
Citation: Hu, M.; Ren, Y.; Chen, C.

Privacy-Preserving Medical

Data-Sharing System with Symmetric

Encryption Based on Blockchain.

Symmetry 2023, 15, 1010. https://

doi.org/10.3390/sym15051010

Academic Editor: Lorentz Jäntschi

Received: 3 April 2023

Revised: 27 April 2023

Accepted: 28 April 2023

Published: 30 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Privacy-Preserving Medical Data-Sharing System with
Symmetric Encryption Based on Blockchain
Mingqi Hu , Yanli Ren * and Cien Chen

School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China;
humingqi@shu.edu.cn (M.H.); cce97@shu.edu.cn (C.C.)
* Correspondence: renyanli@shu.edu.cn

Abstract: Nowadays, data between hospitals are usually not interoperable, which brings great
inconvenience to medical data sharing and patients’ medical treatment. In addition, patients do
not want their medical data to be leaked during the sharing process. Researchers have employed
blockchain to build data-sharing systems to address these issues. However, current systems do
not restrict the power of participants, nor do they prevent visitors from sharing the obtained data
to unauthorized parties. To address these issues, we propose a private data-sharing system with
symmetric encryption for the medical industry that implements power restriction and access control,
and prevents the leakage of private data. To be specific, firstly, symmetric encryption algorithm
is utilized to encrypt medical data to protect the privacy of data owner. Secondly, our proposed
system is built on a new blockchain framework, in which only visitors with permission can access
the medical data. Thirdly, we employ chameleon signature to prevent visitors from sharing data
with other parties without permission. Finally, we make the power of participants in the system
revocable to prevent them from abusing their power. Our proposed system has been proven to be
secure through security analysis and can protect the privacy of patients. In addition, the experimental
results show that our system has excellent performance in terms of time overhead compared to
other systems.

Keywords: blockchain; medical data sharing; power supervision; access control

1. Introduction

With the improvement of people’s living quality, health problems are receiving greater
attention [1]. Effectively using patients’ medical data is crucial for improving people’s
health, which requires hospitals to store and share medical data efficiently and securely.
However, hospitals usually store patients’ data locally and do not share them with others.
This lack of circulation of medical data causes significant inconvenience to patients and
some medical research. When patients seek treatment at a different hospital, if their previ-
ous medical data cannot be accessed, they may need to undergo repeated examinations,
resulting in wasted time and money. More seriously, it may cause medical accidents. Medi-
cal data are also a valuable resource for medical research [2], and a significant amount of
medical data need to be used when conducting medical research. Therefore, the medical
data in only a hospital’s database are not enough. Some cases of research value are difficult
to aggregate together without data circulation. However, the hospital only stores the data
instead of sharing them, which leads to a waste of medical data. In addition, ensuring the
security of medical data is also a significant challenge that cannot be ignored. In the medical
field, there are many incidents of data breaches every year [3], such as data tampering,
data leaks, and unauthorized access. The increasing digitization of the medical field also
demands that people take this issue seriously. If the data cannot be guaranteed to be secure,
the interests of patients will be compromised [4], which is unacceptable.

In recent years, blockchain [5] has been utilized for medical data sharing [6], which
is a decentralized distributed ledger. The transactions in the ledger cannot be tampered

Symmetry 2023, 15, 1010. https://doi.org/10.3390/sym15051010 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15051010
https://doi.org/10.3390/sym15051010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-8180-9087
https://orcid.org/0000-0002-9190-865X
https://doi.org/10.3390/sym15051010
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15051010?type=check_update&version=2

Symmetry 2023, 15, 1010 2 of 19

with, and each client in the system has the complete transaction of the ledger. Data in the
blockchain are stored in blocks, which are added to the blockchain in chronological order.
The new block is generated by the consensus protocol and connected to the blockchain
chronologically through hash value. Due to its immutability, security [7], anonymity and
data integrity [8], blockchain has been widely used in electronic currency, data storage,
data integrity verification [9], and data sharing. In the future, blockchain will play an
irreplaceable role in various fields, such as federated learning [10–12], finance [13] and
medicine, especially in the medical field [14,15].

In the medical field, blockchain can play a crucial role in improving data security
and interoperability [16]. According to [17], people require data to be secure, but this
cannot always be achieved. We have found that blockchain can solve this problem to some
extent. Firstly, there is often a lack of secure and reliable methods for storing medical
data in the medical field. Blockchain technology provides a decentralized database that
can securely store medical data to prevent malicious tampering. Secondly, blockchain
can be leveraged to enhance data interoperability. Since information systems in various
hospitals are often built using incompatible technologies, data sharing among hospitals
has become a challenging task. The emergence of blockchain provides hospitals with
a unified, decentralized database, enabling hospitals to access and share medical data
more easily. Additionally, quantum communication [18–21] is also a promising solution
to address the aforementioned issues, but it is challenging to conduct experiments due
to hardware limitations. Therefore, due to blockchain’s unique advantages in the secure
sharing of medical data [22], it can be used to design a secure and efficient data-sharing
system. However, designing such a system still faces some security challenges. Firstly,
the issue of how to restrict the power of data managers needs to be solved [23]. Most
systems provide data managers with great power, but data owners have no corresponding
power to restrict them. The second challenge is preventing shared data from being leaked
to unauthorized parties. Once the data manager shares the data, he also loses control
over them. In this situation, visitor can freely share the data with others, which seriously
compromises the interests of data owner. The last challenge is access control, which means
that only authorized visitors can access the data. In recent years, several systems have
been proposed to address the aforementioned challenges, which will be introduced briefly
as follows.

Related work. In order to realize the function of access control, Rahulamathavan
et al. [24] utilized attributed-based encryption (ABE) [25] to protect the privacy of data
by storing the encrypted data on the blockchain, resulting in high storage overhead. The
system implements access control functions and protects user privacy to some extent. How-
ever, the system does not restrict the power of participants, nor does it consider the situation
where the data are shared with unauthorized third parties by the visitor after obtaining
them. Additionally, since the encrypted data are stored on the blockchain, this system
incurs a high data storage overhead. In 2021, Qi et al. proposed a sharing system [26] that
supports data compression called Cpds, which encrypts the compressed data by symmetry
encryption and submits the ciphertext to the blockchain. In addition, Cpds implements
access control by encrypting the symmetry key and sending the ciphertext to the blockchain,
reducing the storage overhead by compressing data before encryption. However, visitor
can share the obtained data with unauthorized parties in Cpds, which greatly infringes
upon the interests of the patients. At the same time, the power of the system participants
is so great that they can even change previously generated data. Therefore, an effective
algorithm is needed to limit the power of nodes. Du et al. proposed a medical data-sharing
system [27] based on blockchain. The data sharer stores the data digest in the platform’s
database while the complete data are stored locally. Authorized access by the sharer is
required to obtain corresponding data. However, the system does not solve the problem
of data misuse after sharing, and there is no specific algorithm for authorizing operations.
In addition, as the hospital can maliciously send patients’ medical data to unauthorized
parties, the power restriction function is also not implemented. In order to address the issue

Symmetry 2023, 15, 1010 3 of 19

of data misuse, Wang et al. [28] and Xiao et al. [29] designed data-sharing systems based
on blockchain that utilize trusted execution environments (TEEs), such as Intel SGX. In
these two systems, an algorithm, negotiated in advance, is used to process the original data
in TEE. Afterwards, the calculation result is sent to the visitor without revealing the original
data. Therefore, these two systems solve the problem of data misusing. However, these
systems still do not limit the power of the participants. Moreover, as visitors may apply
the data in areas such as machine learning that require the original data, it is inappropriate
to only send the computation results in such cases. Nguyen et al. proposed the new dis-
tributed medical network architecture BEdgeHealth [30] to transfer and share data, which
utilizes smart contracts to enable data sharing without a third party. However, patients are
unable to control their own data in this system. In addition, in 2022, Wu et al. proposed a
blockchain-based smart healthcare system [31] for medical data exchanging and sharing.
The system deploys smart contracts to meet the requirements of access control and data
sharing, which improves the efficiency of the system. However, similar to BEdgeHealth,
this system does not restrict the power of participants nor consider the issue of data misuse.
In addition, Ref. [32] provides a secure data-sharing scheme for different levels of visitors.
The scheme employs a ciphertext-based attribute encryption algorithm, allowing for more
fine-grained access control. However, the power possessed by the administrator of the
system attributes is too great and cannot be limited such that it can ignore or incorrectly
respond to user’s requests. In addition, the access control function is still not implemented
in this system.

Overall, as shown in Table 1, although ABE is utilized for implementing access control
in [24,26], it does not limit the permission of participants in the systems, nor does it design
an algorithm to prevent the shared data from being leaked to unauthorized parties. The
protection of data privacy is realized in the system of [27], but the remaining functions
in the table are not realized. Systems of [28,29] use intel SGX [33] technology to ensure
that the shared data are not leaked and that they have access control function, but they
lack permission revocation. Systems of [30–32] utilize smart contracts to protect user
privacy and implement access control. However, neither of these systems implemented
functionalities permission revocation and use control.

Table 1. The comparison of protocols.

System Access Control Revocation of Power Use Control Data Privacy

Pbee [24] 4 8 8 4

Cpds [26] 4 8 8 4

Obms [27] 8 8 8 4

Spds [28] 4 8 4 4

PG [29] 4 8 4 4

BEdgeHealth [30] 4 8 8 4

Bshs [31] 4 8 8 4

SDSM [32] 4 8 8 4

Ours 4 4 4 4

To sum up, the current blockchain-based data-sharing systems still face several chal-
lenges that must be addressed. Firstly, data owners do not want unauthorized parties to
obtain their data. Secondly, honest parties in the system hope that the power of malicious
parties can be limited. Thirdly, after sharing the data with the visitors, the data owners
do not want the data to be shared with a third party without permission by the visitor.
Finally, data privacy should be protected [34]. Unfortunately, existing blockchain-based
data-sharing systems cannot overcome these challenges simultaneously.

In this article, as shown in Table 1, a blockchain-based secure medical data-sharing
system is proposed to meet these challenges. Specifically, a blockchain-based system is
designed to securely share medical data. The data visitor is only eligible to access the data
with the consent of the data owner. A permission revocation algorithm is also designed to

Symmetry 2023, 15, 1010 4 of 19

limit the power of data managers and prevent the abuse of power that could compromise
patients’ privacy. In addition, we also use the chameleon signature algorithm to prevent
shared data from being leaked to unauthorized parties. In summary, our article has the
following contributions:

1. A medical data-sharing system is proposed based on blockchain for secure data shar-
ing between hospitals. This system only stores simple data records on the blockchain,
while the complete data are encrypted and stored in the application platform.

2. A verification system is also proposed based on chameleon hash with revocable
trapdoor, enabling patients to revoke the hospital’s right of managing data and
allowing hospitals to revoke the application platform’s right of signing medical data.

3. The proposed system can prevent the misuse of shared data based on chameleon
signature. By designing this algorithm, we solve the problem of data misuse, which
prevents data that have been shared from being leaked to other parties who do not
have permission to access them.

2. Preliminaries

The key technologies used in our system are introduced briefly in this section, includ-
ing blockchain and chameleon hash.

2.1. Blockchain

Blockchain is a chained data structure that groups blocks of data together in chrono-
logical order, which is shared and maintained by all peers in a distributed system. Blocks in
the blockchain are generated through a consensus protocol and appended to the blockchain
using hash function. Whenever a new block is generated, it is broadcast to all peers in
the system. Peers then connect the new block to the end of the blockchain through a hash
function when they receive it. As shown in Figure 1, blocks are connected in such a way
that each block stores the hash value of the previous block.

Figure 1. The chain structure of the blockchain.

Since the blocks in the blockchain are connected in this way, if the data in the previous
block are tampered with, the blockchain will be broken. If the tamperer wants the blocks to
remain connected after tampering, he needs to recalculate the hash value of all subsequent
blocks through the proof-of-work algorithm. This requires the tamperer to have more
computing power than the sum of the other nodes in the system, which is almost impossible.
Therefore, the data in the blockchain cannot be tampered with.

2.2. Chameleon Hash

In the chameleon hash function, the party that calculates the chameleon hash value
holds both the chameleon public key pkCH and the chameleon private key (trapdoor) skCH .
When calculating the chameleon hash value h, he needs to use pkCH for the calculation.
Unlike hash function H(), the chameleon hash calculator can use the trapdoor to compute
the collision between the origin message m and new message m′, resulting in the new
chameleon hash value h′ calculated from m′ equal to h. Therefore, we utilize the chameleon
hash function to allow the data owner to restrict the power of other participants. In addition,
compared to the existing chameleon hash functions [35,36], our proposed chameleon hash
function based on elliptic curves has better performance in terms of time overhead. The

Symmetry 2023, 15, 1010 5 of 19

parts of the chameleon hash (SetupCH , KeyGenCH , HashCH , AdaptCH , and Veri f yCH) are
described as follows [37]:

1. SetupCH(1λ) → pp: On inputting a security parameter λ, the algorithm outputs a
system parameter pp.

2. KeyGenCH(pp) → (pkCH , skCH): On inputting system parameter pp, the algorithm
outputs a pair of private and public key (skCH , pkCH).

3. HashCH(pkCH , m) → (h, r): On inputting a public key pkCH and a message m, the
algorithm outputs chameleon randomness r and chameleon hash value h.

4. AdaptCH(skCH , (h, r, m), m′)→ r′: On inputting a private key skCH , a chameleon hash
value h, a chameleon randomness r, a message m and a new message m′, the algorithm
outputs a new chameleon randomness r′.

5. Veri f yCH(h, pkCH , m, r) → {0, 1}: On inputting a chameleon hash value h, a public
key pkCH , a message m and a chameleon randomness r, the algorithm outputs 1 if
(h, r, m) is valid and otherwise outputs 0.

Three properties of secure chameleon hashes are given in [38]: correct, indistinguish-
able and collision resistance. However, in our system, it is not necessary to hide the
computation of collisions, so indistinguishability is not applicable to our system.

Definition 1 (Secure Chameleon Hashes). If for all λ ∈ N, m and m′ ∈ M, there is
Veri f yCH(h, pkCH , m, r) = 1 and Veri f yCH(h, pkCH , m′, r′) = 1 for any SetupCH(1λ) → pp,
KeyGenCH(pp) → (pkCH , skCH), HashCH(pkCH , m) → (h, r) and AdaptCH(skCH , (h, r, m),
m′) → r′, the chameleon hash can be considered to satisfy correctness. If an efficient adversary
without the chameleon private key skCH cannot compute collisions for any message, the chameleon
hash can be considered to satisfy collision resistance. If a chameleon hash satisfies both correctness
and collision resistance, it can be considered secure.

3. Chameleon Hash with Revocable Trapdoor

Our goal is to design a secure medical data-sharing system in which the participants’
rights can be revoked. To achieve this, we consider using a chameleon hash function with a
revocable trapdoor. We first propose a chameleon hash function based on the elliptic curve
group to improve the efficiency of the operation, and then give the specific construction of
the chameleon hash with revocable trapdoor.

3.1. Chameleon Hash Based on Elliptic Curve Group

A chameleon hash based on elliptic curve group consists of five algorithms (SetupCH ,
KeygenCH , HashCH , AdaptCH , and Veri f yCH):

1. SetupCH(1λ) → pp: Let G be the generator point of the elliptic curve group E, and
the smallest n that satisfies nG = O is a very large prime number, where O is the
infinity point on the elliptic curve. The algorithm outputs the system parameter
pp = (E, G, n).

2. KeyGenCH(pp) → (pkCH , skCH): Choose an integer x(x < n) as the trapdoor and
compute public key Y = xG. Then pkCH = Y, skCH = x.

3. HashCH(pkCH , m) → (hCH , r): Randomly choose r = (R, s), where R is a random
point on the elliptic curve group and s ∈ Z∗n. Compute h = H(m) and Q = (Qx, Qy) =
R + hY + sG. Then the chameleon hash value hCH = Q.

4. AdaptCH(skCH , (h, r, m), m′)→ r′: Randomly choose k ∈ Z∗q . Compute R′ = Q− kG
and s′ = k− h′x. Then r′ = (R′, s′).

5. Veri f yCH(hCH , pkCH , m, r) → {0, 1}: Compute h = H(m) and h′CH = R + hY + sG.
The algorithm outputs 1 if hCH = h′CH , and otherwise outputs 0.

In order to analyze the security of the above chameleon hashing algorithm, we use the
following security theorem:

Theorem 1. The proposed chameleon hash is secure and key-exposure-free.

Symmetry 2023, 15, 1010 6 of 19

From the Definition 1, we know that a chameleon hash is secure if it satisfies correctness
and collision resistance. Key exposure free means that an adversary cannot calculate the
private key even if he has a pair of collisions. It is clear that the chameleon hash is correct.
The proofs of collision resistance and key exposure free can be referred to in [38,39], which
are similar to ours.

3.2. Construction of CHRT

The general construction of the chameleon hash with revocable trapdoor (CHRT) is
given in this section:

1. SetupCHRT(1λ)→ (pp1, pp2): Run the algorithm SetupCH1(1
λ) and SetupCH2(1

λ)
to obtain the public parameter pp1 and pp2, and then return (pp1, pp2).

2. KeyGenCHRT(pp1)→ (pkCH , skCH): Run the algorithm KeyGenCH1(pp1) to obtain
the chameleon key pair (pkCH , skCH), and then return (pkCH , skCH).

3. KeyGenCHRT(pp2)→ (spkCH , sskCH): Run the algorithm KeyGenCH2(pp2) to ob-
tain the chameleon key pair (spkCH , sskCH), and then return (spkCH , sskCH).

4. HashCHRT(pkCH , spkCH , m) → (h, r): Run the algorithm HashCH1(pkCH , m) to
obtain hash/check string pair (h1, r1). Then, run the algorithm HashCH2(spkCH , h1) to
obtain hash/check string pair (h2, r2). Finally, return (h, r) = (h2, (h1, r1, r2)).

5. SkAdaptCHRT(skCH , m, m′, r) → r′: Phrase r as (h1, r1, r2) and run the algorithm
AdaptCH1(skCH, (h1, r1, m), m′) to obtain new check string r′1. Then, return r′ = (h1, r′1, r2).

6. SskAdaptCHRT(sskCH , m, m′, h, r) → r′: Phrase r as (h1, r1, r2) and run the algo-
rithm HashCH2(pkCH , m′, r1) to obtain a new hash value h′1. Then, run the algo-
rithm AdaptCH2(sskCH , (h2, r2, h1), h′1) to obtain a new check string r′2. Finally, return
r′ = (h′1, r1, r′2).

7. SkRevokeCHRT(sskCH , spkCH , m, h, r) → (pk∗CH , r∗): Choose a new chameleon
public key pk∗CH using the algorithm KeyGenCHRT(pp∗1). Then, run the algorithm
HashCH1(pk∗CH , m) to obtain r∗1 and h∗1 . Run the algorithm AdaptCH2(sskCH , (h2, r2, h1),
h∗1) to obtain r∗2 . Finally, return (pk∗CH , r∗) = (pk∗CH , (h∗1 , r∗1 , r∗2)).

8. Veri f yCHRT(pkCH , spkCH , m, h, r)→ {0, 1}: Phrase r as (h1, r1, r2) and run the algo-
rithm HashCH1(pkCH , m, r1) to obtain hash value h′1. Then run HashCH2(spkCH , h′1, r2)
to obtain hash value h′2. If (h2 = h′2) ∧

(
h1 = h′1

)
, return 1; otherwise, return 0.

As shown above, CHRT consists of two chameleon hash functions which are repre-
sented by CH1 and CH2, respectively, where CH2 uses the output of CH1 as its input. By us-
ing such a structure, everyone can compute the chameleon hash by the algorithm HashCHRT
using pkCH and spkCH after executing algorithm SetupCHRT and KeyGenCHRT . In addition,
both skCH and sskCH holders can compute collisions by the algorithm SkAdaptCHRT and
SskAdaptCHRT , but the holder of sskCH can revoke the ability of the holder of skCH to
compute collisions by the algorithm SkRevokeCHRT . We can use this property to design
permission revocation algorithms in data sharing.

4. The Proposed System

The proposed system and the operations involved in the system are introduced in
detail in this section.

4.1. The System Model

We give the architecture of our system in Figure 2, which illustrates the operations
that can be performed by the participants in the system. Specifically, there are five types of
participants in our system:

Symmetry 2023, 15, 1010 7 of 19

Figure 2. Architecture of our system.

Hospital: Hospital collects patients’ medical data and submits their digests to the
blockchain. After the patient is discharged, the hospital encrypts and submits the medical
data to the application platform. When a visitor obtains permission from the patient, he
needs to send the corresponding authorization information to the hospital. The hospital
then sends the decryption key to him through a secure channel.

Patient: Medical data are generated during the patient’s medical treatment in the
hospital. Additionally, the patient can provide the visitor with permission to access the
data.

Visitor: Visitor applies to the patient for permission to access the patient’s medical
data.

Blockchain: The blockchain stores transactions that include the identity of patients,
digests of medical data and so on. Additionally, hospitals and patients will also submit
verification transactions to the blockchain, which are used to verify the permission of the
participant.

Application platform: The platform stores encrypted medical data sent by the hospital
and the transactions published on the blockchain. When the platform receives a visitor’s
application, it signs the data and sends the signature along with the encrypted data to
the visitor. The research [40] suggests that the application platform can provide essential
support for research and learning.

In addition, the steps in Figure 3 are as follows:

1. When a hospital receives a new patient, the hospital must register him to grant him
control over his own medical data.

2. During the visit of the patient, the hospital stores the generated medical data in the
local database and submits the description and digest of the data to the blockchain.

3. When the patient is discharged, the hospital sends the encrypted medical data, de-
scription and digest of the entire medical data to the application platform.

4. The visitor applies for the patient to access his medical data. If the patient agrees to
the visitor’s request, he needs to sends access parameters to the visitor.

5. The visitor sends the access parameters to the hospital. If the access parameters is
valid, the hospital sends the decryption key to the visitor.

Symmetry 2023, 15, 1010 8 of 19

6. The platform signs the medical data and sends them along with the encrypted data to
the visitor.

Figure 3. Workflow diagram of our system.

There are four operations in our medical data-sharing system: new patient registration,
data storage, data sharing, and permission revocation. These operations are introduced in
detail in the rest of this section, and the notations are described in Table 2.

Table 2. Notations.

Notation Descriptions

name Patient’s identification information
(pkCH , skCH) Hospital’s chameleon key pair
(spkCH , sskCH) Patient’s chameleon key pair

(pk, sk) Hospital’s signature key pair
(pck, psk) Visitor’s chameleon key pair

(cpk, csk) The validation public key and signature private key of
the application platform

H() The hash algorithm

sign(), veri f y() The digital signature algorithm and the verification
algorithm of digital signature

encodesym(), decodesym()
Symmetric encryption algorithm and symmetric

decryption algorithm, which are used to encrypt and
decrypt medical data

kid The symmetric key for encryption and decryption

4.2. New Patient Registration

When a hospital admits a new patient, the hospital must complete the registration
process, which involves the following steps:

1. Hospital uses its chameleon public key pkCH and patient’s chameleon public key
spkCH to calculate

(h, r) = hashCHRT(pkCH , spkCH , name) (1)

2. The hospital selects a random number d and computes a new randomness r′ using its
chameleon private key skCH :

(h1, r′1, r2) = SkAdaptCHRT(skCH , name, name||d, r) (2)

3. The hospital obtains the chameleon public key of the application platform. Then, it cal-
culates cert = signsk(cpk||r′1) using its private key sk and then sends (name, r1

′, cert)

Symmetry 2023, 15, 1010 9 of 19

to the application platform to give it proxy signing authority, where sign is the digital
signature algorithm.

4. The hospital sets version = 1 and computes

σtran = signsk(veri f y, name, version, d, r, pkCH , spkCH) (3)

where veri f y represents the kind of transaction.
5. The hospital submits the following transaction to the blockchain:

tranv = (ver, name, version, d, r, pkCH , spkCH , (σtran, pk)) (4)

4.3. Data Storage

As shown in Figure 4, medical data are generated in the system one by one. In the
process of a patient’s medical treatment, his medical data cannot be generated at the same
time but at different time or places. If the medical data record is uploaded to the blockchain
when the patient is discharged, there is a risk of tampering. Therefore, we decide to submit
the digest of the medical data to the blockchain when they are just generated.

Figure 4. Generation of medical data.

The transactions submitted to the blockchain are divided into three categories—A, B,
and C—and use DGi to represent the hospital department that generates the corresponding
medical data. Next, we will describe in detail how to deal with these three kinds of data
separately in our algorithm.

When a patient seeks medical treatment, his first piece of medical data m1, which is
generated by DG1, is usually the admission information. DG1 needs to use the following
algorithm to store this type of data:

1. DG1 sets num1 = 1 and computes σ1 = signsk1(m1, id, num1) and hσ1 = H(σ1), where
skk is the signature key of DGk and id is the identifier of a series of medical data
generated by this medical treatment.

2. DG1 computes σA = signsk1(id, A, addr1, num1, hσ1), where A represents this kind of
medical data, and addr1 contains brief information about the piece of medical data,
such as the description and the time when the data were generated.

3. DG1 submits tranA = (id, A, addr1, num1, hσ1 , (σA, pk1)) to the blockchain, which will
return the hash value tranhash1 of the transaction to DG1.

4. DG1 saves (M1, tranhash1) in the local database, where M1 = ((m1, id, num1), (σ1, pk1)).

The second type of medical data is generated during the treatment by DGi and denoted
by mi(1 < i < N). For this type of data, DGi performs the following operations:

Symmetry 2023, 15, 1010 10 of 19

1. DGi obtains tranhashi−1
by id in the hospital’s local database.

2. DGi sets numi = i and computes σi = signski
(mi, id, numi) and hσi = H(σi).

3. DGi computes σBi = signski
(id, B, addri, numi, hσi , tranhashi−1

), where B represents this
of medical data.

4. DGi submits the transaction tranBi = (id, B, addri, numi, tranhashi−1
, hσi , (σBi , pki)) to

the blockchain and obtains the hash value tranhashi
of this transaction.

5. DGi saves (Mi, tranhashi
) in the local database, where Mi = ((mi, id, numi), (σi, pki)).

The third type of medical data is generated when a patient is discharged from the
hospital after completing the medical procedure. The last medical data mN is generated by
DGN as follows:

1. DGN obtains tranhashN−1 by id in the hospital’s local database.
2. DGN sets numN = N and computes σN = signskN (mN , id, numN), hσN = H(σN) and

h = H(pk||mN), where mN = (mi, id, numi)
N
i=1.

3. DGN generates a symmetry key kid and saves MN and kid in the local database.
4. DGN computes σC = id, C, numN , addrN , tranhashN−1 , hσN , h), where C represents the

kind of transaction.
5. DGN submits the transaction tranC = (id, C, numN , tranhashN−1 , hσN , h, (σC, pkN)) to

the blockchain.
6. DGN computes Cm = encodesym(kid, mN) and sends (id, Cm, h) to the application

platform. In our article, we choose the AES algorithm for encrypting and decrypting
medical data.

Through the above algorithm, we submit the digest of the patient’s medical data to
the blockchain and the ciphertext of the complete medical data to the application platform.
We also store the hash value of the previous transaction in the current transaction, allowing
visitors to easily search for a complete transaction chain of the patient.

4.4. Data Sharing

In this operation, the visitor first needs to request the patient to access the medical
data. If the patient agrees on the application, he performs the corresponding calculation
and sends the result to the visitor. The visitor then applies to the hospital through the
application platform for the data. The hospital verifies the eligibility of the visitor. After
the verification is passed, the hospital sends the symmetric key kid to the visitor. After
obtaining the encrypted data and signature from the application platform, the visitor only
needs to perform the decryption operation to obtain the medical data and verify their
validity.

4.4.1. Permission Acquisition

The visitor sends a request to the patient to access his data marked with id. If the
patient agrees to the request, he needs to calculate the following:

r′ = SskAdaptCHRT(sskCH , pkCH , name||id||pck, h, r) (5)

and sends r′ to the visitor, where pck is the visitor’s chameleon public key.
After the visitor receives r′, he sends (id, r′) to the hospital for verification through a

secure channel. Then the hospital calculates the following:

b = Veri f yCHRT(pkCH , spkCH , name||id||pck, h, r′) (6)

If b = 1, it proves that the visitor has the permission to obtain the data. The hospital
then needs to send the symmetric key kid of the data requested by the visitor to him through
a secure channel.

According to the collision-resistant characteristics of the chameleon hash, for a party
who does not know the chameleon private key, even if he owns m, r and m′, he cannot

Symmetry 2023, 15, 1010 11 of 19

calculate r′ such that HashCH(r, m) = HashCH(r′, m′). If the visitor can pass the verification,
then the hospital can fully trust that the visitor has obtained the permission.

4.4.2. Data Acquisition

The application platform finds (h, Cm) by id and run the algorithm HashCH to obtain
(rCH , hCH). To be specific, it randomly selects rCH = (R, s) and computes hCH = R +
hY + sG. Then the platform computes σ = signcsk(hCH). Through the above calculation,
the chameleon signature σCH = (rCH , r′1, cpk, cert, σ) is calculated. Finally, the application
platform sends Cm and σCH to the visitor. Visitor can decrypt the ciphertext to obtain
the data by mN = decodesym(Cm), and confirm the validity of the signature through the
following steps.

Firstly, the visitor needs to confirm the validity of cert and σ. If veri f y(pk, cpk||r′1, cert) =
1, then cert is valid, where veri f y is the verification algorithm of the digital signature. If
veri f y(cpk, pk||mN , σ) = 1, it proves that σ is valid.

Next, the visitor needs to confirm whether r′1 is valid. He should obtain the verification
transaction tranv = (ver, name, version, d, r, pkCH , spkCH) from the blockchain first, and
then calculate

b = Veri f yCHRT(pkCH , spkCH , name||d, h, (h1, r′1, r2)) (7)

If b = 1, then it proves that r′1 is valid, which means that the application platform is
eligible to sign.

In such a case, only the visitor can verify the validity of the signature. Next, we will
describe how we use the chameleon hash function to protect the privacy of the patient.

If the visitor wants to disclose the message m to an unauthorized third party, they
must send both σCH and m to the party. If the visitor sends the signature σ generated by
itself or only sends the medical data m to the third party, he will not be trusted by the third
party.

However, even if the third party receives (σCH , m), he still cannot confirm whether
the medical data m is the original data or has been tampered with by the visitor. This is
because if the visitor changes m to m′, he can calculate a collision using its trapdoor psk,
which keeps the chameleon hash value h′CH of m′ equal to the original value hCH . As a
result, the chameleon signature remains unchanged. Since the third party knows that the
visitor has this ability, they cannot determine whether the message has been tampered with,
and therefore they can only choose not to trust the medical data. This operation ensures
that medical data will not be leaked to any unauthorized parties.

4.5. Permission Revocation

The permission revocation algorithm is divided into two parts: the hospital revokes
the application platform’s permission, and the patient revokes the hospital’s permission.

Firstly, the hospital gives the signing right to the application platform, allowing it to
sign the medical data instead of the hospital. However, the application platform may not
respond to legitimate signature requests or collude with a visitor who has obtained medical
data to share the data with an unauthorized party.

Secondly, the hospital itself may exhibit malicious behaviors. It may not respond to
the requests from verified visitors, or share medical data without consent, which could
severely compromise patient privacy.

Therefore, the following two algorithms are designed to revoke the corresponding
permissions.

4.5.1. Application Permission Revocation

The hospital randomly selects a number d′ and a new chameleon public key cpk′. Then
it computes r′′1 = AdaptCH(skCH , (h2, r1, name), name||d′) and cert′ = sign(sk, cpk′||r′′1),

Symmetry 2023, 15, 1010 12 of 19

and sets version = version + 1, where cert′ is used to transfer the permission to another ap-
plication platform. Finally, the hospital submits the following transaction to the blockchain:

tran′v = (ver, name, version, d′, r2, pkCH , spkCH) (8)

After the permission is revoked, if the visitor wants to verify whether r′1 is valid, he
first gets the verification transaction tran′v from the blockchain and then calculates

h′1 = HashCH(r′1, name||d′, pkCH) (9)

h′2 = HashCH(r2, h′1, spkCH) (10)

It is obvious that h′2 6= h2, which proves that r′1 is invalid.
The public key can be selected randomly, or can be the chameleon public key of

another application platform. After the revocation operation, even though the original
application platform cannot pass the verification, the party corresponding to the new public
key can pass the verification, which makes it possible to transfer permissions. The process
of passing the verification with the new public key is as follows. The validator obtains the
transaction tran′v = (veri f y, name, version, d′, r2, pkCH , spkCH) from the blockchain, then
calculates

h1
′′ = HashCH(r1

′′, name||d′, pkCH) (11)

h2
′′ = HashCH(r2, h1

′′, spkCH) (12)

Since r1
′′ = AdaptCH(skCH , (h2, r1, name), name||d′) there is h2

′′ = h2, so r1
′′ is valid.

Through this algorithm, the hospital gains the ability to revoke the permission of the
application platform, or transfer the permission to another application platform, which
significantly improves the scalability of the system and provides more directions for its
future application. Please note that in our article, scalability refers to the system’s ability to
be further developed.

4.5.2. Hospital Permission Revocation

In order to revoke the hospital’s permission to manage the data, the patient needs to
set version = version + 1 and compute

(pk∗, r∗) = SkRevokeCHRT(sskCH , spkCH , name, h, r) (13)

Then, he submits the following transaction to the blockchain:

tran∗v = (ver, name, version, d, r∗, pk∗CH , spkCH) (14)

Since h∗1 is calculated by the patient using the new public key pk∗, the hospital no
longer has the ability to calculate the collision of h∗1 , which means that the hospital loses
the permission to manage the data.

5. Analysis of the System
5.1. The Security of CHRT

As mentioned in our contribution, we propose a chameleon hash with revocable
trapdoor (CHRT) for distributing and validating permissions. Similar to [36], we give the
definition about the security of CHRT as follows to analyze the security of CHRT.

Definition 2 (Secure CHRT). A secure chameleon hash with revocable trapdoor is secure if it
satisfies correctness, collision resistance, revocability and permission revocation resistance.

Correctness: Correctness means that all the hash/check string pair (h, r) correctly
generated from HashCHRT , SkAdaptCHRT , SskAdaptCHRT or SkRevokeCHRT can pass the
verification of Veri f yCHRT . According to the [36], it is clear that CHRT is correct.

Symmetry 2023, 15, 1010 13 of 19

Collision resistance: An adversary cannot calculate the collision of a certain hash value
without knowing the private key skCH or sskCH .

Revocability: The owner of sskCH can make the collision calculated by the owner of
skCH unable to pass the verification through the algorithm and the way of publishing some
revocation parameters.

Permission revocation resistance: The party that does not own sskCH cannot revoke
the permission that the collision calculated by the skCH owner can be verified.

Theorem 2. If the underlying chameleon hash is secure, then CHRT is also secure.

Lemma 1. If the chameleon hash that makes up CHRT is secure, then the CHRT is collision-
resistant.

Proof. In CHRT, after calculating the chameleon hash value h of a message m using the
algorithm HashCHRT , if a modifier wants to change the message m to m′ without changing h,
he needs to execute the algorithms SkAdaptCHRT or SkAdaptCHRT . For the owner of skCH ,
he needs to run algorithm AdaptCH1(skCH , (h1, r1, m), m′) to obtain a new randomness r′.
For the owner of sskCH , he first needs to run algorithm HashCH2(pkCH , m′, r1) to obtain
a new hash value h′1 and then run algorithm AdaptCH2(sskCH , (h2, r2, h1), h′1) to obtain a
new randomness r′. If an adversary A without skCH and sskCH wants to break the collision
resistance of CHRT, he needs to break the collision resistance of CH1 or CH2. From this,
it can be inferred that the probability of A breaking the collision resistance of CHRT is
p = p1 + p2, where p1 and p2 are the probability that A can break the collision resistance of
the chameleon hash that makes up CHRT. Since p1 and p2 are negligible, p is negligible.

Lemma 2. If the chameleon hash that makes up CHRT is secure, then the CHRT is revocability.

Proof. In our SkRevokeCHRT algorithm, we regenerate the key pair (pk′, sk′) and publish
(pk′, r′) on the blockchain after revocation. Therefore, the probability that the revocability of
our SkRevokeCHRT algorithm is broken is equal to the probability that the regenerated key
pair (pk′, sk′) is exactly the same as the original key pair (pk, sk), which is negligible.

Lemma 3. The CHRT is permission-revocation-resistant if the chameleon hash that makes up
CHRT is secure.

Proof. In CHRT, after calculating the chameleon hash value h of a message m using the
algorithm HashCHRT(pkCH , spkCH , m), if the owner of sskCH wants to revoke the ability of
the owner of skCH to calculate collisions, he needs to execute the algorithm SkRevokeCHRT .
Specifically, he first needs to execute the algorithm KeyGenCHRT(pp∗1) to obtain a new
chameleon key pair (pk∗CH , sk∗CH) and then run the algorithms HashCH1 and AdaptCH2 to
obtain the check string r∗. If an adversary A without sskCH wants to break the permission
revocation resistance of CHRT, he needs to break the collision resistance of CH2. From this,
it can be inferred that the probability of A breaking the permission revocation resistance
of CHRT is p, where p is the probability that A can break the collision resistance of CH2.
According to Theorem 3, since the chameleon hash that makes up CHRT is secure, p is
negligible.

5.2. Data Access Control

Our system relies on cryptographic security to ensure access control. If visitor v wants
to access medical data m of patient p, he needs to apply to the patient. If the patient
agrees to the visitor’s request, he computes the hash value h′1 of name||id||pck, and then
computes the collision r′2 of h′1 and h1 using sskCH . Visitor v then sends r′2 to the hospital
for verification. If r′2 is valid, the hospital sends the decryption key to visitor v. Since
the visitor cannot forge r′2 without sskCH , it is impossible for v to obtain the data without
authorization.

Symmetry 2023, 15, 1010 14 of 19

5.3. Data Security

The validity of the chameleon signature can only be verified by the recipient designated
by the signer, and no one else can confirm whether the signature was generated by the
signer or forged by the designated recipient. That is, the recipient cannot convince any
third party by transferring the signer’s signature. Using the non-transferable chameleon
signature can ensure that the data will not be leaked by the recipient after being shared,
thus protecting the rights and interests of the data owner.

Theorem 3 (Non-Transferability). A chameleon signature is non-transferable if the private key of
chameleon hash is not leaked.

Proof. Suppose that an adversary A can share the acquired data with a third party C
without permission. We prove that C cannot tell whether the data leaked by A was
tampered with by A.

The adversary A sends medical data m and signature σCH = (rCH , r
′
1, cpk, cert, σ)

signed by application platform to C. C needs to compute veri f y(pk, cpk||r′1, cert) to verify
the validity of the cert and compute veri f y(cpk, pk||mN , σ) to verify whether mN is valid.

However, A can also generate such a signature by following the steps below. First, A
obtains the original signature σCH = (rCH , r

′
1, cpk, cert, σ). Then he chooses a new message

m′, and computes r′CH ← AdaptCH(skCH , (h, rCH , m), m′), where skCH is A’s chameleon
private key. A then replaces rCH in signature σCH with r′CH . Finally, A sends the replaced
signature σ′CH and the new message m′ to C.

When C verifies the validity of σ′CH = (r′, r
′
1, cpk, cert, σ), it can still pass the verifi-

cation. The validity verification step of cert is veri f y(pk, cpk||r′1, cert), and if it is valid,
C continues to verify the validity of the signature σ through veri f y(cpk, pk||m′, σ). Al-
though the message changes from m to m′, since A replaces rCH with r′CH , it can still
pass the verification. Since A has already calculated the collision of m and m′, there is
h′CH = R′ + h′Y + s′G = hCH , that is, σ′ = sign(sk, h′CH) = σ, which means that the
signature can still be verified.

After C receives (m∗, σ∗CH) sent by A, since A owns the chameleon private key, C
cannot tell whether (m∗, σ∗CH) are the original signature and message, or forged by A.
Therefore, C can only think that the data are invalid. This ensures that shared medical data
are not shared with unauthorized parties.

6. Experiments

To examine the efficiency of our system, we performed experiments in several aspects
and compared ours with existing systems [26,27,35,36]. We compare the time for computing
chameleon hash, permission distribution, data encryption and decryption in our system
and existing systems. The data storage overhead is also compared. Additionally, we
measure the time required for permission revocation in our system. Since the computation
of data in system [28] differs depending on the usage of the data, we do not compare our
system with it. The experiments are based on the Ethereum blockchain and are conducted
on a computer with 16 GB RAM and AMD Ryzen 5 4600H CPU@3.00 GHz running Win
10, and JPBC 2.0.0 library is used to generate the elliptic curve group. In addition, unlike
machine learning, the focus of our system is on protecting the privacy of data. Therefore, as
shown in Figure 5, we followed the process of patients seeking medical care and recorded
the condition of the human body at different times and places multiple times, such as body
temperature and blood pressure. The above information was packaged as medical data to
conduct experiments. As our system does not involve statistics, we did not use the methods
provided in [41].

Symmetry 2023, 15, 1010 15 of 19

Figure 5. The sample of medical data.

6.1. Computational Costs of Chameleon Hash

The chameleon hash based on the elliptic curve group is proposed in Section 3.1,
and its computational cost is analyzed in this section. We implemented the chameleon
hashes as described in our scheme and the scheme of [35,36] on the same computer and
software. As shown in Figure 6, we compare the computational cost of our scheme and
schemes of [35,36]. In [35], a discrete logarithm was used to build a chameleon hash, while
the latter proposes an RSA-based chameleon hash. We test the time token for computing
the chameleon hash with different lengths of message m. It can be seen that under the
condition that the length of message m exceeds 3000, the time cost in our scheme is the
lowest. Therefore, our scheme has higher efficiency in computing the chameleon hash.

Figure 6. Time consumption of computing chameleon hash [35,36].

6.2. Computational Costs of Permission Operation

The time taken for the data owner to approve a visitor’s request is tested in this
section. As shown in Figure 7, the time overhead of permission acquisition in [26] is
proportional to the number of attributes. However, in our system, the computational
cost of permission acquisition is almost constant. This is because, unlike the system
of [26] that uses the key generation algorithm in attribute-based encryption to distribute
permissions, the permission acquisition in our system only needs to calculate a collision of
the chameleon hash.

Symmetry 2023, 15, 1010 16 of 19

Figure 7. Time consumption of permission acquisition [26].

Next, we test the time overhead of permission revocation in our system. The results are
shown in Figure 8. Multiple experiments are conducted to measure the time consumption
for different times of revoking permissions. It can be seen that the time spent on revocation
increases with the number of revocations, and the time for a single revocation does not
exceed 30 ms. Therefore, we think that this time overhead is acceptable in our system.

Figure 8. Time consumption of permission revocation.

6.3. Computational Costs of Encryption and Decryption

We conduct experiments on the existing system of [26,27] and ours to compare the time
overhead of data encryption and decryption. The time consumption of data encryption
is shown in Figure 9a. It can be seen that the encryption time consumption of data in the
system [26] is proportional to the number of attributes and the size of the data. In our
system, the encryption time of the data is only related to the size of them. In the system
of [26,27], the data are first encrypted using symmetric encryption, and then the symmetric
encryption key is encrypted using attribute-based encryption and ElGamal encryption,
respectively. In contrast, only symmetric encryption is required in our system, making it
more efficient than the existing systems in terms of processing.

Symmetry 2023, 15, 1010 17 of 19

Figure 9b shows the decryption time of the system of [26,27]. In the system of [26],
the decryption is divided into two stages: symmetric decryption and attribute-based
decryption. In the system of [27], symmetric decryption and ElGamal decryption are
required. It can be seen from the figure that the decryption time of the system of [26] is
proportional to the number of attributes and the size of the data, while it is only related to
the size of data in the system of [27]. In our system, only symmetric decryption is required,
resulting in higher efficiency compared to the existing systems.

(a) Encrypt data (b) Decrypt data

Figure 9. Time consumption of encrypt and decrypt data [26,27].

6.4. Data Storage Overhead

If the original data are compressed and stored on the blockchain according to the
algorithm of the system of [26], the storage overhead of the data-sharing system is greatly
increased. Therefore, instead of storing the complete data, we decide to just store important
information about them on the blockchain. Since the data need to be processed by a
specific algorithm before being submitted to the blockchain, we first measure the size of
the processed data in Cpds [26] and our system, respectively, when the size of the original
data is different. Then we calculate the ratio of the size of the original data to the size of
the processed data in Cpds [26] and our system, respectively, shown in Table 3. The larger
the ratio, the smaller the data storage overhead. As shown in Table 3, the data storage
overhead in our system is smaller than that of Cpds [26].

Table 3. Data storage overhead.

System 100 B 1 kB 5 kB 10 kB

Cpds [26] 1.23 1.40 1.44 1.45
ours 1.56 15.63 78.12 156.25

7. Conclusions

Since the existing systems generally lack the ability to restrict the power of partici-
pants and prevent visitors from sharing obtained data to unauthorized parties, this article
proposed a blockchain-based medical data-sharing system to tackle these problems. Firstly,
medical data are encrypted by symmetric encryption and stored on application platforms
to protect the privacy of the medical data. Secondly, patients have the ability to authorize
visitors to access their medical data in this system by using a chameleon hash. Thirdly, the
power of hospitals and the application platform is limited and can be revoked in the system
by our proposed CHRT. Finally, our system employs a chameleon signature to prevent
visitors from sharing the obtained data with unauthorized parties. The security analysis
and experimental results show that our system is secure and has excellent performance

Symmetry 2023, 15, 1010 18 of 19

compared to other systems. In future research, we will explore ways to more effectively
restrict and transfer permissions.

Author Contributions: Conceptualization, M.H. and Y.R.; Software, M.H.; Validation, C.C.; Writing—
original draft, M.H.; Writing—review & editing, Y.R.; Supervision, Y.R.; Funding acquisition, Y.R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Natural Science Foundation of Shanghai (20ZR1419700,
22ZR1481000), and Henan Key Laboratory of Network Cryptography Technology (LNCT2021-A13).

Acknowledgments: The authors would like to thank the anonymous reviewers for their helpful
comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Engelhardt, M. Hitching Healthcare to the Chain: An Introduction to Blockchain Technology in the Healthcare Sector. Technol.

Innov. Manag. Rev. 2017, 12, 22–34. [CrossRef]
2. Pazaitis, A.; De Filippi, P.; Kostakis, V. Blockchain and Value Systems in the Sharing Economy: The Illustrative Case of Backfeed.

Technol. Forecast. Soc. Chang. 2017, 12, 105–115. [CrossRef]
3. Fiore, M.; Capodici, A.; Rucci, P.; Bianconi, A.; Longo, G.; Ricci, M.; Sanmarchi, F.; Golinelli, D. Blockchain for the Healthcare

Supply Chain: A Systematic Literature Review. Appl. Sci. 2023, 13, 686. [CrossRef]
4. Zhou, N.; Long, S.; Liu, H.; Liu, H. Structure—Attribute Social Network Graph Data Publishing Satisfying Differential Privacy.

Symmetry 2022, 14, 2531. [CrossRef]
5. Colomo-Palacios, R.; Sánchez-Gordón, M.; Arias-Aranda, D. A critical review on blockchain assessment initiatives: A technology

evolution viewpoint. J. Softw. Evol. Process. 2020, 32, e2272. [CrossRef]
6. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: http://bitcoin.org/bitcoin.pdf (accessed on

14 April 2021).
7. Yong, Y.; Wang, F. Blockchain: The State of the Art and Future Trends. Acta Autom. Sin. 2016, 42, 481–494.
8. Yeh, K.-H.; Yang, G.-Y.; Butpheng, C.; Lee, L.-F.; Liu, Y.-H. A Secure Interoperability Management Scheme for Cross-Blockchain

Transactions. Symmetry 2022, 14, 2473. [CrossRef]
9. Wang, H.; Wang, Q.; He, D. Blockchain-Based Private Provable Data Possession. IEEE Trans. Dependable Secur. Comput. 2021, 18,

2379–2389. [CrossRef]
10. Ma, Z.; Ma, J.; Miao, Y.; Li, Y.; Deng, R.H. ShieldFL: Mitigating model poisoning attacks in privacy-preserving federated learning.

IEEE Trans. Inf. Forensics Secur. 2022, 17, 1639–1654. [CrossRef]
11. Ma, Z.; Ma, J.; Miao, Y.; Liu, X.; Choo, K.-K.R.; Deng, R. Pocket diagnosis: Secure federated learning against poisoning attack in

the cloud. IEEE Trans. Serv. Comput. 2022, 15, 3429–3442. [CrossRef]
12. Weng, J.; Weng, J.; Zhang, J.; Li, M.; Zhang, Y.; Luo, W. DeepChain: Auditable and privacy-preserving deep learning with

blockchain-based incentive. IEEE Trans. Dependable Secur. Comput. 2021, 18, 2438–2455. [CrossRef]
13. Swan, M. Blockchain: Blueprint for a New Economy; O’Reilly Media, Inc.: Newton, MA, USA, 2015.
14. Ahmad, M.; Khan; Salah, K. IoT Security: Review, Blockchain Solutions, and Open Challenges. Future Gener. Comput. Syst. 2018,

82, 395–411. [CrossRef]
15. Zhang, R.; Xue, R.; Liu, L. Security and Privacy for Healthcare Blockchains. IEEE Trans. Serv. Comput. 2022, 15, 3668–3686.

[CrossRef]
16. Saeed, H.; Malik, H.; Bashir, U.; Ahmad, A.; Riaz, S.; Ilyas, M.; Bukhari, W.A.; Khan, M.I.A. Blockchain technology in healthcare:

A systematic review. PLoS ONE 2022, 17, e0266462. [CrossRef]
17. Yin, H.L.; Fu, Y.; Li, C.L.; Weng, C.X.; Li, B.H.; Gu, J.; Lu, Y.S.; Huang, S.; Chen, Z.B. Experimental quantum secure network with

digital signatures and encryption. Natl. Sci. Rev. 2022, 10, nwac228. [CrossRef]
18. Bennett, C.H.; Brassard, G. Quantum cryptography: Public-key distribution and coin tossing. In Proceedings of the IEEE

International Conference on Computers, Systems and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179.
19. Lucamarini, M.; Yuan, Z.L.; Dynes, J.F. Overcoming the rate-distance limit of quantum key distribution without quantum

repeaters. Nature 2018, 557, 400–403. [CrossRef]
20. Xie, Y.M.; Lu, Y.S.; Weng, C.X.; Cao, X.Y.; Jia, Z.Y.; Bao, Y.; Wang, Y.; Fu, Y.; Yin, H.L.; Chen, Z.B. Breaking the Rate-Loss Bound of

Quantum Key Distribution with Asynchronous Two-Photon Interference. PRX Quantum 3 2022, 3, 020315. [CrossRef]
21. Gu, J.; Cao, X.Y.; Fu, Y.; He, Z.W.; Yin, Z.J.; Yin, H.L.; Chen, Z.B. Experimental measurement-device-independent type quantum

key distribution with flawed and correlated sources. Sci. Bull. 2022, 67, 2167–2175. [CrossRef]
22. Kassab, M.; DeFranco, J.; Malas, T. Exploring Research in Blockchain for Healthcare and a Roadmap for the Future. IEEE Trans.

Emerg. Top. Comput. 2021, 9, 1835–1852. [CrossRef]
23. Pan, H.; Zhang, Y.; Si, X.; Yao, Z.; Zhao, L. MDS2-C3PF: A Medical Data Sharing Scheme with Cloud-Chain Cooperation and

Policy Fusion in IoT. Symmetry 2022, 14, 2479. [CrossRef]

http://doi.org/10.22215/timreview/1111
http://dx.doi.org/10.1016/j.techfore.2017.05.025
http://dx.doi.org/10.3390/app13020686
http://dx.doi.org/10.3390/sym14122531
http://dx.doi.org/10.1002/smr.2272
http://bitcoin.org/ bitcoin.pdf
http://dx.doi.org/10.3390/sym14122473
http://dx.doi.org/10.1109/TDSC.2019.2949809
http://dx.doi.org/10.1109/TIFS.2022.3169918
http://dx.doi.org/10.1109/TSC.2021.3090771
http://dx.doi.org/10.1109/TDSC.2019.2952332
http://dx.doi.org/10.1016/j.future.2017.11.022
http://dx.doi.org/10.1109/TSC.2021.3085913
http://dx.doi.org/10.1371/journal.pone.0266462
http://dx.doi.org/10.1093/nsr/nwac228
http://dx.doi.org/10.1038/s41586-018-0066-6
http://dx.doi.org/10.1103/PRXQuantum.3.020315
http://dx.doi.org/10.1016/j.scib.2022.10.010
http://dx.doi.org/10.1109/TETC.2019.2936881
http://dx.doi.org/10.3390/sym14122479

Symmetry 2023, 15, 1010 19 of 19

24. Rahulamathavan, Y.; Phan, R.; Rajarajan, M. Privacy-Preserving Blockchain Based IoT Ecosystem using Attribute-based En-
cryption. In Proceedings of the 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems,
Bhubaneswar, India, 17–20 December 2017; pp. 1–6.

25. Bethencourt, J.; Sahai, A.; Waters, B. Ciphertext-Policy Attribute-Based Encryption. In Proceedings of the 2007 IEEE Symposium
on Security and Privacy, Berkeley, CA, USA, 20–23 May 2007; pp. 321–334.

26. Qi, S.; Lu, Y.; Zheng, Y.; Li, Y.; Chen, X. Cpds: Enabling Compressed and Private Data Sharing for Industrial Internet of Things
over Blockchain. IEEE Trans. Ind. Inform. 2021, 17, 2376–2387. [CrossRef]

27. Du, M.; Chen, Q.; Chen, J. An Optimized Consortium Blockchain for Medical Information Sharing. IEEE Trans. Eng. Manag.
2020, 68, 1677–1689. [CrossRef]

28. Wang, Y.; Su, Z.; Zhang, N. SPDS: A Secure and Auditable Private Data Sharing Scheme for Smart Grid Based on Blockchain and
Smart Contract. IEEE Trans. Ind. Inform. 2020, 17, 7688–7699. [CrossRef]

29. Zhang, N.; Li, J.; Lou, W.; Hou, Y.T. PrivacyGuard: Enforcing Private Data Usage with Blockchain and Attested Execution. In
International Workshop on Data Privacy Management; Springer: Berlin, Germany, 2018; pp. 345–353.

30. Nguyen, D.; Pathirana, P.; Ding, M. BEdgeHealth: A Decentralized Architecture for Edge-Based IoMT Networks Using Blockchain.
IEEE Internet Things J. 2021, 8, 11743–11757. [CrossRef]

31. Wu, G.; Wang, S.; Ning, Z.; Zhu, B. Privacy-Preserved Electronic Medical Record Exchanging and Sharing: A Blockchain-Based
Smart Healthcare System. IEEE J. Biomed. Health Inform. 2022, 26, 1917–1927. [CrossRef]

32. Yu, C.; Zhan, Y.; Sohail, M. SDSM: Secure Data Sharing for Multilevel Partnerships in IoT Based Supply Chain. Symmetry 2022, 14,
2656. [CrossRef]

33. Costan, V.; Devadas, S. Intel SGX Explained. Available online: https://eprint.iacr.org/2016/086.pdf (accessed on 17 Septem-
ber 2021).

34. Ren, Y.; Zhang, X.; Gu, D.; Feng, G. Efficient outsourced extraction of histogram features over encrypted images in cloud. Sci.
China Inf. Sci. 2021, 64, 139105. [CrossRef]

35. Krawczyk, H.; Rabin, T. Chameleon Hashing and Signatures. In Proceedings of the 7th Annual Network and Distributed System
Security Symposium, San Diego, CA, USA, 3–4 February 2000; pp.143–154.

36. Jia, Y.; Sun, S.; Zhang, Y. Redactable Blockchain Supporting Supervision and Self-Management. In Proceedings of the ASIA CCS,
Virtual Event, Hong Kong, China, 7–11 June 2021; pp. 844–858.

37. Chen, X.; Zhang, F.; Kim, K. Chameleon Hashing without Key Exposure. In Proceedings of the International Conference on
Information Security, Palo Alto, CA, USA, 27–29 September 2004; pp. 87–98.

38. Camenisch, J.; Derler, D.; Krenn, S. Chameleon Hashes with Ephemeral Trapdoors—And Applications to Invisible Sanitizable
Signatures. Public Key Cryptogr. 2017, 20, 152–182.

39. Ateniese, G.; de Medeiros, B. On the Key Exposure Problem in Chameleon Hashes. In Proceedings of the International Conference
on Security in Communication Networks, Amalfi, Italy, 8–10 September 2004; pp. 165–179.

40. Cordoş, A.A.; Bolboacă, S.D.; Prato, R.; Fortunato, F. iGeneration’s social media usage in retrieving information related to
healthcare education: A web-based survey among Italian and Romanian undergraduate medical students. Ann. Ist. Super. Sanita
2019, 55, 34–40.

41. Jäntschi, L. Binomial Distributed Data Confidence Interval Calculation: Formulas, Algorithms and Examples. Symmetry 2022, 14,
1104. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TII.2020.2998166
http://dx.doi.org/10.1109/TEM.2020.2966832
http://dx.doi.org/10.1109/TII.2020.3040171
http://dx.doi.org/10.1109/JIOT.2021.3058953
http://dx.doi.org/10.1109/JBHI.2021.3123643
http://dx.doi.org/10.3390/sym14122656
https://eprint.iacr.org/2016/086.pdf
http://dx.doi.org/10.1007/s11432-018-9901-0
http://dx.doi.org/10.3390/sym14061104

	Introduction
	Preliminaries
	Blockchain
	Chameleon Hash

	Chameleon Hash with Revocable Trapdoor
	Chameleon Hash Based on Elliptic Curve Group
	Construction of CHRT

	The Proposed System
	The System Model
	New Patient Registration
	Data Storage
	Data Sharing
	Permission Acquisition
	Data Acquisition

	Permission Revocation
	Application Permission Revocation
	Hospital Permission Revocation

	Analysis of the System
	The Security of CHRT
	Data Access Control
	Data Security

	Experiments
	Computational Costs of Chameleon Hash
	Computational Costs of Permission Operation
	Computational Costs of Encryption and Decryption
	Data Storage Overhead

	Conclusions
	References

