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Abstract: In this article, we have investigated solutions to a symmetry chaotic system with frac-
tional derivative order using two different methods—the numerical scheme for the ABC fractional
derivative, and the Laplace decomposition method, with help from the MATLAB and Mathematica
platforms. We have explored progressive and efficient solutions to the chaotic model through the
successful implementation of two mathematical methods. For the phase portrait of the model, the
profiles of chaos are plotted by assigning values to the attached parameters. Hence, the offered tech-
niques are relevant for advanced studies on other models. We believe that the unique techniques that
have been proposed in this study will be applied in the future to build and simulate a wide range of
fractional models, which can be used to address more challenging physics and engineering problems.

Keywords: numerical solutions; numerical scheme for AB operator; analytical solutions; Laplace
decomposition method; chaos

1. Introduction

The modeling of diffusion, control, and viscoelasticity in fractional calculus has in-
creased the popularity of applied mathematics during the last decades. Research in physics
and engineering makes use of fractional differential equations [1–14], and diverse methods
have been devised to solve these fractional differential equations [15,16]. Recent years have
seen a surge in the literature on modeling chaotic and hyperchaotic systems, with several
applications across various fields including electrical circuits, biology, and physics [17–20].

One of the most well-known uses of chaos is electrical circuit modeling, which has
been covered in several papers. Given how challenging it is to predict many real-world
events, the use of chaotic models is therefore justified. Asymptotic stability, which clarifies
how model parameters affect the dynamics of chaotic models, and Lyapunov exponents,
which identify the precise nature of the chaos, are just a few of the many novel techniques
for evaluating chaotic systems that have arisen in recent years. The mathematical and
scientific fields of fractional calculus are remarkably diverse. The use of fractional calculus
in science, mathematics, biology, and other fields is expanding rapidly [21–31] for some
cutting-edge research and applications in the area of fractional calculus. This discovery
is significant since there are numerous meanings for fractional operators. The Caputo
derivative and the Riemann-Liouville derivative are two examples of fractional deriva-
tives with singular kernels. Singular-free derivatives include those with exponential and
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Mittag–Leffler kernels [32]. Of note, fractional derivatives are particularly useful since they
incorporate the influences of long-term memory into account.

In this paper, we used a pair of techniques to examine the solutions to a symmetric
chaotic system with fractional derivative order. We introduced the chaotic system with
fractional derivative order as follows:

ABC
0 Dα

t x(t) = a(y− x) + byz2,
ABC
0 Dα

t y(t) = cx + dxz2,
ABC
0 Dα

t z(t) = βz + ∈|x|.
(1)

The physical importance of our system lies in the study of complex dynamics and the
display of behaviors in order to fully control the chaos, with this particular system being
used in the fields of physics and engineering, especially in electrical circuits and coding.

Through the effective use of two mathematical methodologies, we have investigated
advanced and efficient solutions to the symmetry chaotic model. Therefore, the presented
approaches hold promise for further study of other models.

Recent studies [33] have shown that there are several solid justifications for employing
fractional derivatives in real-world situations. The Lorenz attractor, Chua’s electrical circuit,
Chen’s chaotic system, Lu’s chaotic system, and the fundamental chaotic system are only a
few examples of chaotic systems that can be found in the literature. It is common knowledge
that chaotic systems react violently to both initial circumstances and slight changes in their
parameters. For research on the use of fractional derivatives to model these chaotic systems,
the fractional calculus papers mentioned below can be referred [34]. The Laplace transform
decomposition method [35,36] is essential for solving a wide variety of problems. In certain
cases, it has been shown to be successful in overcoming problems.

Several methodologies have been used to address challenges in management, eco-
nomics, biology, physics, and engineering [37–41].

The significance of this study lies in its ability to solve a chaotic system with fractional
derivative order using two distinct approaches. A numerical approach has been displayed
for the ABC fractional derivative and the Laplace decomposition technique using the
MATLAB and Mathematica platforms.

The numerical results demonstrate that our approach carries out its operations when
dealing with fractions in a manner that is satisfactory in terms of its numerical stability. For
the phase portrait of the model, chaotic results are produced by assigning specific values to
the attached parameters. Thus, the methodologies offered are meritoriously pertinent for
future studies on various models. This research was conducted in the hope that it might be
useful for future fractional system applications.

2. Preliminaries
2.1. The Mittag–Leffler Function Is Defined as [41]:

Eα(t) =
∞

∑
k=0

tk

Γ(αk + 1)
. (2)

2.2. Atangana–Baleanu–Caputo Fractional Derivative

The Atangana–Baleanu–Caputo derivative (ABC) of a function y ∈ H1(0, c), with
α ∈ (0, 1] is defined as [42]:

ABC
0 Dα

t y(t) =
B(α)
1−α

t∫
0

y’(τ)Eα

(
− α

1−α
(t− τ)α

)
dτ. 0<α<1, (3)

where H1(0, c), c > 0 is a space of square-integrable functions and is itself defined as:

H1(0, c) = {y(t)∈L2(0, c)|y’(t)∈L2(0, c)} and B(α) = 1−α+
α√
α

(4)
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2.3. The Atangana–Baleanu Fractional Integral

The Atangana–Baleanu fractional integral of the function y ∈ H1(0, c), with c > 0, is
as follows [43]:

AB
0 Iαt y(t) =

1−α

M(α)
y(t) +

α

M(α)Γ(α)

∫ t

0
y(τ)(t− τ)α−1dτ. (5)

2.4. Laplace Transform of an Atangana–Baleanu–Caputo Derivative

The Laplace transform of the fractional derivative [41] given in Equation (3) is defined
as:

l
[

ABC
0 Dα

t y(t)
]
=

B(α)
1−α

sα l[y(t)]− sα−1y(0)
sα + α

1−α
. (6)

3. Numerical Scheme for the ABC Fractional Derivative (ABC-FD)

This section focuses on chaotic models in which the ABC fractional derivative was
present. In this case, the following non-linear fractional ordinary equation was considered:

ABC
0 Dα

t y(t) = F(t, y(t)), y(0) = y0. (7)

Using the fundamental theorem of fractional calculus, the equation above can be
transformed into a fractional integral equation:

y(t)− y0 =
(1−α)

ABC(α)
F(t, y(t))

(α)

ABC(α)Γ(α+ 2)

∫ t

0
F(t, y(t))(t− τ)α−1dτ. (8)

We presented the numerical method of this system using a new approach at tn+1, n = 0,
1,2. . ., and reformulated this method as follows:

y(tn+1)− y0 = (1−α)
ABC(α)

F (tn, y(tn)) +
α

ABC(α)Γ(α+2)

n
∑

k=0

∫ ζn+1
0 F (τ, y(t))(tn+1 − τ)α−1dτ

= (1−α)
ABC(α)

F (tn, y(tn)) +
α

ABC(α)Γ(α) ∑n
k=0

∫ tk+1
tk
F (τ, y(t))(tn+1 − τ)α−1dτ.

(9)

With [tk, tk+1], and the function F (τ, y(τ)), the following can therefore be approxi-
mated using two-step Lagrange polynomial interpolation:

Pk(τ) =
τ−tk−1
tk−tk−1

F (tk, y(tk))−
τ−ζk−1
ζk−ζk−1

F (tk−1, y(tk−1)

=
F (ζk,y(ζk))(τ−ζk−1)

h̄ − F (ζk−1,y(ζk−1))(τ−ζk)
h̄ ≈F (tk,yk))(τ−ζk−1)

h̄ − F (ζk−1,y(ζk−1))(τ−ζk)
h̄ .

(10)

This approximation may thus be used into Equation (3) to obtain

yn+1 = y0 +
(1−α)

ABC(α)
F (tn, y(tn))

(α)
ABC(α)Γ(α+2) ∑n

k=0

(
F (tk,yk)

h

)∫ tk+1
tk

(τ− tk−1)(tn+1 − τ)α−1dτ−(
F (tk,yk)

h

)∫ tk+1
tk

(τ− tk)(tn+1 − τ)α−1dτ.
(11)

For simplicity, we implemented the following equations:

A
◦
α,k,1 =

∫ tk+1
tk

(τ − tk−1)(tn+1 − τ)α−1dτ,

A
◦
α,k,2 =

∫ tk+1
tk

(τ − tk)(tn+1 − τ)α−1dτ.
(12)

A
◦
α,k,1 = hα+1(n+1−k)(n−k+2+α)−(n−k)α(n−k+2+2α)

α(α+1) ,

A
◦
α,k,1 = hα+1(n+1−k)−(n−k)α(n−k+1+α)

α(α+1) .
(13)

From combining Equations (11) and (12) and substituting them into Equation (10), we
obtained
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yn+1 = y0 +
(1−α)

ABC(α)
F (tn, y(tn))

+ (α)
ABC(α)

n
∑

k=0

hαF (tκ,yκ)
Γ(α+2)

(
(n + 1− κ)α(n− κ+ 2 +α)− (n− κ)α(n− κ+ 2(1 + 2α)

)
.

− hαF(tκ−1,yκ−1)
Γ(α+2)

(
(n + 1− κ)α − (n− κ)α(n− κ+ 1 +α)

)
.

(14)

4. Applications of (ABC-FD)

In this section, we investigated the utility of a numerical scheme for the ABC fractional
derivative for solving systems and resorted to numerical simulations to examine the
solutions to our test issues. In order to describe this fractional chaotic system, we wrote
it down as a system of three fractional-order differential equations (FODEs) which are as
follows:

ABC
0 Dα

t x(t) = a(y− x) + byz2,
ABC
0 Dα

t y(t) = cx + dxz2,
ABC
0 Dα

t z(t) = βz+ ∈ |x|.
(15)

When a = 7.5, b = 1, c = 5, d = −1, β = 1, and ε = 1, the system was deemed chaotic,
as shown in Figure 1 with x(0) = 1

2 , y(0) = 0.4, and z(0) = −0.4, respectively.
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Figure 1. Chaotic attractor of Equation (15), when α = 0.97.

Table 1 provides numerical results from the ABC method to the fractional model (15),
when α = 1, (a, b, c, β, ε) = (7.5, 1, 5,−1, 1, 1), and (x0, y0, z0) = (−5,−1,−1), respectively,
using the numerical scheme for the ABC operator and the RK4 method at t = 0.2. Further-
more, our numerical solutions were found to be in great agreement with those obtained
with the RK4 technique when the step size h was sufficiently small. We presented accurate
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and close solutions that were remarkably similar to RK4. In Table 2, the numerical solutions
were presented in fractional order, and this provides evidence in that the method is effective
and can be used in different fractional systems.

Table 1. Solutions of Equation (20) when α = 1, x(0) = 0.5, y(0) = 0.4, z(0) = −0.4, and
t = 0.2, respectively.

h x y z

1/320 0.467020507081402 0.477135507758732 −0.384820957568090

1/640 0.467484966883951 0.478385773744663 −0.384554656198324

1/1280 0.467724698261518 0.479009970990537 −0.384422673415633

1/2560 0.467846465168544 0.479321827468676 −0.384356986890225

1/5120 0.467907826528056 0.479477694202676 −0.384324221394378

1/10240 0.467938626970537 0.479555612075837 −0.384307858278194

1/20480 0.467954057165821 0.479594567124480 −0.384299681651556

1/40960 0.467961779760992 0.479614043675021 −0.384295594574026

R K4 0.467969508867656 0.479633519438750 −0.384291508484103

Table 2. Solutions of Equation (15) when α = 0.75, x(0) = 0.5, y(0) = 0.4, z(0) = −0.4, and t = 0.2,
respectively.

h x y z

1/320 0.476834615196041 0.477608450387220 −0.383951033804631

1/640 0.477214259207429 0.477680964115402 −0.383847719119722

1/1280 0.477402328114390 0.477716831041644 −0.383796524583421

1/2560 0.477495834460713 0.477734624943283 −0.383771103225998

1/5120 0.477542430419032 0.477743474458066 −0.383758454328070

1/10240 0.477565681810709 0.477747883627248 −0.383752150593742

1/20480 0.477577293723388 0.477750083206768 −0.383749005467426

1/40960 0.467583095603098 0.477751181416007 −0.383747435053161

R K4 0.467969508867656 0.479633519438750 −0.384291508484103

5. Laplace Decomposition Method (LDM)

In this part, we explain the algorithm of LDM by considering ODE (7) with the
Atangana– Baleanu fractional derivative, with Equation (7) written as:

ABC
0 Dα

t y(t) = Gy(t) +Hy(t) +U(t), (16)

where Gy(t) is a linear term,Hy(t) is a nonlinear term, and U (t) is the source term.
After applying the Laplace decomposition method displayed in Equation (16), the

following equation was devised:

l[y(t)] =
y(0)

s
+

1−α

ABC(α)

(
1 +

α

sα(1−α)

)
l[U (t) + Gy(t) +Hy(t)], (17)

From taking the inverse Laplace transform of Equation (17), we obtained:

y(t) = P(t) + l−1
[

1−α

ABC(α)

(
1 +

α

sα(1−α)

)
l[Gy(t) +Hy(t)]

]
, (18)
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where the LDM takes a solution as

y(t) = ∑∞
n=0 yn(t), (19)

and the nonlinear terms are represented as

Hy(t) = ∑∞

n=0 An, (20)

where An, a domain polynomial can be computed using

An =
1
n!

dn

dJ n ∑n
i=0

[
J iyi(t)

]
J=0

. (21)

By substituting Equations (19) and (20) into Equation (18), we obtain

∑∞
n=0 yn(t) = P(t) + l−1

[
1−α

ABC(α)

(
1 +

α

sα(1−α)

)
l
[
G∑∞

n=0 yn(t) + An

]]
, (22)

which gives the general recursive formula

y0(t) = P(t),
yn+1(t) = l−1

[
1−α

ABC(α)

(
1 + α

sα(1−α)

)
l[Gyn(t) + An]

]
, n ≥ 0.

(23)

The final solution can be ultimately written as

y(t) = ∑∞
n=0 yn(t). (24)

6. Application of (LDM)

In this part, we explain the solution of a fractional chaotic system (15) using LDM.
From applying the Laplace decomposition method to Equation (15), we obtain

l[x(t)] = x(0)
s + 1−α

B(α)

(
1 + α

sα(1−α)

)
l
[
a(y− x) + byz2],

l[y(t)] = y(0)
s + 1−α

B(α)

(
1 + α

sα(1−α)

)
l
[
cx + dxz2],

l[z(t)] = z(0)
s + 1−α

B(α)

(
1 + α

sα(1−α)

)
l[βz + ε|x|].

(25)

Operating the inverse Laplace transform of Equation (25) obtained the following
equation.

x(t) = x(0) + l−1
[

1−α
ABC(α)

(
1 + α

sα(1−α)

)
l
[
a(y− x) + byz2]],

y(t) = y(0) + l−1
[

1−α
ABC(α)

(
1 + α

sα(1−α)

)
l
[
cx + dxz2]],

z(t) = z(0) + l−1
[

1−α
ABC(α)

(
1 + α

sα(1−α)

)
l[βz + ε|x|]

]
.

(26)

The LDM then represents a solution as an infinite series,

x(t) = ∑∞
n=0 xn(t),

y(t) = ∑∞
n=0 yn(t),

z(t) = ∑∞
n=0 zn(t).

(27)

and the nonlinear terms are decomposed as:

yz2 =
∞

∑
n=0

An , and xz2 =
∞

∑
n=0

Bn, (28)

where An and Bn are Adomain polynomials which can be calculated by Equation (21).
Substituting Equations (27) and (28) into Equation (26), yields
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∑∞
n=0 xn(t) = x(0) + l−1

[
1−α
B(α)

(
1 + α

sα(1−α)

)
l[a(∑∞

n=0 xn(t)−∑∞
n=0 yn(t)) + b ∑∞

n=0 An ]
]
,

∑∞
n=0 yn(t) = y(0) + l−1

[
1−α
B(α)

(
1 + α

sα(1−α)

)
l[c ∑∞

n=0 xn(t) + d ∑∞
n=0 Bn ]

]
,

∑∞
n=0 zn(t) = z(0) + l−1

[
1−α
B(α)

(
1 + α

sα(1−α)

)
l[β∑∞

n=0 zn(t) + ε|∑∞
n=0 xn(t)|]

]
.

(29)

With the following recursive formula,

x0(t) = x(0)
xn+1(t) = l−1

[
1−α
B(α)

(
1 + α

sα(1−α)

)
l[a(xn(t)− yn(t)) + bAn],

]
, n≥0,

y0(t) = y(0)
yn+1(t) = l−1

[
1−α
B(α)

(
1 + α

sα(1−α)

)
l[cxn(t) + dBn]

]
, n≥0,

z0(t) = z(0)
zn+1(t) = l−1

[
1−α
B(α)

(
1 + α

sα(1−α)

)
l[βzn(t) + ε|xn(t)|]

]
, n≥0.

(30)

this gave the following:
x0(t) = 0.5,

x1(t) = −
0.1(a− 0.64b)(tαα+ (1−α)Γ[1 +α])

B(α)Γ[1 +α]
,

x2 = − 1
(B(α))2Γ[1+α]Γ[1+2α]

(tαα(a2(−0.2 + 0.2α) + a(−c− 0.16d

+b(0.128− 0.128α) + cα+ 0.16dα) + b(−0.0256d
+c(−0.16 + 0.16α) + 0.0256dα− 0.256β+ 0.256αβ
+0.32ε− 0.326αε))Γ[1 + 2α]+Γ[1 +α](t2αα2(−0.1a2

+a(0.064b− 0.5c− 0.08d) + b(−0.08c− 0.0128d
−0.128β+ 0.16ε)) + (−0.1a2(1− 1.α)2 + a(0.064b
−0.5c− 0.08d)(1.− 1.α)2 + b

(
−0.08(1−α)2

−0.0128d(1.− 1.α)2 − 0.128β+ 0.256αβ− 0.128α2β

+0.16ε− 0.32αε+ 0.16α2ε
)
)Γ[1 + 2α])),

y0(t) = 0.4,

y1(t) =
0.5(1.c + 0.16d)(tαα+ (1− 1.α)Γ[1 +α])

B(α)Γ[1 +α]
,

y2(t) = − 1
(B(α))2Γ[1+α]Γ[1+2α]

(tαα(ac(0.2− 0.2α) ,

+ad(0.032− 0.032α) + bd(−0.02048 + 0.02048α)
+bc(−0.128 + 0.128α) + d(−0.32 + 0.32α)β
+d(0.4− 0.4α)ε)Γ[1 + 2α]
+Γ[1
+α]

(
t2αα2(0.2ac− 0.064bc + 0.016ad− 0.01024bd

−0.16dβ+ 0.2dε)
+0.2(1.− 1.α)2(1.ac− 0.64bc + 0.16ad− 0.1024bd
−1.6dβ+ 2dε)Γ[1 + 2α])),

z0(t) = −0.4,

z1(t) = −
0.4(1.β− 1.25ε)(tαα+ (1− 1.α)Γ[1 +α])

B(α)Γ[1 +α]
,
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z2(t) = − 1
(B(α))2Γ[1+α]Γ[1+2α]

(tαα
(
(0.8− 0.8α)β2 + a(0.2

−0.2α)ε+ b(−0.128 + 0.1283α)ε+ (−1 +α)βε)Γ[1
+2α] +

(
0.4β2 + 0.1aε− 0.064bε− 0.5βε

)
Γ[1

+α](t2αα2 + (1−α)2Γ[1 + 2α])).

Ultimately, this series solution can be expressed as

x(t) = ∑∞
n=0 xn(t),

y(t) = ∑∞
n=0 yn(t),

z(t) = ∑∞
n=0 zn(t).

(31)

Table 3 provides numerical results from the ABC method to the fractional model (15),
when α = 1, (a, b, c, β, ε) = (7.5, 1, 5,−1, 1, 1), and (x0, y0, z0) = (−5,−1,−1), respectively,
using (LDM), In Table 4, the numerical solutions when α = 0.75 and this provides evidence
that the method is effective and can be used in different fractional systems.

Table 3. A solution of fractional chaotic system (15) using LDM, when a = 7.5, b = 1, c = 5, d = −1,
β = 1, ε = 1, α = 1, x(0) = 0.5, y(0) = 0.4, and z(0) = −0.4, respectively.

t x y z

0 0.5 0.4 −0.4

0.1 0.549651 0.6255988 −0.39293

0.2 0.835804 0.8183952 −0.39172

0.3 1.3584590000000003 0.9783892000000001 −0.39637

0.4 2.1176160000000004 1.1055807999999998 −0.40687999999999996

0.5 3.113275 1.19997 −0.42325

0.6 4.345436000000001 1.2615568000000004 −0.44548000000000004

0.7 5.814099000000001 1.2903412000000003 −0.47357000000000005

0.8 7.519264000000001 1.2863232 −0.50752

0.9 9.46093 1.2495028000000004 −0.54733

Table 4. A solution of fractional chaotic system (15) using LDM, when a = 7.5, b = 1, c = 5, d = −1,
β = 1, ε = 1, α = 0.75, x(0) = 0.5, y(0) = 0.4, and z(0) = −0.4, respectively.

t x y z

0 1.5330999766570965 0.7774994575127766 −0.4070046374413804

0.1 3.075738916272227 0.865837863878042 −0.4344350715747163

0.2 4.418837606033031 0.8856582296785278 −0.4603556734189791

0.3 5.790621851656716 0.8760830290256982 −0.48789448134169433

0.4 7.21034260681244 0.8451086645601766 −0.5171476747850935

0.5 8.682368702935259 0.7967085706251742 −0.5480600096176654

0.6 10.207209101765235 0.7333298178257313 −0.5805542106330043

0.7 11.784083641366404 0.6566582074503424 −0.614554623507307

0.8 13.411754094460488 0.5679391266589542 −0.6499922360919338

0.9 15.088840563199248 0.46813773976555995 −0.686805232061098
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In Figures 1–3, we plotted numerical solutions to Equation (15) when (a, b, c) =
(0.4, 0.4, 4.5), and (x0, y0, z0) = (1.5, 1, 1), respectively. In these figures, we displayed
the chaotic attractors of Equation (15) that were obtained using the numerical scheme for
the ABC operator for certain parameter values. It is observable from Figures 1–3, and
from Equation (15) where (a, b, c) = (0.4, 0.4, 4.5), how they can show the same kind of
chaotic attractor as its integer order [44] when α = 0.97, 0.98, and 0.99, respectively. The
advantage of this method lies in the accuracy of its graphics and the display of chaos in a
clear and effective manner, which is remarkably similar to the integer order.
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7. Conclusions

This work successfully used two different approaches to solve a chaotic system with
fractional derivative order. Utilizing the MATLAB and Mathematica platforms, a numerical
strategy was provided for the ABC fractional derivative and Laplace decomposition method.
Numerical simulations demonstrated that the numerical approach for the ABC fractional
derivative produces numerical results that were remarkably close to the exact solutions, or
RK4 solutions, in the integer order situation as the step size h was decreased. The acquired
numerical results show that our procedure executes its operations in the case of fractions in
a manner that is satisfactory in terms of its numerical stability. By giving specific values to
the attached parameters, chaotic results were produced for the phase portrait of the model.
The methodologies provided are thus meritoriously relevant for further research on various
other models. This study was conducted in the anticipation that it would be a valuable tool
for the upcoming fractional system applications.

We recommend a wider use of this method to address both physics and engineer-
ing challenges that are becoming ever more complicated. In the future, we intend to
solve several of the newer fractional models and make comparisons with other numerical
methods.
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