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Abstract: With databases growing at an unrelenting rate, it may be difficult and complex to extract
statistics by accessing all of the data in many practical problems. Attribute reduction, as an effective
method to remove redundant attributes from massive data, has demonstrated its remarkable capa-
bility in simplifying information systems. In this paper, we concentrate on reducing attributes in
incomplete information systems. We introduce a novel definition of a binary similarity matrix and
present a method to calculate the significance of attributes in correspondence. Secondly, We develop
a heuristic attribute reduction algorithm using a binary similarity matrix and attribute significance
as heuristic knowledge. In addition, we use a numerical example to showcase the practicality and
accuracy of the algorithm. In conclusion, we demonstrate through comparative analysis that our
algorithm outperforms some existing attribute reduction methods.

Keywords: attribute reduction; binary similarity matrix; attribute significance; incomplete
information system

1. Introduction

In the age of information explosion, abundant information rapidly gushes towards
people like tidewater, but it is too deficient to adopt traditional knowledge to dispose of the
information. How to mine, store and process a large amount of complex data is a critical
problem that needs to be solved urgently. Extracting useful data information efficiently
from incomplete information systems has become a hot topic in information science and
technology areas. Attribute reduction, also known as feature selection, can find out as few
attributes as possible to keep the classification of information tables and has been applied
to many practical problems [1–7]. Specifically, Chen et al. [8] investigated feature selection
by combining multiple feature selection results and pointed out that a combination of filter
(i.e., principal component analysis) and wrapper (i.e., genetic algorithms) techniques by the
union method is a better choice. Yuan et al. [9] studied mixed attribute reduction to maintain
learning ability without decision information based on fuzzy rough sets. Xie et al. [10]
considered the weight of each attribute in information systems with the help of a data
binning method and information entropy theory, and further designed a novel attribute
reduction method by using weighted neighborhood probabilistic rough sets.

So far, there exist two kinds of algorithms for attribute reduction. One is based on a
discernibility matrix proposed by Skowron and Rauszer [11]. The central steps involve
obtaining a discernibility matrix and transforming the conjunctive normal form to a disjunc-
tive normal form. The attribute reduction can be obtained directly through the disjunctive
normal form. Although the attribute reduction algorithm based on discernibility matrix can
acquire all reductions simultaneously, storing the discernibility matrix may require a lot of
time and storage space, and the transformation from conjunctive normal form to disjunctive
normal form may encounter a combinatorial explosion problem [12]. The other is heuristic
algorithm, which has low time complexity and is effective for large data sets, but it can
obtain only one reduction at one time. For an information system, obtaining the optimal
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reduction of attributes has been proved to be an NP-hard problem, which motivates many
scholars to devote themselves to heuristic attribute reduction algorithms. There are many
types of heuristic knowledge for heuristic attribute reduction algorithms, the most common
is attribute significance, which can reflect the importance of an attribute for an information
system. Specifically, Shen and Jiang [13] adopted information entropy to calculate attribute
significance. Later on, Zhou et al. [14] proposed a method to acquire attribute significance
with the help of a similarity matrix. Subsequently, Dai et al. [15] put forward a new con-
ditional entropy and provided its application to attribute reduction. Lately, Hu et al. [16]
utilized a dependency relationship of weighted neighborhood rough set (WNRS) model
to evaluate attribute significance, and designed a greedy search heuristic algorithm based
on WNRS. In addition, the discernibility matrix also behaved well in calculating attribute
significance. However, it often requires large storage space during the attribute reduction
process. To overcome this defect, many scholars considered a binary discernibility matrix,
which is a generalization of the discernibility matrix. Instituto and Nacional [17] defined a
more ordered matrix based on the binary discernibility matrix, which allows us to reduce
the number of candidate attributes. Ma and Zhang [18] proposed a form of generalized
binary discernibility matrix, and further built a new algorithm based on a generalized
binary discernibility matrix. Li et al. [19] developed an attribute reduction algorithm based
on an improved binary discernibility matrix. Compared with the discernibility matrix,
binary discernibility matrix can effectively save storage space and obtain information to
calculate attribute significance conveniently. Meanwhile, binary discernibility matrix has
the advantages of visual representation and being easy to understand.

As mentioned above, both discernibility matrix and binary discernibility matrix have
been applied to attribute reduction algorithms, and binary discernibility matrix outper-
formed discernibility matrix usually. On the other hand, attribute reduction algorithms
based on similarity matrix have been studied systemically. Up to now, there have not been
any reduction attribute algorithms based on binary similarity matrix. Therefore, in this
paper, we concentrate on proposing a binary similarity matrix and further establish a
heuristic attribute reduction algorithm based on the binary similarity matrix for incomplete
information systems.

The structure of the paper is as follows. In Section 2, we firstly review some basic
definitions about attribute reduction and define binary similarity matrix. In Section 3, we
propose a method to calculate attribute significance based on binary similarity matrix and
develop an attribute reduction algorithm for incomplete decision information systems.
In Section 4, the effectiveness and advantages of the algorithm are demonstrated by some
numerical examples. Section 5 concludes the paper.

2. Preliminaries

In this section, we recall some basic definitions about incomplete information systems,
tolerance relations and binary similarity matrix.

Definition 1 ([20]). Suppose (U, A, V, f ) is a quadruplet, U = {x1, x2, · · · , xn} is a finite set of
objects, A = {a1, a2, · · · , am} is a set of attributes, f : U × A→ V is an information function and
V = ∪a∈AVa is a set of values, then S = (U, A, f , V) is called an information system. If there exist
x ∈ U, a ∈ A such that f (x, a) = ∗, “∗” represents a missing value, then S = (U, A, f , V) is an
incomplete information system.

Sometimes, S = (U, A, f , V) can be abbreviated as S = (U, A) while there are no confusions.
If A = C ∪ D and C ∩ D = ∅, then (U, C ∪ D) is called a decision information system, where
C and D are termed as a condition attribute set and decision attribute set, respectively. In many
practical applications, D often contains just one attribute, denoted by D = {d}.

Definition 2 ([11]). Suppose S = (U, A) is an incomplete information system, C ⊆ A, for any
xi, xj ∈ U, tolerance relation RC is defined as:

xiRCxj ⇐⇒ ∀a ∈ C, f (xi, a) = f (xj, a) or f (xi, a) = ∗ or f (xj, a) = ∗.
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It is obvious that RC is reflexive and symmetric, but not necessarily transitive, and U/RC =
{RC(x1), RC(x2), · · · , RC(x|U|)} is a cover of U, where RC(xi) = {xj|xiRCxj}(xi, xj ∈ U).

Definition 3 ([21]). In an incomplete decision information system S = (U, C ∪ D), U/RC =
{RC(x1), RC(x2), · · · , RC(x|U|)}, U/RD = {RD(x1), RD(x2), · · · , RD(x|U|)}, then UCD =
{x|RC(x) ⊆ RD(x)} is called the consistent part of S. If UCD = U, then S is consistent.
Otherwise, S is inconsistent.

Definition 4 ([22] ). Let S = (U, C ∪ D) be an incomplete decision information system, ∅ 6=
T ⊆ C. If T satisfies the following conditions

(1) UTD = UCD,
(2) For any ∅ 6= T

′ ⊂ T, UT′D 6= UCD,

then T is called a reduction of C.

In a decision information system S = (U, C ∪ D), the attribute reduction algorithm
based on similarity matrix is effective and is simple to implement.

Definition 5 ([14]). For an incomplete decision information system S = (U, C ∪ {d}), U =
{x1, x2, · · · , xn}, C = {a1, a2, · · · , am}, the similarity matrix M = [m(i, j)]n×n (i, j = 1, 2, · · · , n)
is defined as

m(i, j) =


{a ∈ C|a(xi) = a(xj)∨ a(xi) = ∗∨ a(xj) = ∗}, d(xi) 6= d(xj) ∧min{|σC(xi)|, |σC(xj)|} = 1,

∅, else.

where σC(xi) = {d(y)|y ∈ RC(xi)}.

Definition 6 ([14]). In an incomplete decision information system S = (U, C ∪ {d}), U =
{x1, x2, · · · , xn}, C = {a1, a2, · · · , am}, the significance of attribute ak is

SGF(ak) = −
n

∑
i=1

n

∑
j=1

λij/card(m(i, j)),

if ak(ak ∈ C) ∈ m(i, j), then λij = 1, otherwise λij = 0, card(m(i, j)) represents the number of
attributes contained in m(i, j).

In Definition 5, all elements in the similarity matrix are attribute sets and all objects
need to be distinguished, so a large space is needed to store the similarity matrix. To save
storage space, we define a binary similarity matrix.

Definition 7. In an incomplete decision information system S = (U, C∪{d}), U = {x1, x2, · · · , xn},
C = {a1, a2, · · · , am}. For xi, xj ∈ U (xi 6= xj), if d(xi) 6= d(xj) and min{|σC(xi)|, |σC(xj)|}
= 1, then the binary similarity matrix BSM = [m((i, j), ak)](ak ∈ C) is defined as,

m((i, j), ak) =


1, ak(xi) = ak(xj) ∨ ak(xi) = ∗ ∨ ak(xj) = ∗,

0, ak(xi) 6= ak(xj).

where σC(xi) = {d(y)|y ∈ RC(xi)}.

In a binary similarity matrix, each element is represented by “0” or “1”, and we just
need to consider objects that satisfy the constraints. Therefore, the storage space of the
binary similarity matrix is small, and the calculation of binary similarity matrix is simple.
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Example 1. Given an incomplete decision information system S = (U, C ∪ {d}) (as shown in
Table 1), U = {x1, x2, x3, x4, x5, x6, x7, x8}, C = {a1, a2, a3, a4, a5}. The binary similarity matrix
can be obtained by the following steps.

Firstly, it is easy to obtain object pairs that satisfy condition d(xi) 6= d(xj): (x1, x2), (x1, x5),
(x1, x8), (x2, x3), (x2, x4), (x2, x6), (x2, x7), (x3, x5), (x3, x8), (x4, x5), (x4, x8), (x5, x6), (x5, x7),
(x6, x8), (x7, x8).

Secondly, it is obvious that RC(x1) = {x1}, RC(x2) = {x2, x3}, RC(x3) = {x2, x3},
RC(x4) = {x4}, RC(x5) = {x5, x6, x7}, RC(x6) = {x5, x6, x7}, RC(x7) = {x5, x6, x7},
RC(x8) = {x2, x3, x6, x8}. Therefore, σC(x1) = {1}, σC(x2) = {1, 2}, σC(x3) = {1, 2},
σC(x4) = {1}, σC(x5) = {1, 2}, σC(x6) = {1, 2}, σC(x7) = {1, 2}, σC(x8) = {1, 2}.

Finally, we can have the object pairs satisfying d(xi) 6= d(xj) and min{|σC(xi)|, |σC(xj)|} =
1 are (x1, x2), (x1, x5), (x2, x4), (x4, x5), (x1, x8), (x4, x8). Therefore, a binary similarity matrix is
obtained as shown in Table 2.

Table 1. Incomplete decision table.

a1 a2 a3 a4 a5 d

x1 1 3 2 0 2 1
x2 ∗ 1 ∗ 1 0 2
x3 ∗ 1 ∗ 1 0 1
x4 1 3 2 1 0 1
x5 3 ∗ ∗ 3 1 2
x6 ∗ 0 0 ∗ ∗ 1
x7 3 1 1 3 1 1
x8 2 ∗ ∗ ∗ ∗ 2

Table 2. Binary similarity matrix.

a1 a2 a3 a4 a5

(x1, x2) 1 0 1 0 0
(x1, x5) 0 1 1 0 0
(x2, x4) 1 0 1 1 1
(x4, x5) 0 1 1 0 0
(x1, x8) 0 1 1 1 1
(x4, x8) 0 1 1 1 1

3. Heuristic Attribute Reduction Algorithm Based on Binary Similar Matrix

In this part, we apply the binary similarity matrix to define attribute significance
and then design a heuristic attribute reduction algorithm with attribute significance as
heuristic knowledge.

In order to calculate attribute significance conveniently, we add a bottom row to the
binary similarity matrix to describe the number of “1” in the column where ak(ak ∈ C) is
located, representing the number of object pairs (xi, xj) belonging to the same tolerance
class under attribute ak. Take Table 2 as an example, the extended binary similarity matrix
(as shown in Table 3) can be acquired easily.

Table 3. Extended binary similarity matrix 1.

a1 a2 a3 a4

(x1, x2) 1 0 1 0
(x1, x5) 0 1 1 0
(x2, x4) 1 0 1 1
(x4, x5) 0 1 1 0
(x1, x8) 0 1 1 1
(x4, x8) 0 1 1 1

t 2 4 6 3
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Definition 8. Given an incomplete decision information system S = (U, C ∪ {d}) with binary

similarity matrix BSM, the significance attribute of ak (ak ∈ C) is defined as CS(ak) = −
tk

|BSM| ,

where tk is the number of "1" in the column ak, and |BSM| is the number of object pairs in the
binary similarity matrix.

In Definition 8, if |BSM| is fixed, then the larger CS(ak) is, the smaller tk is, indicating
less object pairs in terms of tolerance relation induced by attribute ak. In addition, the larger
CS(ak) is, it indicates the stronger ability of ak to distinguish object pairs, that is, the more
significant ak is. Therefore, CS(ak) directly reflects the significance of ak.

In order to reduce the time complexity, most attribute reduction algorithms start
from core attributes. Next, Theorem 1 shows how to determine the core attributes of an
information system according to binary similarity matrix.

Theorem 1. Given an incomplete decision system S = (U, C ∪ {d}). For objects xi, xj ∈ U
(xi 6= xj), if there is only one ak ∈ C satisfying m((xi, xj), ak) = 0, then ak is a core attribute,
i.e., ak ∈ core(C).

Proof. According to Definition 7, we have d(xi) 6= d(xj) and min{|σC(xi)|, |σC(xj)|} = 1.
As min{|σC(xi)|, |σC(xj)|} = 1, then |σC(xj)| = 1 or |σC(xi)| = 1. If |σC(xj)| = 1, then
RC(xj) ⊆ R{d}(xj), so xj ∈ UCD. If |σC(xi)| = 1, then RC(xi) ⊆ R{d}(xi), hence xi ∈ UCD.
Because d(xi) 6= d(xj), we have xj /∈ R{d}(xi) and xi /∈ R{d}(xj). In addition, if there is
only one ak ∈ C such that m((xi, xj), ak) = 0, it indicates that objects xi and xj satisfy the
condition ak(xi) 6= ak(xj), so al(xi) = al(xj)(al ∈ (C− {ak}), and xj /∈ RC(xi), xi /∈ RC(xj).
Let C− {ak} = E, obviously, xj ∈ RE(xi), xi ∈ RE(xj). Since UED = {x|RE(x) ⊆ R{d}(x)},
we have xi /∈ UED and xj /∈ UED, which implies UED ⊂ UCD. Therefore, ak ∈ core(C).

According to Theorem 1, it is easy to obtain core(C) = {a1, a2} in Example 1.
Next, we propose a new attribute reduction algorithm based on binary similarity

matrix, which takes attribute significance as heuristic knowledge. The main process is
as follows.

The binary similarity matrix in our algorithm needs less storage space compared with
some existing similarity matrixes. On the other hand, our attribute reduction method
is simpler and more direct than previous similarity matrix-based methods. In addition,
in some heuristic attribute reduction algorithms, multiple tests are needed to verify whether
a reduct is obtained. In our heuristic attribute reduction algorithm, the sign of the end of
the algorithm is that the binary similarity matrix does not contain “1”, and multiple tests
are not needed. Therefore, the time complexity can be reduced significantly.

4. Numerical Illustration
4.1. Attribute Reduction of Incomplete Decision Tables

To verify the effectiveness of the proposed algorithm, an incomplete decision table (as
shown in Table 4) in [14] is adopted. Next, we apply our heuristic algorithm to calculate
the attribute reduction of Table 4.

Example 2 ([14]). Given an incomplete decision table S = (U, C ∪ {d}) (as shown in Table 4),
U = {x1, x2, · · · , x12}, C = {a1, a2, · · · , a8}.

Step 1. Firstly, we apply a Boolean matrix to calculate UCD. According to Table 4,
the Boolean relation matrices of Ra1 , Ra2 , · · · , Ra8 , and Rd can be acquired as below.

Table 4. Incomplete decision Table 2.

a1 a2 a3 a4 a5 a6 a7 a8 d

x1 3 2 1 1 1 0 ∗ ∗ 0
x2 2 3 2 0 ∗ 1 3 1 0
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Table 4. Cont.

a1 a2 a3 a4 a5 a6 a7 a8 d

x3 2 3 2 0 1 ∗ 3 1 1
x4 ∗ 2 ∗ 1 ∗ 2 0 1 1
x5 ∗ 2 ∗ 1 1 2 0 1 1
x6 2 3 2 1 3 1 ∗ 1 1
x7 3 ∗ ∗ 3 1 0 2 ∗ 0
x8 ∗ 0 0 ∗ ∗ 0 2 0 1
x9 3 2 1 3 1 1 2 1 1
x10 1 ∗ ∗ ∗ 1 0 ∗ 0 0
x11 ∗ 2 ∗ ∗ 1 ∗ 0 1 0
x12 3 2 1 ∗ ∗ 0 2 3 0

MRa1
=



1 0 0 1 1 0 1 1 1 0 1 1
0 1 1 1 1 1 0 1 0 0 1 0
0 1 1 1 1 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 0 1 0 0 1 0
1 0 0 1 1 0 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 0 1 1 1 0 1 1
0 0 0 1 1 0 0 1 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 0 1 1 1 0 1 1



, MRa2
=



1 0 0 1 1 0 1 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 0 0
0 1 1 0 0 1 1 0 0 1 0 0
1 0 0 1 1 0 1 0 1 1 1 1
1 0 0 1 1 0 1 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 0 1 0 0
1 0 0 1 1 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 0 1 0 1 1 1 1
1 0 0 1 1 0 1 0 1 1 1 1



,

MRa3
=



1 0 0 1 1 0 1 0 1 1 1 1
0 1 1 1 1 1 1 0 0 1 1 0
0 1 1 1 1 1 1 0 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 0 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 0 1 0 1 0 1 1



, MRa4
=



1 0 0 1 1 1 0 1 0 1 1 1
0 1 1 0 0 0 0 1 0 1 1 1
0 1 1 0 0 0 0 1 0 1 1 1
1 0 0 1 1 1 0 1 0 1 1 1
1 0 0 1 1 1 0 1 0 1 1 1
1 0 0 1 1 1 0 1 0 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1



,

...
...

MRd =



1 1 0 0 0 0 1 0 0 1 1 1
1 1 0 0 0 0 1 0 0 1 1 1
0 0 1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 0 1 1 0 0 0
1 1 0 0 0 0 1 0 0 1 1 1
0 0 1 1 1 1 0 1 1 0 0 0
0 0 1 1 1 1 0 1 1 0 0 0
1 1 0 0 0 0 1 0 0 1 1 1
1 1 0 0 0 0 1 0 0 1 1 1
1 1 0 0 0 0 1 0 0 1 1 1



,
8∧

i=1

MRai
=



1 0 0 0 0 0 0 0 0 0 1 1
0 1 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0
1 0 0 1 1 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 1



.
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According to matrix
8∧

i=1

MRai
, it is obvious that RC(x1) = {x1, x11, x12}, RC(x2) =

{x2, x3}, RC(x3) = {x2, x3}, RC(x4) = {x4, x5, x11}, RC(x5) = {x4, x5, x11}, RC(x6) =
{x6}, RC(x7) = {x7, x8, x12}, RC(x8) = {x7, x8, x10}, RC(x9) = {x9}, RC(x10) = {x8, x10},
RC(x11) = {x1, x4, x5, x11}, RC(x12) = {x1, x7, x12}.

According to matrix MRd , we have R{d}(x1) = {x1, x2, x7, x10, x11, x12}, R{d}(x2) =
{x1, x2, x7, x10, x11, x12}, R{d}(x3) = {x3, x4, x5, x6, x8, x9}, R{d}(x4) = {x3, x4, x5, x6, x8, x9},
R{d}(x5) = {x3, x4, x5, x6, x8, x9}, R{d}(x6) = {x3, x4, x5, x6, x8, x9}, R{d}(x7) = {x1, x2, x7,
x10, x11, x12}, R{d}(x8) = {x3, x4, x5, x6, x8, x9}, R{d}(x9) = {x3, x4, x5, x6, x8, x9}, R{d}(x10)
= {x1, x2, x7, x10, x11, x12}, R{d}(x11) = {x1, x2, x7, x10, x11, x12}, R{d}(x12) = {x1, x2, x7, x10,
x11, x12}, then UCD = {x|RC(x) ⊆ R{d}(x)} = {x1, x6, x9, x12}.

Secondly, it is easy to obtain σC(x1) = {0}, σC(x2) = {0, 1}, σC(x3) = {0, 1}, σC(x4) =
{0, 1}, σC(x5) = {0, 1}, σC(x6) = {1}, σC(x7) = {0, 1}, σC(x8) = {0, 1}, σC(x9) = {1},
σC(x10) = {0, 1}, σC(x11) = {0, 1}, σC(x12) = {0}.

Finally, according to Definition 7, we can obtain a binary similarity matrix (as shown
in Table 5).

Step 2. According to Theorem 1, we can obtain core(C) = {a4, a6, a7}.
Step 3. Test whether core(C) is a reduction of C. Similar to the method of calculating

UCD, Ucore(C)D = {x1, x9, x12} 6= UCD = {x1, x6, x9, andx12}. Thus, we delete the columns
where attributes a4, a6 and a7 are located in Table 5 to obtain Table 6. Initialization: DE = ∅.

Step 4. According to Table 6, we have |BSM| = 20. Calculate the CS of attributes in

Table 6: CS(a1) = − t1

|BSM| = −
12
20

, CS(a2) = − t2

|BSM| = −
12
20

, CS(a3) = − t3

|BSM| =

−13
20

, CS(a5) = −
t5

|BSM| = −
16
20

, CS(a8) = −
t8

|BSM| = −
12
20

.

Step 5. Obviously, CS of a5 is the smallest, so delete the column where a5 is located and
the row with value "1" in this column, and obtain Table 7, then DE = {a5}. Because Table 7

has "1", go to Step 4. Calculate the CS of attributes in Table 7: CS(a1) = −
1
4

, CS(a2) = −
2
4

,

CS(a3) = −3
4

, CS(a8) = −3
4

. It is obvious that CS of a3 and a8 are the smallest. If we
delete the column where a3 is located and the row with value "1" in that column to obtain
Table 8, then DE = {a5, a3}. Table 8 has "1", then go to Step 4 again. Perform Step 4 again.
Calculate the CS of attributes in Table 8: CS(a1) = 0, CS(a2) = 0, CS(a8) = −1. Then,
delete the column where a8 is located and the row with value "1" in that column, and we
have DE = {a5, a3, a8}. BSM does not have "1", so then go to Step 6.

Table 5. Extended binary similarity matrix 2.

a1 a2 a3 a4 a5 a6 a7 a8

(x1, x3) 0 0 0 0 1 1 1 1
(x1, x4) 1 1 1 1 1 0 1 1
(x1, x5) 1 1 1 1 1 0 1 1
(x1, x6) 0 0 0 1 0 0 1 1
(x1, x8) 1 0 0 1 1 1 1 1
(x1, x9) 1 1 1 0 1 0 1 1
(x2, x6) 1 1 1 0 1 1 1 1
(x2, x9) 0 0 0 0 1 1 0 1
(x3, x12) 0 0 0 1 1 1 0 0
(x4, x12) 1 1 1 1 1 0 0 0
(x5, x12) 1 1 1 1 1 0 0 0
(x6, x7) 0 1 1 0 0 0 1 1
(x6, x10) 0 1 1 1 0 0 1 0
(x6, x11) 1 0 1 1 0 1 1 1
(x6, x12) 0 0 0 1 1 0 1 0
(x7, x9) 1 1 1 1 1 0 1 1
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Table 5. Cont.

a1 a2 a3 a4 a5 a6 a7 a8

(x8, x12) 1 0 0 1 1 1 1 0
(x9, x10) 0 1 1 1 1 0 1 0
(x9, x11) 1 1 1 1 1 1 0 1
(x9, x12) 1 1 1 1 1 0 1 0

t 12 12 13 15 16 7 15 12

Table 6. Extended binary similarity matrix 3.

a1 a2 a3 a5 a8

(x1, x3) 0 0 0 1 1
(x1, x4) 1 1 1 1 1
(x1, x5) 1 1 1 1 1
(x1, x6) 0 0 0 0 1
(x1, x8) 1 0 0 1 1
(x1, x9) 1 1 1 1 1
(x2, x6) 1 1 1 1 1
(x2, x9) 0 0 0 1 1
(x3, x12) 0 0 0 1 0
(x4, x12) 1 1 1 1 0
(x5, x12) 1 1 1 1 0
(x6, x7) 0 1 1 0 1
(x6, x10) 0 1 1 0 0
(x6, x11) 1 0 1 0 1
(x6, x12) 0 0 0 1 0
(x7, x9) 1 1 1 1 1
(x8, x12) 1 0 0 1 0
(x9, x10) 0 1 1 1 0
(x9, x11) 1 1 1 1 1
(x9, x12) 1 1 1 1 0

t 12 12 13 16 12

Table 7. Extended binary similarity matrix 4.

a1 a2 a3 a8

(x1, x6) 0 0 0 1
(x6, x7) 0 1 1 1
(x6, x10) 0 1 1 0
(x6, x11) 1 0 1 1

t 1 2 3 3

Table 8. Extended binary similarity matrix 5.

a1 a2 a8

(x1, x6) 0 0 1
t 0 0 1

Step 6. T = C− DE = {a1, a2, a4, a6, a7}.
In Table 7, select the column where a8 is located and the row with value “1” in that

column to obtain Table 9. Then, according to Table 9, delete the column where a2 is located
and the row with value “1” in that column, and we can obtain T = {a1, a3, a4, a6, a7}, then
delete a3 and in the last row, we also obtain T = {a1, a2, a4, a6, a7}.
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Table 9. Extended binary similarity matrix 6.

a1 a2 a3

(x6, x10) 0 1 1
t 0 1 1

In order to verify the effectiveness of our algorithm, it is necessary to test whether
T is a reduction of C. When T = {a1, a3, a4, a6, a7}, UTD = {x1, x9, x12} 6= UCD. When
T = {a1, a2, a4, a6, a7}, we have UTD = {x1, x6, x9, x12} = UCD, and there are no ∅ 6= T

′ ⊂ T
such that UT′D = UCD. Thus, T = {a1, a2, a4, a6, a7} is a reduction of attributes set C.

Moreover, the reduction result in reference [14] is T = {a1, a3, a4, a5, a6, a8}. It is
obvious that our result contains five attributes, and their result contains six attributes.
What is more, it can be proved that our result is also a reduction of C from the point of
literature [14]. The purpose of attribute reduction is to classify objects with as few attributes
as possible. From the discussion above, our algorithm is not only effective but also efficient.

4.2. Attribute Reduction of Complete Decision Tables

Since complete decision systems are a special case of incomplete decision systems,
a decent attribute reduction algorithm for incomplete decision systems should be also
available for complete decision systems. In the following, we demonstrate the effectiveness
of the proposed attribute reduction algorithm for complete decision systems.

In a complete decision system S = (U, A), C ⊆ A, for any xi, xj ∈ U, the equivalence
relation RC is: xiRCxj ⇐⇒ ∀a ∈ C, f (xi, a) = f (xj, a) [22]. According to Definition 2 and
Definition 7, it is not difficult to find that when a decision system is complete, the construc-
tion of the binary similarity matrix is the same as that of the incomplete decision table.
Next, we give the other steps of Algorithm 1 to obtain the reduction of Table 10 cited from
the literature [22].

Step 1. According to Definition 3, it is easy to obtain UCD = {x1, x2, x4}, and according
to Definition 7, the binary similarity matrix is obtained (as shown in Table 11).

Step 2. According to Theorem 1, it is not difficult to obtain core(C) = {a3} from
Table 11.

Step 3. Test whether core(C) is a reduction of C. Similar to the method of calculating
UCD, Ucore(C)D = ∅ 6= UCD = {x1, x2, x4}. Thus, we delete the column where attribute a3
is located in Table 11 to obtain Table 12. Initialization: DE = ∅.

Algorithm 1 Heuristic attribute reduction algorithm based on binary similarity matrix.

Input: An incomplete decision information system S = (U, C ∪ {d}).
Output: A reduction T of C.

Step 1: Calculate UCD and the binary similarity matrix BSM of S.

Step 2: Determine core(C) according to Theorem 1.

Step 3: If Ucore(C)D = UCD, then T = core(C), the algorithm ends. Otherwise, delete the
columns where core attributes are located to obtain a new BSM. Initialization: DE = ∅.

Step 4: Calculate the CS of attributes in the latest BSM.

Step 5: Add attribute ak with the smallest CS to DE, delete the column where ak is
located and the row with value ‘1’ in the column. If there is no ’1’ in BSM, go to Step 6,
otherwise, go to Step 4.

Step 6: T = C− DE, and test whether T is a reduction of attributes. The algorithm ends.
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Table 10. Binary similarity matrix 2.

a1 a2 a3 a4 d

x1 0 1 1 1 2
x2 1 0 0 0 1
x3 1 0 1 1 1
x4 1 0 0 1 1
x5 1 0 1 1 2

Table 11. Extended binary similarity matrix 7.

a1 a2 a3 a4

(x1, x2) 0 0 0 0
(x2, x3) 0 0 1 1
(x1, x4) 0 0 0 1
(x2, x5) 1 1 0 0
(x4, x5) 1 1 0 1

t 2 2 1 3

Table 12. Extended binary similarity matrix 8.

a1 a2 a4

(x1, x2) 0 0 0
(x2, x3) 0 0 1
(x1, x4) 0 0 1
(x2, x5) 1 1 0
(x4, x5) 1 1 1

t 2 2 3

Step 4. According to Table 12, we have |BSM| = 5. Calculate the CS of attributes in

Table 12: CS(a1) = −
t1

|BSM| = −
2
5

, CS(a2) = −
t2

|BSM| = −
2
5

, CS(a4) = −
t3

|BSM| = −
3
5

.

Step 5. Obviously, CS of a4 is the smallest, so delete the column where a4 is located
and the row with value “1” in this column, and obtain Table 13, then DE = {a4}. Because

Table 13 has “1”, go to Step 4. Calculate the CS of attributes in Table 13: CS(a1) = −1
2

,

CS(a2) = −
1
2

. From Table 13, it is not difficult to see that regardless of deleting a1 or a2,

the Table does not have “1”, then DE = {a1, a4} or DE = {a2, a4}.

Table 13. Extended binary similarity matrix 9.

a1 a2

(x1, x2) 0 0
(x2, x5) 1 1

t 2 2

Step 6. T = {a2, a3} or T = {a1, a3}. The algorithm ends.
Table 10 is a complete decision table cited from [22], and the attribute reduction result

in [22] is T = {a2, a3} or T = {a1, a3}. Our result is the same. So our method is effective.
The method in [22] is based on the discernibility matrix. Although all the reductions can be
obtained, their method may have a combination explosion problem for large data sets.

4.3. Attribute Reduction of Fuzzy Numerical Decision Tables

The method proposed in this paper is also applicable to fuzzy numerical decision
tables (such as Table 14). For a fuzzy decision information system, we can not directly
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classify the objects according to the information. Liu et al. [22] introduced a threshold
as follows,

TH = (max|U|i=1Va(xi)−min|U|i=1Va(xi))× 10%,

where max|U|i=1Va(xi) is the maximum attribute value of Va, min|U|i=1Va(xi) is the minimum
attribute value of Va. A binary relation R is defined as: xiRxj if and only if |Va(xi) −
Va(xj)| < TH. It is easy to check that R is reflexive and symmetric, but not transitive.

Table 14. Fuzzy numerical decision table.

a1 a2 a3 a4 a5 d

x1 0.9871 0.4352 0.1987 0.8765 0.5436 0.3656
x2 0.1131 0.5634 0.2134 0.8643 0.6578 0.3452
x3 0.8675 0.5897 0.3101 0.8321 0.5784 0.3432
x4 0.4563 0.6235 0.2567 0.8107 0.6785 0.3672
x5 0.4786 0.4356 0.2675 0.7896 0.7012 0.3213
x6 0.5342 0.4765 0.2834 0.8876 0.6132 0.3425
x7 0.8765 0.6123 0.2457 0.8654 0.5324 0.3531
x8 1 0.5471 0.3721 0.8743 0.5452 0.3456

After classifying objects according to the method above, the corresponding binary
similarity matrix can be constructed according to Definition 7, and then the attribute
reduction of the decision table can be obtained according to the steps of Algorithm 1.

5. Conclusions

In this paper, we introduce the definition of binary similarity matrix in incomplete
decision information systems and define the attribute significance based on binary similarity
matrix. What is more, a heuristic attribute reduction algorithm with attribute significance
as heuristic knowledge is developed. It has been demonstrated that the algorithm is not
only effective, but also efficient. In addition, it can be applied to consistent as well as
inconsistent decision information systems. More importantly, the algorithm presented in
this paper can hopefully provide more penetration into attribute reduction. In many cases,
the data in decision tables may be affected by uncertainty and imprecise factors. In the
future, we will apply a binary similarity matrix to hesitant fuzzy numerical decision tables
to deal with fuzzy pattern recognition problems.
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