IO′(x, y) =
{

1, x2 ≤ y,
y2, others.

Then,

C(A) =
0.7746

x1
+

0.7348
x2

+
0.7071

x3
+

0.7071
x4

+
0.8944

x5
+

0.7071
x6

,

C(A) =
0.0225

x1
+

0.0225
x2

+
0.0225

x3
+

0.0225
x4

+
0.0225

x5
+

0.0225
x6

.

Proposition 5. Let C̃ be a fuzzy β-covering, A ∈ F(U) be a generalized overlap function and IO′

be the residual implication induced from the generalized overlap function O′. Then we have
(1) C(∅) = ∅,
(2) C(U) = U.

Proof. (1) For any x ∈ U, we have C(∅)(x) = supy∈UO′(Ñβ
x (y), ∅(y)) = supy∈UO′(Ñβ

x (y),
0) = 0. Therefore, C(∅) = ∅.
(2) For any x ∈ U, we have IO′(x, 1) = 1. Then, C(U)(x) = in fy∈U IO′(Ñβ

x (y), U(y)) =

in fy∈U IO′(Ñβ
x (y), 1) = 1. That is, C(U) = U.

Theorem 1. Let C̃ be a fuzzy β-covering, A ∈ F(U), O′ be a generalized overlap function and
IO′ be the residual implication induced from the generalized overlap function O′. If for any x ∈ U,
O′(1, x) ≥ x and Nβ

C(x) = 1, then C(A) ⊆ A ⊆ C(A).
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Proof. For any x ∈ U, C(A)(x) = supy∈UO′(Ñβ
x (x), A(y)) ≥ O′(Ñβ

x (x), A(y)) = O′(1,
A(x)) ≥ A(X). Then, A ⊆ C(A). Next we only need to prove that C(A) ⊆ A. For
any x ∈ U, denote IO′(1, x) = max{z : O′(1, z) ≤ x} = z0, then O′(1, z0) ≤ x. As-
sume z0 > x, then O′(1, z0) ≥ z0 > x, which contradicts O′(1, z0) ≤ x. Therefore,
z0 ≤ x. That is, IO′(1, x) = max{z : O′(1, z) ≤ x} ≤ x. Then, by Definition 8, we have
C(A)(x) = in fy∈U IO′(Ñβ

x (y), A(y)) ≤ IO′(Ñβ
x (x), A(x)) = IO′(1, A(x)) ≤ A(x), that is,

C(A) ⊆ A.

Proposition 6. Let C̃ be a fuzzy β-covering, A, B ∈ F(U), O′ be a generalized overlap function
and IO′ be the residual implication induced from the generalized overlap function O′. If A ⊆ B,
then we have:
(1) C(A) ⊆ C(B),
(2) C(A) ⊆ C(B).

Proof. Since A ⊆ B, then for any x ∈ U, we have A(x) ≤ B(x). It follows that C(A)(x) =
supy∈UO′(Ñβ

x (y), A(y)) ≤ supy∈UO′(Ñβ
x (y), B(y)) = C(B)(x). So, C(A) ⊆ C(B). Simi-

larly, we have C(A) ⊆ C(B).

Proposition 7. Let C̃ be a fuzzy β-covering, A, B ∈ F(U), O′ be a generalized overlap function
and IO′ be the residual implication induced from the generalized overlap function O′. If A ⊆ B,
then we have the following:
(1) C(A ∪ B) = C(A) ∪ C(B),
(2) C(A ∩ B) = C(A) ∩ C(B),
(3) C(A ∩ B) ⊆ C(A) ∩ C(B),
(4) C(A ∪ B) ⊇ C(A) ∪ C(B).

Proof. From Definition 8, the statements (1) and (2) are immediate.
(3) From Proposition 6, we have C(A ∩ B) ⊆ C(A) and C(A ∩ B) ⊆ C(B), so C(A ∩ B) ⊆
C(A) ∩ C(B).
(4) From Proposition 6, we have C(A ∪ B) ⊇ C(A) and C(A ∪ B) ⊇ C(B), so C(A ∪ B) ⊇
C(A) ∪ C(B).

5. Decision-Making Methods under the Fuzzy Covering Rough Set Model with
Generalized Overlap Functions
5.1. The Background Description of Decision Making

Let the universe U = {xi : i = 1, 2, 3, · · · , m} be the type set of pneumonia, V = {yj :
1 = 1, 2, 3, · · · , n} be the set of characteristics of the pneumonia disease (such as cough,
vomiting, fever, chest pain and fatigue). Suppose doctors diagnose each case xi.

Suppose doctors assign a characteristic value Cj(xi) to the symptoms xi of each type of
pneumonia yj, where Cj(xi) ∈ [0, 1] is the degree that doctors think each of the symptoms
xi is caused by the type of pneumonia yj. Let β ∈ (0, 1]. If there is at least one feature
yj ∈ V that makes the evaluation value Cj(xi) not less than β for any xi ∈ U, it is a fuzzy
β-covering information table.

For the introduction of a new case B, the doctor considers that the degree of it belonging
to xi is B(xi). Then, how can one make a decision about the newly introduced case B by
using the fuzzy β-covering information table above, that is, which type of pneumonia does
the introduced case belong to?

5.2. The Novel Decision-Making Method

In this subsection, a new decision-making method under a fuzzy β-covering rough set
model with generalized overlap functions is proposed as follows (Algorithm 1).
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Algorithm 1 A decision-making method of fuzzy β-covering rough sets based on general-
ized overlap functions

Input: Fuzzy β-covering information table (U, C̃, β, B).
Output: Which type of pneumonia does sample B belong to.
Step 1: For any xi ∈ U(i = 1, 2, 3, · · · , m), calculate the fuzzy β-covering neighborhood
Ñβ

xi ;
Step 2: Calculate the upper approximation C(B) and lower approximation C(B) of the
β-covering;
Step 3: Give the weight ζ ∈ [0, 1];
Step 4: Calculate S = ζC(B) + (1− ζ)C(B);
Step 5: Determine the type of pneumonia in case B according to the value of S(xi).

5.3. Application Examples and Comparative Analysis

In this section, the fuzzy β-covering rough set model and corresponding decision-
making method based on generalized overlap functions are used to give the relevant
numerical calculation methods and comparative analysis through examples. The experi-
ments were carried out on a personal computer with 64-bit Windows 10, a ADM Ryzen 7
3700X 8-Core Processor 3.59 GHz and 16 GB of memory. The programming language was
Matlab r2016a.

Example 5. An fuzzy β-covering information table (U, C̃, β, B) is given, where β = 0.5,
B = 0.2785

x1
+ 0.5469

x2
+ 0.9575

x3
+ 0.9649

x4
+ 0.1576

x5
+ 0.9705

x6
and (U, C̃) is shown in Table 1.

Table 1. A fuzzy β-covering.

U C1 C2 C3 C4 C5

x1 0.7 0.5 0.4 0.3 0.2
x2 0.6 0.3 0.3 0.7 0.3
x3 0.4 0.3 0.5 0.8 0.5
x4 0.5 0.7 0.5 0.2 0.6
x5 0.1 0.4 0.2 0.6 0.1
x6 0.6 0.8 0.4 0.1 0.5

Step 1: For any xi ∈ U(i = 1, 2, · · · , 6), calculate the fuzzy β-covering neighborhoods Ñβ
xi ,

as shown in Table 2.

Table 2. All fuzzy β-covering neighborhoods Ñβ
xi .

x1 x2 x3 x4 x5 x6

Ñβ
x1

0, 5 0.3 0.2 0.2 0.3 0.2

Ñβ
x2

0.3 0.6 0.3 0.3 0.7 0.3

Ñβ
x3

0.3 0.4 0.5 0.3 0.8 0.3

Ñβ
x4

0.5 0.2 0.2 0.5 0.2 0.5

Ñβ
x5

0.1 0.1 0.1 0.1 0.6 0.1

Ñβ
x6

0.6 0.1 0.1 0.4 0.1 0.5

Step 2: Suppose O′(a, b) = max{0, x2 +y2−1} and IO′(a, b) =
{

1, x2 ≤ y;√
1+ y− x2, otherwise.

Then

C(B) = 0.3019
x1

+ 0.0768
x2

+ 0.1688
x3

+ 0.1810
x4

+ 0.5568
x5

+ 0.1919
x6

,
C(B) = 1.000

x1
+ 1.000

x2
+ 1.000

x3
+ 1.000

x4
+ 0.8931

x5
+ 1.000

x6
.

Step 3: Give the weight ζ = 0.1.
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Step 4: Calculate S = ζC(B) + (1− ζ)C(B) = 0.3717
x1

+ 0.1691
x2

+ 0.2501
x3

+ 0.2629
x4

+ 0.5904
x5

+ 0.2727
x6

.
Step 5: Since S(x2) ≺ S(x3) ≺ S(x4) ≺ S(x6) ≺ S(x1) ≺ S(x5), the type of pneumonia in

case B is x5.

On the basis of Example 5, we make the following comparative analysis with the
existing methods. First, in the case of β = 0.5 and ζ = 0.1, we combine the existing fuzzy
rough set models (references [9,17,24,25]) with the decision method proposed in this paper
to illustrate the advantages of the model proposed in this paper, which is shown in Table 3.

Table 3. First comparative analysis.

Different Fuzzy Rough Set Models for Decision Making Decision Ordering

Fuzzy rough set models for decision making in [9,24]. S(x3) ≈ S(x4) ≈ S(x6) ≺ S(x2) ≺ S(x1) ≺ S(x5)

Fuzzy rough set models for decision making in [17]. S(x3) ≈ S(x4) ≈ S(x6) ≺ S(x2) ≺ S(x1) ≺ S(x5)

Fuzzy rough set models for decision making in [25]. S(x3) ≈ S(x4) ≈ S(x6) ≺ S(x2) ≺ S(x1) ≺ S(x5)

The proposed models for decision making in this paper. S(x2) ≺ S(x3) ≺ S(x4) ≺ S(x6) ≺ S(x1) ≺ S(x5)

As can be seen in Table 3, the decision result proposed in this paper is “the pneumonia
type of case B is x5”, which is consistent with the decision result corresponding to the model
proposed in [9,17,24,25]. Therefore, the decision method proposed in this paper based on the
generalized overlap function of the fuzzy β-covering rough set is effective. In the decision-
making process corresponding to the model proposed in [9,17,24,25], “S(x3) ≈ S(x4) ≈ S(x6)”
makes it impossible for decision makers to accurately distinguish x3, x4 and x6, but the
decision values under the model proposed in this paper are not equal, which is good for a
decision maker so they can find their difference. From this viewpoint, the used methodology
is advantageous in comparison to the current state-of-the-art methods [9,17,24,25]. Ref. [24]
proposes a multi-granularity fuzzy covering rough set model, which is a generalized form
of Ref. [9]. The rough set model based on a fuzzy relation is proposed in [17]. The fuzzy
relation used in this example is the fuzzy relation induced by a fuzzy neighborhood, i.e.,
R(x, y) = Ñβ

x (y). Since Refs. [17,25] are all models based on overlap functions, the overlap
functions selected in this example are O(x, y) = min{

√
x,
√

y} and its residual implication

RO =

{
1, x2 ≤ y;
y2, x2 > y.

. It can be seen from the experimental results that the fuzzy β-

covering rough set model based on generalized overlap functions has a better application
effect in decision making, since the generalized overlap functions weaken the boundary
condition and improve the application ability of them.

In order to further illustrate the stability of the model built in this paper, different
threshold values were selected for comparative experiments, and the results are shown in
Table 4.

As can be seen from Table 4, for different ζ ∈ [0, 1], decision makers still cannot
accurately distinguish x3, x4 and x6 in the decision-making process corresponding to the
model proposed in [9,24]. This is because their decision values are all equal, while the
decision values in the model proposed in this paper are not equal, showing a good degree
of differentiation. When ζ = 0.1, 0.2, · · · , 0.7, under the model proposed in this paper, the
decision result is “the type of pneumonia in case B is x5”, while under the model proposed
in [9,24], the decision result is “the type of pneumonia in case B is x3, x4, x5 or x6”, which
indicates that the decision method established under the model proposed in this paper has
good stability and robustness.
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Table 4. Second comparative analysis.

Different ζ ∈ [0, 1] Decision Making in [9,24] Decision Making in This Paper

ζ = 0.1 S(x3) ≈ S(x4) ≈ S(x6) ≺ S(x2) ≺ S(x1) ≺ S(x5) S(x2) ≺ S(x3) ≺ S(x4) ≺ S(x6) ≺ S(x1) ≺ S(x5)

ζ = 0.2 S(x3) ≈ S(x4) ≈ S(x6) ≺ S(x2) ≺ S(x1) ≺ S(x5) S(x2) ≺ S(x3) ≺ S(x4) ≺ S(x6) ≺ S(x1) ≺ S(x5)

ζ = 0.3 S(x3) ≈ S(x4) ≈ S(x6) ≺ S(x2) ≺ S(x1) ≺ S(x5) S(x2) ≺ S(x3) ≺ S(x4) ≺ S(x6) ≺ S(x1) ≺ S(x5)

ζ = 0.4 S(x2) ≺ S(x1) ≺ S(x5) ≺ S(x3) ≈ S(x4) ≈ S(x6) S(x2) ≺ S(x3) ≺ S(x4) ≺ S(x6) ≺ S(x1) ≺ S(x5)

ζ = 0.5 S(x2) ≺ S(x1) ≺ S(x5) ≺ S(x3) ≈ S(x4) ≈ S(x6) S(x2) ≺ S(x3) ≺ S(x4) ≺ S(x6) ≺ S(x1) ≺ S(x5)

ζ = 0.6 S(x2) ≺ S(x1) ≺ S(x5) ≺ S(x3) ≈ S(x4) ≈ S(x6) S(x2) ≺ S(x3) ≺ S(x4) ≺ S(x6) ≺ S(x1) ≺ S(x5)

ζ = 0.7 S(x2) ≺ S(x1) ≺ S(x5) ≺ S(x3) ≈ S(x4) ≈ S(x6) S(x2) ≺ S(x3) ≺ S(x4) ≺ S(x6) ≺ S(x1) ≺ S(x5)

ζ = 0.8 S(x2) ≺ S(x1) ≺ S(x5) ≺ S(x3) ≈ S(x4) ≈ S(x6) S(x2) ≺ S(x5) ≺ S(x3) ≺ S(x4) ≺ S(x6) ≺ S(x1)

ζ = 0.9 S(x2) ≺ S(x1) ≺ S(x5) ≺ S(x3) ≈ S(x4) ≈ S(x6) S(x5) ≺ S(x2) ≺ S(x3) ≺ S(x4) ≺ S(x6) ≺ S(x1)

6. Conclusions

In this paper, the basic properties of fuzzy β-covering rough upper and lower ap-
proximation operators based on generalized overlap functions are studied, and a new
multi-attribute decision-making method is proposed, which solves the problem that at-
tribute importance degree is difficult to obtain in existing decision-making methods. Its
advantages are mainly embodied by the following two aspects:
(1) The model has the important properties of the original fuzzy rough set model. The model

is an extended form of the existing rough set model based on fuzzy relations;
(2) This model expands the application ability of fuzzy rough sets in MCDM. The feasi-

bility and advantages of the new decision-making method are illustrated through the
comparative analysis of concrete examples.
As the subject of subsequent research, the combination of fuzzy rough sets based on

generalized overlap functions will be discussed, and relevant theoretical research results
will be applied to knowledge discovery and data mining and other fields.
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