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Abstract: A delta-lognormal distribution consists of zero and positive values. The positive values
follow a lognormal distribution, which is an asymmetric distribution. It is well known that the
logarithm of these values follows a normal distribution, which is a symmetric distribution. The
delta-lognormal distribution is used in medical and environmental sciences. This study considers
the challenges of constructing confidence intervals for the mean and difference between means
of delta-lognormal distributions containing left-censored data and applies them to compare two
daily rainfall average areas in Thailand. Three different approaches for constructing confidence
intervals for the mean of the delta-lognormal distribution containing left-censored data, based on
the generalized confidence interval approach, the Bayesian approach, and the parametric bootstrap
approach, are developed. Moreover, four different approaches for constructing confidence intervals
for the difference between means of delta-lognormal distributions containing left-censored data, based
on the generalized confidence interval approach, the Bayesian approach, the parametric bootstrap
approach, and the method of variance estimates recovery approach, are considered. The performance
of the proposed confidence intervals is evaluated by Monte Carlo simulation. The simulation studies
indicate that the Bayesian approach can be considered as an alternative to construct a credible interval
for the mean of the delta-lognormal distribution containing left-censored data. Additionally, the
generalized confidence interval and Bayesian approaches can be recommended as alternatives to
estimate the confidence interval for the difference between means of delta-lognormal distributions
containing left-censored data. All approaches are illustrated using the daily rainfall data from Chiang
Mai and Lampang provinces in Thailand.

Keywords: confidence interval; delta-lognormal distribution; left-censored data; mean; rainfall data

1. Introduction

The mean is a measure of the center tendency that represents the center point of values
in a dataset. Functions of the mean can also be considered, such as the difference between
two means, the ratio of two means, and the common of k means. The functions of the
mean have been used in many research areas. For example, Zhou et al. [1] presented
hypothesis testing of the effect of race on the average medical costs between African
American and Caucasian patients with type I diabetes. Zhou and Tu [2], Tian [3], and
Li et al. [4] estimated the mean charges for diagnostic tests on patients with unstable
chronic medical conditions. Tian and Wu [5] and Krishnamoorthy and Oral [6] estimated
the maximum alcohol concentration in men in an alcohol interaction study. Fletcher [7]
and Wu and Hsieh [8] established the mean red cod density around New Zealand as an
indication of fish abundance. Harvey and van der Merwe [9] estimated the mean of the
monthly rainfall totals to compare rainfall in Bloemfontein and Kimberley in South Africa.
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Furthermore, Thangjai and Niwitpong [10] presented the relative potency of two drugs
using the confidence interval for the ratio of means of normal distributions with unknown
coefficients of variation.

Agriculture is the primary occupation of rural people in Thailand, and it heavily
relies on water as a critical input for production. Consequently, the success of agriculture
mainly depends on rainfall. However, the amount of rainfall varies significantly during
the monsoon season. Furthermore, heavy rainfall in certain areas has caused flooding,
leading to significant impacts on both the economy and society. Therefore, it is crucial
to measure the amount of rainfall. Rainfall data comprises zero and positive values that
follow a delta-lognormal (DLN) distribution.

The DLN distribution combines both zero and positive values, where the number of
zero observations follows a binomial distribution and the positive observations follow a
lognormal (LN) distribution (asymmetric distribution). Furthermore, the logarithm values
of the LN random variable follow a normal distribution (symmetric distribution). The
DLN distribution has been widely used in rainfall network and flood frequency analyses,
as demonstrated in studies by Krstanovic and Singh [11], Singh and Rajagopal [12], and
Singh and Singh [13]. Moreover, several researchers have proposed confidence intervals for
various functions of the DLN distribution, such as the mean, coefficient of variation, and
percentile. For instance, Maneerat et al. [14], Maneerat et al. [15], Yosboonruang et al. [16],
and Thangjai et al. [17] have all explored this topic.

A censored dataset contains observations within a restricted range of values that
are not otherwise measured [18]. Censored datasets are commonly encountered in water
quality-related fields. For instance, laboratory measurements of contaminant concentrations
are often reported as less than the detection limit. Moreover, river discharges of less than a
given measurement threshold level are reported as zero. Historical river discharge records
report over half of the annual minimum flows as zero [19]. These discharges may have been
zero and thus reported as such, or they may have been between zero and the measurement
threshold and reported as zero. The main concern is how to efficiently estimate moments,
quantiles, and other descriptive statistics of the underlying continuous distribution using
such censored datasets [20]. Several researchers have studied inference for the parameters
from censored data. For instance, Owen and DeRouen [21] proposed estimating the
mean for LN data containing zeroes and left-censored values, with applications to the
measurement of worker exposure to air contaminants. Glass and Gray [22] estimated
mean exposures from censored data. Additionally, Krishnamoorthy et al. [23] presented an
inference method for estimating the LN mean and quantiles based on samples with left
and right Type I censoring.

It is of interest to make inferences about means of a DLN dataset containing left-censored
values. In this paper, the censored LN estimator proposed by Krishnamoorthy et al. [23] was
used to construct the confidence interval for the mean and difference between means of
DLN distributions based on left-censored data. Moreover, confidence intervals were used
to estimate the rainfall data in Thailand. The different approaches were used to compare
the interval estimators. First, the generalized confidence interval (GCI), Bayesian (BS),
and parametric bootstrap (PB) approaches were used to estimate the confidence intervals
for the mean of a DLN distribution containing left-censored data. Second, the GCI, BS,
PB, and method of variance estimates recovery (MOVER) approaches were used to con-
struct the confidence intervals for the difference between means of the DLN distributions
containing left-censored data. The GCI approach, proposed by Weerahandi [24], utilizes
the generalized pivotal quantity (GPQ) to construct the confidence interval. Several re-
searchers have applied the GCI approach to solve various problems, such as Tian and
Wu [5], Thangjai and Niwitpong [10], Krishnamoorthy and Lu [25], Tian [26], Ye et al. [27],
and Thangjai et al. [28]. One advantage of the GCI approach is its ability to estimate the
confidence interval for complex parameters. However, a disadvantage of this approach is
that it relies on simulated data. The BS approach utilizes the posterior probability resulting
from a prior probability and a likelihood function. This approach has been studied by
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several research papers to estimate parameters. Examples of these papers include Harvey
and van der Merwe [9], Rao and D’Cunha [29], Ma and Chen [30], and Thangjai et al. [31].
One advantage of the BS approach is its ability to estimate credible intervals for complex
parameters, but a disadvantage is that it relies on the prior distribution of the parameter.
The PB approach utilizes re-sampling to estimate the sampling distribution of the estimator.
This method has been applied by several researchers for parameter inference, such as
Padgett and Tomlinson [32] and Zhang [33]. One advantage of the PB approach is its ability
to estimate confidence intervals for complex parameters. However, a disadvantage is that
it requires a specific assumption about the form of the sampling distribution. The MOVER
approach was introduced by Zou and Donner [34] and Zou et al. [35]. This approach
utilizes the central limit theorem and assumes independence between two estimators.
Many researchers have employed the MOVER approach to establish confidence intervals,
including Thangjai et al. [28] and Donner and Zou [36]. An advantage of the MOVER
approach is its ease of constructing confidence intervals using an exact formula. However,
a disadvantage of this approach is that it requires the initial confidence interval of a single
parameter of interest to construct the confidence interval for the difference between two
parameters of interest.

This paper is organized as follows. In Section 2, the confidence intervals for the mean
of a DLN distribution based on left-censored data are provided. In Section 3, the confidence
intervals for the difference between the means of DLN distributions based on left-censored
data are presented. In Section 4, simulation results are presented to compare the coverage
probabilities (CPs) and average lengths (ALs) of the proposed approaches. In Section 5, the
proposed approaches are illustrated using two examples. In Section 6, the discussion is
presented. In Section 7, the conclusions are given.

2. Confidence Intervals for the Mean of Delta-Lognormal Distribution Based on
Left-Censored Data

The data contain zero values and positive values drawn from a DLN distribution.
Suppose that n0 is the number of zero values, which has a binomial distribution. Moreover,
suppose that n1 is the number of positive values, which has a LN distribution. Suppose
that n = n0 + n1 is the sample size. Let Z = (Z1, Z2, . . . , Zn) be the random variable from a
DLN distribution with parameters mean µ, variance σ2, and the probability of obtaining a
zero observation δ. The distribution of Z is defined by

G(zj; µ, σ2, δ) =

{
δ; zj = 0

δ + (1− δ)F(zj; µ, σ2); zj > 0
, (1)

where F(zj; µ, σ2) is the LN distribution function and j = 1, 2, . . . , n.
The population mean of Z is defined by

ν = (1− δ) exp
(

µ +
1
2

σ2
)

. (2)

Here, the mean from a censored LN distribution is considered. Let X = (X1, X2, . . . , Xn)
be the random variable from the LN distribution with parameters µ and σ2. The random
variable contains n2 observations greater than some censoring point log(ξ), and n1 = n− n2
observations less than or equal to log(ξ) are not known but they are assumed to be nonzero.
Let Yi = log(Xi) be the observations above log(ξ), where i = 1, 2, . . . , n2 since Yi has a
normal distribution. Suppose h = n1

n is the fraction of observations in the sample that is
below log(ξ). The mean and variance of Yi are given by

Ȳ =
1
n2

n2

∑
i=1

Yi (3)
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and

S2 =
1
n2

n2

∑
i=1

(Yi − Ȳ)2. (4)

Define

a =
log(ξ)− µ

σ
(5)

W(a) =
φ(a)

1−Φ(a)
(6)

and

V(h, a) =
hW(−a)

1− h
, (7)

where φ and Φ are the density function and the distribution function of the standard normal
distribution.

Following Krishnamoorthy et al. [23], the maximum likelihood estimators of µ and σ2

are given by
µ̂ = Ȳ− ψ(h, a)(Ȳ− log(ξ)) (8)

and
σ̂2 = S2 + ψ(h, a)(Ȳ− log(ξ))2. (9)

The mean of the censored LN distribution is

θ = exp
(

µ +
1
2

σ2
)

. (10)

From Equations (2) and (10), it can be seen that ν = θ when δ = 0. Therefore, ν will be
used to represent both the mean of the delta distribution and the LN distribution.

Therefore, the estimator of the mean of censored DLN distribution is

ω̂ = exp
(

µ̂ +
1
2

σ̂2
)

. (11)

Three novel approaches were proposed to construct confidence intervals for the mean
of the DLN distribution based on left-censored data.

2.1. Generalized Confidence Interval Approach

For the GCI approach, the generalized pivotal quantity (GPQ) is used to construct the
confidence interval.

Definition 1. Let Z = (Z1, Z2, . . . , Zn) be the random variable with the probability density func-
tion f (z; µ, σ2, δ), where µ, σ2, and δ are unknown parameters. Let z = (z1, z2, . . . , zn) be the
observed value of Z = (Z1, Z2, . . . , Zn). Suppose that R(Z; z, µ, σ2, δ) is the function of Z, z, µ,
σ2, and δ. It satisfies the following two conditions [24]:

1. For Z = z, R(Z; z, µ, σ2, δ) has a probability distribution free of unknown parameters.
2. For Z = z, the observed value of R(Z; z, µ, σ2, δ) does not depend on the nuisance parameter.

The 100(1− α)% two-sided confidence intervals for the DLN mean based on left-
censored data can be constructed using [R(α/2), R(1− α/2)], where R(α/2) and R(1− α/2)
denote the (α/2)-th and (1− α/2)-th quantile of R(Z; z, µ, σ2, δ), respectively.

The GPQ for µ is given by

Rµ = µ̂− µ̂∗

σ̂∗
σ̂, (12)

where µ̂∗ and σ̂∗ are the maximum likelihood estimators based on a censored sample from
standard normal distribution and µ̂ and σ̂ are defined in Equations (8) and (9).
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The GPQ for σ is given by

Rσ =
σ̂

σ̂∗
, (13)

where σ̂∗ is the maximum likelihood estimator based on a censored sample from standard
normal distribution.

The GPQ for the estimator of the mean of censored DLN distribution is given by

Rω = exp
(

Rµ +
1
2
(Rσ)

2
)

, (14)

where Rµ and Rσ are defined in Equations (12) and (13), respectively.
Therefore, the 100(1− α)% two-sided confidence interval for the mean of the DLN

distribution based on left-censored data using the GCI approach is given by

CIω.GCI = [Lω.GCI , Uω.GCI ] = [Rω(α/2), Rω(1− α/2)], (15)

where Rω(α/2) and Rω(1− α/2) denote the 100(α/2)-th and 100(1− α/2)-th percentiles
of Rω, respectively.

Algorithm 1 is used to construct the GCI for the mean of the DLN distribution based
on left-censored data.

Algorithm 1:
Step 1: Generate sample from the standard normal distribution and compute µ̂∗ and σ̂∗

Step 2: Compute Rµ from Equation (12) and compute Rσ from Equation (13)
Step 3: Compute Rω from Equation (14)
Step 4: Repeat Step 1–Step 3 a total m times and obtain an array of Rω’s
Step 5: Compute Lω.GCI and Uω.GCI

2.2. Bayesian Approach

The BS approach is a method for updating probabilities based on Bayes’ theorem.
The BS inference involves modeling uncertainty about unknown parameters using a prior
probability distribution. The joint probability distribution on the parameters and the data
is described by the prior distribution and the sampling model. The prior distribution char-
acterizes uncertainty about the parameters before observing data. The prior distribution is
based on the experimenter’s belief. In this paper, the Jeffreys independence prior is used,
which is defined as p(µ, σ2) = p(µ)p(σ2).

The prior distribution is updated using Bayes’ rule, resulting in the posterior distribu-
tion, which contains all relevant information about the unknown parameters based on the
observed data. Therefore, the posterior distribution of σ2 is the inverse gamma distribution,
which is defined by

σ2|y ∼ IG
(

n2 − 1
2

,
(n2 − 1)s2

2

)
, (16)

where s2 is the observed value of S2 defined in Equation (4).
The posterior distribution of µ given σ2 is the normal distribution, which is defined by

µ|σ2, y ∼ N
(

ȳ,
σ2

n2

)
, (17)

where ȳ is observed value of Ȳ defined in Equation (3) and σ2 is defined in Equation (16).
The posterior distribution of ω is defined by

ωBS = exp
(

µ +
1
2

σ2
)

, (18)

where σ2 and µ are defined in Equation (16) and Equation (17), respectively.
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Therefore, the 100(1− α)% two-sided credible interval for the mean of DLN distribu-
tion based on left-censored data using the BS approach is given by

CIω.BS = [Lω.BS, Uω.BS], (19)

where Lω.BS and Uω.BS denote the lower and upper limits of the shortest 100(1− α)% and
highest posterior density interval of ωBS, respectively.

Algorithm 2 is used to construct the BS credible interval for the mean of the DLN
distribution based on left-censored data.

Algorithm 2:
Step 1: Compute σ2|y from Equation (16)
Step 2: Compute µ|σ2, y from Equation (17)
Step 3: Compute ωBS from Equation (18)
Step 4: Repeat Step 1–Step 3 a total m times and obtain an array of ωBS’s
Step 5: Compute Lω.BS and Uω.BS

2.3. Parametric Bootstrap Approach

The PB approach involves random sampling with replacement, which enables the
estimation of the sampling distribution for almost any statistic using random sampling
methods.

Let Y∗1 , Y∗2 , . . . , Y∗n2
be the sample with replacement from Y1, Y2, . . . , Yn2 . Moreover,

let y∗1 , y∗2 , . . . , y∗n2
be the observed value of Y∗1 , Y∗2 , . . . , Y∗n2

. Let Ȳ∗ be the estimator of the
population mean, which is given by

Ȳ∗ =
1
n2

n2

∑
i=1

Y∗i . (20)

Suppose S2∗ is the estimator of the population variance, which is given by

S2∗ =
1
n2

n2

∑
i=1

(Y∗i − Ȳ∗)2. (21)

Therefore, the estimator of the mean of censored DLN distribution is

ω̂∗ = exp
(

Ȳ∗ +
1
2

S2∗
)

, (22)

where Ȳ∗ and S2∗ are defined in Equation (20) and Equation (21), respectively.
The lower and upper limits of the confidence interval for the DLN mean based on

left-censored data are given by

Lω.PB = ω̂∗ − z1−α/2sd(ω̂∗) (23)

and
Uω.PB = ω̂∗ + z1−α/2sd(ω̂∗), (24)

where ω̂∗ is the mean of ω̂∗, sd(ω̂∗) is the standard deviation of ω̂∗, and z1−α/2 is the
100(1− α/2)-th percentile of the standard normal distribution.

Therefore, the 100(1− α)% two-sided confidence interval for the mean of DLN distri-
bution based on left-censored data using the PB approach is given by

CIω.PB = [Lω.PB, Uω.PB], (25)

where Lω.PB and Uω.PB are defined in Equation (23) and Equation (24), respectively.



Symmetry 2023, 15, 1216 7 of 24

Algorithm 3 is used to construct the PB confidence interval for the mean of the DLN
distribution based on left-censored data.

Algorithm 3:
Step 1: Generate y∗1 , y∗2 , . . . , y∗n2

Step 2: Compute ȳ∗ from Equation (20) and compute s2∗ from Equation (21)
Step 3: Compute ω̂∗ from Equation (22)
Step 4: Repeat Step 1–Step 3 a total m times and obtain an array of ω̂∗’s
Step 5: Compute Lω.PB and Uω.PB

3. Confidence Intervals for the Difference between Means of Delta-Lognormal
Distributions Based on Left-Censored Data

For population 1, let X1 =
(
X11, X12, . . . , X1n1

)
be the random variable from the LN

distributions with parameters µ1 and σ2
1 . The random variables contain n1(2) observations

greater than some censoring point log(ξ1) and n1(1) = n1 − n1(2) observations less than or

equal to log(ξ1). Suppose Y1 =
(

Y11, Y12, . . . , Y1n1(2)

)
are the observations above log(ξ1)

and are the random variables from the normal distributions with mean µ1 and variance σ2
1 .

Let h1 =
n1(1)

n1
be the fraction of observations in the sample that is below log(ξ1). The mean

and variance of Y1 are given by

Ȳ1 =
1

n1(2)

n1(2)

∑
i=1

Yi (26)

and

S2
1 =

1
n1(2)

n1(2)

∑
i=1

(Yi − Ȳ1)
2. (27)

Define

a1 =
log(ξ1)− µ1

σ1
(28)

W(a1) =
φ(a1)

1−Φ(a1)
(29)

and

V(h1, a1) =
h1W(−a1)

1− h1
, (30)

where φ and Φ are the density function and the distributions function of the standard
normal distribution.

Following Krishnamoorthy et al. [23], the maximum likelihood estimators of µ1 and
σ2

1 are given by
µ̂1 = Ȳ1 − ψ(h1, a1)(Ȳ1 − log(ξ1)) (31)

and
σ̂2

1 = S2
1 + ψ(h1, a1)(Ȳ1 − log(ξ1))

2. (32)

The estimator of the mean of the censored DLN distribution is

ω̂1 = exp
(

µ̂1 +
1
2

σ̂2
1

)
. (33)

Similarly, for population 2, let X2 = (X21, X22, . . . , X2n2) be the random variable from
the LN distributions with parameters µ2 and σ2

2 . The random variables contain n2(2)
observations greater than some censoring point log(ξ2) and n2(1) = n2− n2(2) observations

less than or equal to log(ξ2). Suppose Y2 =
(

Y21, Y22, . . . , Y2n2(2)

)
are the observations

above log(ξ2) and are the random variables from the normal distributions with mean µ2
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and variance σ2
2 . Let h2 =

n2(1)
n2

be the fraction of observations in the sample that is below
log(ξ2). The mean and variance of Y2 are given by

Ȳ2 =
1

n2(2)

n2(2)

∑
i=1

Yi (34)

and

S2
2 =

1
n2(2)

n2(2)

∑
i=1

(Yi − Ȳ2)
2. (35)

Define

a2 =
log(ξ2)− µ2

σ2
(36)

W(a2) =
φ(a2)

1−Φ(a2)
(37)

and

V(h2, a2) =
h2W(−a2)

1− h2
, (38)

where φ and Φ are the density function and the distributions function of the standard
normal distribution.

Following Krishnamoorthy et al. [23], the maximum likelihood estimators of µ2 and
σ2

2 are given by
µ̂2 = Ȳ2 − ψ(h2, a2)(Ȳ2 − log(ξ2)) (39)

and
σ̂2

2 = S2
2 + ψ(h2, a2)(Ȳ2 − log(ξ2))

2. (40)

The estimator of the mean of the censored DLN distribution is

ω̂2 = exp
(

µ̂2 +
1
2

σ̂2
2

)
. (41)

Therefore, the estimator of the difference between two means of censored DLN distri-
butions is

γ̂ = ω̂1 − ω̂2, (42)

where ω̂1 and ω̂2 are defined in Equation (33) and Equation (41), respectively.
Four novel approaches were presented to estimate confidence intervals for the differ-

ence between means of DLN distributions based on left-censored data.

3.1. Generalized Confidence Interval Approach

For population 1, the GPQ for µ1 is given by

Rµ1 = µ̂1 −
µ̂∗1
σ̂∗1

σ̂1, (43)

where µ̂∗1 and σ̂∗1 are the maximum likelihood estimators based on a censored sample from
a standard normal distribution.

The GPQ for σ1 is given by

Rσ1 =
σ̂1

σ̂∗1
. (44)

The GPQ for the mean of censored DLN distribution is given by

Rω1 = exp
(

Rµ1 +
1
2
(Rσ1)

2
)

, (45)
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where Rµ1 and Rσ1 are defined in Equation (43) and Equation (44), respectively.
For population 2, the GPQ for µ2 is given by

Rµ2 = µ̂2 −
µ̂∗2
σ̂∗2

σ̂2, (46)

where µ̂∗2 and σ̂∗2 are the maximum likelihood estimators based on a censored sample from
a standard normal distribution.

The GPQ for σ2 is given by

Rσ2 =
σ̂2

σ̂∗2
. (47)

The GPQ for the mean of the censored DLN distribution is given by

Rω2 = exp
(

Rµ2 +
1
2
(Rσ2)

2
)

, (48)

where Rµ2 and Rσ2 are defined in Equation (46) and Equation (47), respectively.
The GPQ for the difference between two means of censored DLN distributions is

given by
Rγ = Rω1 − Rω2 , (49)

where Rω1 and Rω2 are defined in Equation (45) and Equation (48), respectively.
Therefore, the 100(1− α)% two-sided confidence interval for the difference between

means of DLN distributions based on left-censored data using the GCI approach is given by

CIγ.GCI = [Lγ.GCI , Uγ.GCI ] = [Rγ(α/2), Rγ(1− α/2)], (50)

where Rγ(α/2) and Rγ(1− α/2) denote the 100(α/2)-th and 100(1− α/2)-th percentiles
of Rγ, respectively.

Algorithm 4 is used to construct the GCI for the difference between means of DLN
distributions based on left-censored data.

Algorithm 4:
Step 1: Generate sample from the standard normal distribution and compute µ̂∗1 , µ̂∗2 , σ̂∗1 ,
and σ̂∗2
Step 2: Compute Rµ1 and Rσ1 from Equations (43) and (44) and compute Rµ2 and Rσ2 from
Equations (46) and (47)
Step 3: Compute Rω1 and Rω2 from Equations (45) and (48) and compute Rγ from
Equation (49)
Step 4: Repeat Step 1–Step 3 a total m times and obtain an array of Rγ’s
Step 5: Compute Lγ.GCI and Uγ.GCI

3.2. Bayesian Approach

For population 1, the posterior distribution of σ2
1 is defined by

σ2
1 |y1 ∼ IG

(
n1(2) − 1

2
,
(n1(2) − 1)s2

1

2

)
, (51)

where s2
1 is the observed value of S2

1 defined in Equation (27).
The posterior distribution of µ1 given σ2

1 is defined by

µ1|σ2
1 , y1 ∼ N

(
ȳ1,

σ2
1

n1(2)

)
, (52)

where ȳ1 is observed value of Ȳ1 defined in Equation (26) and σ2
1 is defined in Equation (51).
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The posterior distribution of the DLN mean based on left-censored data is given by

ω1.BS = exp
(

µ1 +
1
2

σ2
1

)
, (53)

where σ2
1 and µ1 are defined in Equation (51) and Equation (52), respectively.

For population 2, the posterior distribution of σ2
2 is defined by

σ2
2 |y2 ∼ IG

(
n2(2) − 1

2
,
(n2(2) − 1)s2

2

2

)
, (54)

where s2
2 is the observed value of S2

2 defined in Equation (35).
The posterior distribution of µ2 given σ2

2 is defined by

µ2|σ2
2 , y2 ∼ N

(
ȳ2,

σ2
2

n2(2)

)
, (55)

where ȳ2 is observed value of Ȳ2 defined in Equation (34) and σ2
2 is defined in Equation (54).

The posterior distribution of the DLN mean based on left-censored data is given by

ω2.BS = exp
(

µ2 +
1
2

σ2
2

)
, (56)

where σ2
2 and µ2 are defined in Equation (54) and Equation (55), respectively.

The posterior distribution of the difference between two means of censored DLN
distributions is given by

γBS = ω1.BS −ω2.BS, (57)

where ω1.BS and ω2.BS are defined in Equation (53) and Equation (56), respectively.
Therefore, the 100(1− α)% two-sided credible interval for the difference between

means of DLN distributions based on left-censored data using the BS approach is given by

CIγ.BS = [Lγ.BS, Uγ.BS], (58)

where Lγ.BS and Uγ.BS denote the lower and upper limits of the shortest 100(1− α)% and
highest posterior density interval of γBS, respectively.

Algorithm 5 is used to construct the BS credible interval for the difference between
means of DLN distributions based on left-censored data.

Algorithm 5:
Step 1: Compute σ2

1 |y1 from Equation (51) and compute µ1|σ2
1 , y1 from Equation (52)

Step 2: Compute σ2
2 |y2 from Equation (54) and compute µ2|σ2

2 , y2 from Equation (55)
Step 3: Compute ω1.BS and ω2.BS from Equations (53) and (56) and compute γBS from
Equation (57)
Step 4: Repeat Step 1–Step 3 a total m times and obtain an array of γBS’s
Step 5: Compute Lγ.BS and Uγ.BS

3.3. Parametric Bootstrap Approach

For population 1, let Y∗1 =
(

Y∗11, Y∗12, . . . , Y∗1n1(2)

)
be the sample with replacement from

Y1 =
(

Y11, Y12, . . . , Y1n1(2)

)
. Moreover, let y∗1 =

(
y∗11, y∗12, . . . , y∗1n1(2)

)
be the observed value

of Y∗1 =
(

Y∗11, Y∗12, . . . , Y∗1n1(2)

)
. Let Ȳ∗1 be the estimator of the population mean, which is

given by
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Ȳ∗1 =
1

n1(2)

n1(2)

∑
i=1

Y∗i . (59)

Suppose S2∗
1 is the estimator of the population variance, which is given by

S2∗
1 =

1
n1(2)

n1(2)

∑
i=1

(Y∗i − Ȳ∗1 )
2. (60)

The estimator of the mean of censored DLN distribution is

ω̂∗1 = exp
(

Ȳ∗1 +
1
2

S2∗
1

)
, (61)

where Ȳ∗1 and S2∗
1 are defined in Equation (59) and Equation (60), respectively.

For population 2, let Y∗2 =
(

Y∗21, Y∗22, . . . , Y∗2n2(2)

)
be the sample with replacement from

Y2 =
(

Y21, Y22, . . . , Y2n2(2)

)
. Moreover, let y∗2 =

(
y∗21, y∗22, . . . , y∗2n2(2)

)
be the observed value

of Y∗2 =
(

Y∗21, Y∗22, . . . , Y∗2n2(2)

)
. Let Ȳ∗2 be the estimator of the population mean, which is

given by

Ȳ∗2 =
1

n2(2)

n2(2)

∑
i=1

Y∗i . (62)

Suppose S2∗
2 is the estimator of the population variance, which is given by

S2∗
2 =

1
n2(2)

n2(2)

∑
i=1

(Y∗i − Ȳ∗2 )
2. (63)

The estimator of the mean of censored DLN distribution is

ω̂∗2 = exp
(

Ȳ∗2 +
1
2

S2∗
2

)
, (64)

where Ȳ∗2 and S2∗
2 are defined in Equation (62) and Equation (63), respectively.

The estimator of the difference between two means of censored DLN distributions is

γ̂∗ = ω̂∗1 − ω̂∗2 , (65)

where ω̂∗1 and ω̂∗2 are defined in Equation (61) and Equation (64), respectively.
The lower and upper limits of the confidence interval for the difference between two

means of censored DLN distributions are given by

Lγ.PB = γ̂∗ − z1−α/2sd(γ̂∗) (66)

and
Uγ.PB = γ̂∗ + z1−α/2sd(γ̂∗), (67)

where γ̂∗ is the mean of γ̂∗, sd(γ̂∗) is the standard deviation of γ̂∗, and z1−α/2 is the
100(1− α/2)-th percentile of the standard normal distribution.

Therefore, the 100(1− α)% two-sided confidence interval for the difference between
means of DLN distributions based on left-censored data using the PB approach is given by

CIγ.PB = [Lγ.PB, Uγ.PB], (68)

where Lγ.PB and Uγ.PB are defined in Equation (66) and Equation (67), respectively.
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Algorithm 6 is used to construct the PB confidence interval for the difference between
means of DLN distributions based on left-censored data.

Algorithm 6:

Step 1: Generate y∗1 =
(

y∗11, y∗12, . . . , y∗1n1(2)

)
and y∗2 =

(
y∗21, y∗22, . . . , y∗2n2(2)

)
Step 2: Compute ȳ∗1 and s2∗

1 from Equations (59) and (60) and compute ȳ∗2 and s2∗
2 from

Equations (62) and (63)
Step 3: Compute ω̂∗1 and ω̂∗2 from Equations (61) and (64) and compute γ̂∗ from
Equation (65)
Step 4: Repeat Step 1–Step 3 a total m times and obtain an array of γ̂∗’s
Step 5: Compute Lγ.PB and Uγ.PB from Equations (66) and (67)

3.4. Method of Variance Estimates Recovery Approach

Following Maneerat et al. [14], the confidence interval for µ is defined as

CIµ =

[
µ̂− z1−α/2

√
(n2 − 1)σ̂2

n2χ2
n2−1

, µ̂ + z1−α/2

√
(n2 − 1)σ̂2

n2χ2
n2−1

]
, (69)

where z1−α/2 is the 100(1− α/2)-th percentile of the standard normal distribution and
χ2

n2−1 is the chi-squared distribution with n2 − 1 degrees of freedom.
Therefore, the confidence interval for µi can be written as

CIµi =

µ̂i − z1−α/2

√√√√ (ni(2) − 1)σ̂2
i

ni(2)χ
2
ni(2)−1

, µ̂i + z1−α/2

√√√√ (ni(2) − 1)σ̂2
i

ni(2)χ
2
ni(2)−1

, (70)

where z1−α/2 is the 100(1− α/2)-th percentile of the standard normal distribution and
χ2

ni(2)−1 is the chi-squared distribution with ni(2) − 1 degrees of freedom.
For population 1, the lower and upper limits of the confidence interval for µ1 are

defined by

lµ1 = µ̂1 − z1−α/2

√√√√ (n1(2) − 1)σ̂2
1

n1(2)χ
2
n1(2)−1

(71)

and

uµ1 = µ̂1 + z1−α/2

√√√√ (n1(2) − 1)σ̂2
1

n1(2)χ
2
n1(2)−1

, (72)

where z1−α/2 is the 100(1− α/2)-th percentile of the standard normal distribution, χ2
n1(2)−1

is the chi-squared distribution with n1(2) − 1 degrees of freedom, and µ̂1 and σ̂2
1 are defined

in Equation (31) and Equation (32), respectively.
For population 2, the lower and upper limits of the confidence interval for µ2 are

given by

lµ2 = µ̂2 − z1−α/2

√√√√ (n2(2) − 1)σ̂2
2

n2(2)χ
2
n2(2)−1

(73)

and

uµ2 = µ̂2 + z1−α/2

√√√√ (n2(2) − 1)σ̂2
2

n2(2)χ
2
n2(2)−1

, (74)

where z1−α/2 is the 100(1− α/2)-th percentile of the standard normal distribution, χ2
n2(2)−1

is the chi-squared distribution with n2(2) − 1 degrees of freedom, and µ̂2 and σ̂2
2 are defined

in Equation (39) and Equation (40), respectively.



Symmetry 2023, 15, 1216 13 of 24

Following Maneerat et al. [14], the confidence interval for σ2 is defined as

CIσ2 =

[
(n2 − 1)σ̂2

χ2
1−α/2,n2−1

,
(n2 − 1)σ̂2

χ2
α/2,n2−1

]
, (75)

where χ2
1−α/2,n2−1 and χ2

α/2,n2−1 are the 100(1− α/2)-th and 100(α/2)-th percentiles of the
chi-squared distribution with n2 − 1 degrees of freedom.

Therefore, the confidence interval for σ2
i can be written as

CIσ2
i
=

 (ni(2) − 1)σ̂2
i

χ2
1−α/2,ni(2)−1

,
(ni(2) − 1)σ̂2

i

χ2
α/2,ni(2)−1

, (76)

where χ2
1−α/2,ni(2)−1 and χ2

α/2,ni(2)−1 are the 100(1− α/2)-th and 100(α/2)-th percentiles of

the chi-squared distribution with ni(2) − 1 degrees of freedom.
For population 1, the lower and upper limits of the confidence interval for σ2

1 are
defined by

lσ2
1
=

(n1(2) − 1)σ̂2
1

χ2
1−α/2,n1(2)−1

(77)

and

uσ2
1
=

(n1(2) − 1)σ̂2
1

χ2
α/2,n1(2)−1

, (78)

where χ2
1−α/2,n1(2)−1 and χ2

α/2,n1(2)−1 are the 100(1− α/2)-th and 100(α/2)-th percentiles

of the chi-squared distribution with n1(2) − 1 degrees of freedom, and σ̂2
1 is defined in

Equation (32).
For population 2, the lower and upper limits of the confidence interval for σ2

2 are
defined by

lσ2
2
=

(n2(2) − 1)σ̂2
2

χ2
1−α/2,n2(2)−1

(79)

and

uσ2
2
=

(n2(2) − 1)σ̂2
2

χ2
α/2,n2(2)−1

, (80)

where χ2
1−α/2,n2(2)−1 and χ2

α/2,n2(2)−1 are the 100(1− α/2)-th and 100(α/2)-th percentiles

of the chi-squared distribution with n2(2) − 1 degrees of freedom, and σ̂2
2 is defined in

Equation (40).
Applying the concept of Donner and Zou [36], the lower and upper limits of confidence

interval for ω1 = exp
(

µ1 +
1
2 σ2

1

)
are given by

lω1 = exp

(µ̂1 +
1
2

σ̂2
1

)
−

√
(µ̂1 − lµ1)

2 +

(
1
2

σ̂2
1 −

1
2

lσ2
1

)2
 (81)

and

uω1 = exp

(µ̂1 +
1
2

σ̂2
1

)
+

√
(uµ1 − µ̂1)2 +

(
1
2

uσ2
1
− 1

2
σ̂2

1

)2
, (82)

where µ̂1, σ̂2
1 , lµ1 , uµ1 , lσ2

1
, and uσ2

1
are defined in Equation (31), Equation (32), Equation (71),

Equation (72), Equation (77), and Equation (78), respectively.
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Similarly, the lower and upper limits of confidence interval for ω2 = exp
(

µ2 +
1
2 σ2

2

)
are given by

lω2 = exp

(µ̂2 +
1
2

σ̂2
2

)
−

√
(µ̂2 − lµ2)

2 +

(
1
2

σ̂2
2 −

1
2

lσ2
2

)2
 (83)

and

uω2 = exp

(µ̂2 +
1
2

σ̂2
2

)
+

√
(uµ2 − µ̂2)2 +

(
1
2

uσ2
2
− 1

2
σ̂2

2

)2
, (84)

where µ̂2, σ̂2
2 , lµ2 , uµ2 , lσ2

2
, and uσ2

2
are defined in Equation (39), Equation (40), Equation (73),

Equation (74), Equation (79), and Equation (80), respectively.
Using the concept of Donner and Zou [36], the lower and upper limits of confidence

interval for γ = ω1 −ω2 are given by

Lγ.MOVER = ω̂1 − ω̂2 −
√
(ω̂1 − lω1)

2 + (uω2 − ω̂2)2 (85)

and
Uγ.MOVER = ω̂1 − ω̂2 +

√
(uω1 − ω̂1)2 + (ω̂2 − lω2)

2, (86)

where ω̂1, ω̂2, lω1 , uω1 , lω2 , and uω2 are defined in Equation (33), Equation (41),
Equation (81), Equation (82), Equation (83), and Equation (84), respectively.

Therefore, the 100(1− α)% two-sided confidence interval for the difference between
means of DLN distributions based on left-censored data using the MOVER approach is
given by

CIγ.MOVER = [Lγ.MOVER, Uγ.MOVER], (87)

where Lγ.MOVER and Uγ.MOVER are defined in Equation (85) and Equation (86), respectively.
Algorithm 7 is used to construct the MOVER confidence interval for the difference

between means of DLN distributions based on left-censored data.

Algorithm 7:
Step 1: Compute lµ1 from Equation (71) and compute uµ1 from Equation (72)
Step 2: Compute lµ2 from Equation (73) and compute uµ2 from Equation (74)
Step 3: Compute lσ2

1
from Equation (77) and compute uσ2

1
from Equation (78)

Step 4: Compute lσ2
2

from Equation (79) and compute uσ2
2

from Equation (80)
Step 5: Compute lω1 from Equation (81) and compute uω1 from Equation (82)
Step 6: Compute lω2 from Equation (83) and compute uω2 from Equation (84)
Step 7: Compute Lγ.MOVER from Equation (85) and compute Uγ.MOVER from Equation (86)

4. Results

The performance of the proposed confidence intervals was evaluated using the R
statistical program through a Monte Carlo simulation. CP and AL were used to compare
the performance of the proposed confidence intervals at a nominal confidence level of 0.95.
The best confidence interval was defined as the one with a CP greater than or equal to 0.95
and the shortest AL.

For the mean of the DLN distribution based on left-censored data, consider the iteration
number as M = 5000 and take m = 2500 in the algorithms of the GCI, BS, and PB estimations.
The sample size was set as n = 20, 30, 50, and 100. Following Owen and DeRouen [21], the
parameter values used in the simulations are given in Table 1. Note that the estimate of µ is
the maximum likelihood estimator for the censored lognormal distribution. The estimate of
µ is the range between −∞ and ∞. If µ + 1

2 σ2 is greater than zero, then θ = exp
(

µ + 1
2 σ2
)

is positive value.
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Table 1. Values selected for the population mean, population standard deviation, probability of
obtaining zero observation, and censoring point for the mean of DLN distribution based on left-
censored data.

Run Number µ σ δ ξ

1 0.0326 0.3815 0.10 0.25
2 −0.0742 0.5992 0.10 0.10
3 −0.1810 0.7568 0.10 0.05
4 0.1971 0.4257 0.25 0.25
5 0.0821 0.6412 0.25 0.10
6 −0.0302 0.7974 0.25 0.05
7 −0.2061 0.7175 0.05 0.25
8 −0.2722 0.8690 0.10 0.25
9 −0.1656 0.9522 0.25 0.25

10 −0.5909 1.1801 0.10 0.25

Algorithm 8 is used to construct the proposed confidence intervals for the mean of the
DLN distribution based on left-censored data.

Algorithm 8:
Step 1: Generate z from DLN distribution with parameters µ, σ, and δ and set x from LN
distribution with parameters µ and σ

Step 2: Compute y = log(x) and select y > log(ξ)
Step 3: Compute n1, n2, µ̂, σ̂, and ω̂

Step 4: Use Algorithms 1–3 to construct the confidence intervals
Step 5: If L 6 ω 6 U, set p = 1; else, set p = 0
Step 6: Compute U − L
Step 7: Repeat Step 1–Step 6 a total M times
Step 8: Compute mean of p defined by the CP
Step 9: Compute mean of U − L defined by the AL

The results presented in Table 2 indicate that the CPs of the confidence interval based
on the GCI approach were greater than 0.95, except for run 6 and n = 50 and 100, where the
CPs of the confidence intervals were less than 0.95. In addition, the CPs of the confidence
interval based on the BS approach were greater than 0.95 for all cases. Moreover, the
CPs of the confidence interval based on the PB approach were less than 0.95 for all cases.
When considering the AL, it is observed that the ALs of the confidence interval based
on the BS approach were shorter than those of the confidence interval based on the GCI
approach. However, for run 5, the ALs of the confidence interval based on the GCI approach
were shorter than those of the confidence interval based on the BS approach. Thus, the
results suggest that the BS approach performed satisfactorily, while the GCI approach is
recommended for run 5.

For the difference between means of DLN distributions based on left-censored data,
for each set of parameter settings, M = 5000 simulation runs were generated for the GCI,
BS, PB, and MOVER estimations. Moreover, m = 2500 runs were fixed for the GCI, BS,
and PB estimations. The random sample sizes (n1, n2) = (20, 20), (30, 30), (20, 30), (50, 50),
(30, 50), (100, 100), and (50, 100) were generated with specific parameters. According to
Owen and DeRouen [21], the parameter values used in the simulations were applied in
Table 3.
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Table 2. The CPs and ALs of 95% two-sided confidence intervals for the mean of DLN distribution
based on left-censored data.

n Run Number
CP (AL)

CIω.GCI CIω.BS CIω.PB

20 1 0.9912 0.9872 0.8692
(0.8372) (0.7328) (0.3881)

2 0.9902 0.9904 0.9224
(1.7040) (1.6223) (0.7408)

3 0.9806 0.9888 0.9054
(3.1942) (3.1780) (1.1575)

4 0.9990 0.9984 0.8184
(2.2617) (2.0191) (0.6068)

5 0.9982 0.9998 0.9052
(6.4150) (9.3597) (1.4474)

6 0.9828 0.9994 0.8090
(18.7733) (42.5334) (2.8766)

7 0.9788 0.9650 0.8832
(1.3040) (1.0321) (0.7072)

8 0.9818 0.9740 0.8630
(2.3494) (1.8102) (0.9981)

9 0.9800 0.9796 0.8232
(5.8573) (6.4620) (1.5802)

10 0.9742 0.9798 0.8446
(6.9770) (6.7278) (1.7690)

30 1 0.9918 0.9904 0.8774
(0.6294) (0.5688) (0.3223)

2 0.9928 0.9924 0.9268
(1.2028) (1.1615) (0.6090)

3 0.9824 0.9908 0.9012
(2.0167) (2.0038) (0.9383)

4 0.9992 0.9994 0.8188
(1.5172) (1.3733) (0.4992)

5 0.9974 0.9996 0.9050
(3.6072) (3.9979) (1.1628)

6 0.9684 0.9988 0.7400
(8.2978) (10.9098) (2.2252)

7 0.9770 0.9652 0.8986
(0.9274) (0.7750) (0.5868)

8 0.9766 0.9686 0.8736
(1.5154) (1.2409) (0.8145)

9 0.9770 0.9756 0.8372
(3.0594) (2.6148) (1.2530)

10 0.9722 0.9764 0.8728
(3.2162) (2.6407) (1.3501)
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Table 2. Cont.

n Run Number
CP (AL)

CIω.GCI CIω.BS CIω.PB

50 1 0.9754 0.9884 0.8504
(0.4543) (0.4208) (0.2501)

2 0.9942 0.9952 0.9380
(0.8482) (0.8277) (0.4770)

3 0.9740 0.9906 0.8792
(1.3171) (1.3268) (0.7227)

4 0.9980 0.9980 0.7780
(1.0337) (0.9580) (0.3907)

5 0.9938 0.9998 0.8826
(2.2628) (2.4167) (0.8943)

6 0.9144 0.9924 0.5864
(4.5057) (5.2494) (1.6769)

7 0.9692 0.9598 0.9070
(0.6525) (0.5668) (0.4596)

8 0.9696 0.9620 0.8784
(1.0010) (0.8609) (0.6282)

9 0.9780 0.9730 0.8340
(1.8114) (1.5904) (0.9488)

10 0.9698 0.9728 0.8828
(1.8249) (1.5558) (1.0062)

100 1 0.9122 0.9754 0.7966
(0.3077) (0.2897) (0.1789)

2 0.9942 0.9962 0.9356
(0.5614) (0.5531) (0.3382)

3 0.9484 0.9746 0.8010
(0.8421) (0.8586) (0.5120)

4 0.9928 0.9958 0.6548
(0.6693) (0.6333) (0.2777)

5 0.9820 0.9980 0.8164
(1.3874) (1.4675) (0.6278)

6 0.7512 0.9358 0.2938
(2.5295) (2.8640) (1.1597)

7 0.9524 0.9572 0.9090
(0.4352) (0.3878) (0.3298)

8 0.9618 0.9590 0.8856
(0.6394) (0.5676) (0.4452)

9 0.9678 0.9582 0.8214
(1.0887) (0.9860) (0.6666)

10 0.9720 0.9688 0.8932
(1.0669) (0.9445) (0.6959)

Table 3. Values selected for the population means, population standard deviations, probabilities
of obtaining zero observation, and censoring points for the difference between means of DLN
distributions based on left-censored data.

Run Number (µ1, µ2) (σ1, σ2) (δ1, δ2) (ξ1, ξ2)

1 (0.00, 0.00) (0.3815, 0.3815) (0.10, 0.10) (0.10, 0.10)
2 (0.00, 0.00) (0.3815, 0.3815) (0.10, 0.10) (0.10, 0.25)
3 (0.00, 0.00) (0.3815, 0.3815) (0.10, 0.25) (0.10, 0.10)
4 (0.00, 0.00) (0.3815, 0.3815) (0.10, 0.25) (0.10, 0.25)
5 (0.00, 0.00) (0.3815, 0.5992) (0.10, 0.10) (0.10, 0.10)
6 (0.00, 0.00) (0.3815, 0.5992) (0.10, 0.10) (0.10, 0.25)
7 (0.00, 0.00) (0.3815, 0.5992) (0.10, 0.25) (0.10, 0.10)
8 (0.00, 0.00) (0.3815, 0.5992) (0.10, 0.25) (0.10, 0.25)
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Algorithm 9 is used to construct the proposed confidence intervals for the difference
between means of DLN distributions based on left-censored data.

Algorithm 9:
Step 1: Generate z1 from DLN distribution with parameters µ1, σ1, and δ1, and set x1 from
LN distribution with parameters µ1 and σ1
Step 2: Generate z2 from DLN distribution with parameters µ2, σ2, and δ2, and set x2 from
LN distribution with parameters µ2 and σ2
Step 3: Compute y1 = log(x1) and select y1 > log(ξ1)
Step 4: Compute y2 = log(x2) and select y2 > log(ξ2)
Step 5: Compute n1(1), n1(2), n2(1), n2(2), µ̂1, µ̂2, σ̂1, σ̂2, ω̂1, ω̂2, and γ̂

Step 6: Use Algorithms 4–7 to construct the confidence intervals
Step 7: If L 6 γ 6 U, set p = 1; else, set p = 0
Step 8: Compute U − L
Step 9: Repeat Step 1–Step 8 a total M times
Step 10: Compute mean of p defined by the CP
Step 11: Compute mean of U − L defined by the AL

The estimated CPs and ALs of 95% confidence intervals for the difference between
means of DLN distributions based on left-censored data are presented in Table 4. For all
sample sizes, the results indicated that the CPs of the confidence intervals based on the GCI,
BS, and MOVER approaches were greater than 0.95. The CPs of the confidence interval
based on the PB approach were less than 0.95 for all cases, except for (n1, n2) = (50, 50) in
run 7 and (n1, n2) = (30, 50) in run 5, where the CPs of the confidence interval based on the
PB approach were greater than 0.95. For (n1, n2) = (20, 20), (30, 30), (20, 30), the ALs of
the confidence interval based on the GCI approach were shorter than the ALs of the other
confidence intervals in runs 1, 3, 4, 5, and 7, whereas the ALs of the credible interval based
on the BS approach were shorter than the ALs of the other confidence intervals in runs 2, 6,
and 8. For (n1, n2) = (50, 50), the ALs of the confidence interval based on the GCI approach
were shorter than the others in runs 1, 3, 4, and 5, while the ALs of the credible interval based
on the BS approach were shorter than the others in runs 2, 6, and 8. For run 7, the ALs of the
confidence interval based on the PB approach were the shortest. For (n1, n2) = (30, 50), the
GCI approach had the shortest ALs in runs 1, 3, 4, and 7, whereas the BS approach had the
shortest ALs in runs 2, 6, and 8. The PB approach had the shortest ALs in run 5. In addition,
for (n1, n2) = (100, 100), the ALs of the confidence interval based on the GCI approach were
shorter than the others in runs 1, 3, and 7, whereas the ALs of the confidence interval based
on the BS approach were shorter than the others in runs 2, 4, 5, 6, and 8. Moreover, for
(n1, n2) = (50, 100), the GCI approach had the shortest ALs in runs 1, 3, 5, and 7, while the BS
approach had the shortest ALs in runs 2, 4, 6, and 8. Therefore, the GCI and BS approaches
were satisfactory. Moreover, the PB approach performed satisfactorily for (n1, n2) = (50, 50)
in run 7 and (n1, n2) = (30, 50) in run 5.
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Table 4. The CPs and ALs of 95% two-sided confidence intervals for the difference between means of
DLN distributions based on left-censored data.

(n1, n2) Run Number
CP (AL)

CIγ.GCI CIγ.BS CIγ.PB CIγ.MOV ER

(20, 20) 1 0.9990 0.9996 0.9340 0.9990
(2.1168) (2.2141) (0.6374) (2.3162)

2 0.9966 0.9978 0.8996 0.9956
(1.6883) (1.6417) (0.5923) (1.7354)

3 1.0000 1.0000 0.9266 1.0000
(3.9405) (5.1912) (0.7716) (7.6454)

4 0.9986 0.9996 0.8128 0.9996
(2.0779) (2.1431) (0.6094) (2.2208)

5 0.9962 0.9984 0.9302 0.9958
(2.6335) (2.7108) (0.9446) (2.8697)

6 0.9916 0.9958 0.8800 0.9912
(2.1284) (2.0000) (0.8267) (2.0541)

7 0.9996 1.0000 0.9386 1.0000
(5.2628) (6.9590) (1.2488) (12.2312)

8 0.9934 0.9966 0.8072 0.9942
(2.7956) (2.7810) (0.8828) (2.9778)

(30, 30) 1 0.9994 0.9998 0.9372 0.9994
(1.4633) (1.4972) (0.5237) (1.5127)

2 0.9950 0.9984 0.8886 0.9974
(1.1725) (1.1409) (0.4819) (1.1625)

3 0.9998 1.0000 0.9318 1.0000
(2.4588) (2.7804) (0.6282) (3.0647)

4 0.9976 0.9990 0.7602 0.9986
(1.4264) (1.4370) (0.5009) (1.4470)

5 0.9974 0.9986 0.9382 0.9982
(1.8046) (1.8281) (0.7750) (1.8711)

6 0.9888 0.9930 0.8828 0.9908
(1.4737) (1.3893) (0.6837) (1.4006)

7 0.9994 1.0000 0.9414 0.9998
(3.1278) (3.4931) (1.0036) (4.0365)

8 0.9940 0.9974 0.7866 0.9946
(1.8611) (1.8076) (0.7303) (1.8445)

(20, 30) 1 0.9992 0.9992 0.9276 0.9992
(1.7747) (1.8158) (0.5816) (1.8873)

2 0.9954 0.9978 0.9038 0.9972
(1.5513) (1.5031) (0.5497) (1.6174)

3 1.0000 1.0000 0.9282 1.0000
(2.7087) (3.1494) (0.6747) (3.3786)

4 0.9984 0.9998 0.8114 0.9990
(1.7824) (1.8087) (0.5643) (1.8763)

5 0.9966 0.9990 0.9440 0.9976
(2.1119) (2.1777) (0.8188) (2.2600)

6 0.9906 0.9948 0.8912 0.9918
(1.8202) (1.7418) (0.7325) (1.8165)

7 0.9996 1.0000 0.9458 1.0000
(3.4029) (3.9400) (1.0435) (4.3992)

8 0.9916 0.9960 0.8104 0.9940
(2.1869) (2.1775) (0.7755) (2.2339)
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Table 4. Cont.

(n1, n2) Run Number
CP (AL)

CIγ.GCI CIγ.BS CIγ.PB CIγ.MOV ER

(50, 50) 1 0.9996 0.9998 0.9448 1.0000
(1.0123) (1.0245) (0.4072) (1.0278)

2 0.9882 0.9986 0.8382 0.9966
(0.8374) (0.8199) (0.3782) (0.8273)

3 1.0000 1.0000 0.9236 1.0000
(1.5939) (1.7293) (0.4847) (1.8045)

4 0.9920 0.9984 0.6556 0.9970
(0.9874) (0.9881) (0.3916) (0.9902)

5 0.9984 0.9996 0.9408 0.9990
(1.2249) (1.2283) (0.6016) (1.2408)

6 0.9786 0.9894 0.8558 0.9860
(1.0218) (0.9703) (0.5325) (0.9718)

7 0.9992 1.0000 0.9532 1.0000
(1.9803) (2.1144) (0.7749) (2.2552)

8 0.9798 0.9884 0.7294 0.9862
(1.2322) (1.1939) (0.5631) (1.2042)

(30, 50) 1 0.9994 0.9996 0.9386 0.9996
(1.2356) (1.2480) (0.4675) (1.2666)

2 0.9912 0.9984 0.8862 0.9968
(1.0900) (1.0604) (0.4424) (1.0960)

3 1.0000 1.0000 0.9156 1.0000
(1.7892) (1.9630) (0.5385) (2.0156)

4 0.9932 0.9984 0.7366 0.9968
(1.2141) (1.2149) (0.4537) (1.2314)

5 0.9990 0.9998 0.9520 0.9994
(1.4403) (1.4596) (0.6444) (1.4757)

6 0.9852 0.9948 0.8862 0.9894
(1.2451) (1.1966) (0.5814) (1.2150)

7 0.9978 1.0000 0.9446 0.9994
(2.1593) (2.3543) (0.8129) (2.4570)

8 0.9864 0.9946 0.7740 0.9910
(1.4486) (1.4275) (0.6113) (1.4375)

(100, 100) 1 0.9998 0.9998 0.9422 0.9998
(0.6640) (0.6678) (0.2888) (0.6702)

2 0.9488 0.9940 0.7474 0.9912
(0.5514) (0.5422) (0.2670) (0.5467)

3 1.0000 1.0000 0.8930 1.0000
(1.0056) (1.0697) (0.3430) (1.0928)

4 0.9450 0.9858 0.4352 0.9850
(0.6428) (0.6420) (0.2777) (0.6438)

5 0.9986 0.9988 0.9456 0.9984
(0.7958) (0.7956) (0.4256) (0.7998)

6 0.9574 0.9852 0.8098 0.9814
(0.6671) (0.6384) (0.3765) (0.6407)

7 0.9990 1.0000 0.9258 0.9996
(1.2338) (1.3014) (0.5453) (1.3453)

8 0.9540 0.9664 0.5948 0.9672
(0.7916) (0.7697) (0.3999) (0.7739)
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Table 4. Cont.

(n1, n2) Run Number
CP (AL)

CIγ.GCI CIγ.BS CIγ.PB CIγ.MOV ER

(50, 100) 1 0.9996 0.9998 0.9428 0.9998
(0.8511) (0.8540) (0.3532) (0.8623)

2 0.9766 0.9968 0.8262 0.9954
(0.7631) (0.7493) (0.3361) (0.7651)

3 1.0000 1.0000 0.8872 1.0000
(1.1519) (1.2302) (0.3992) (1.2417)

4 0.9688 0.9928 0.5956 0.9902
(0.8307) (0.8290) (0.3432) (0.8377)

5 0.9990 0.9994 0.9480 0.9996
(0.9611) (0.9662) (0.4709) (0.9725)

6 0.9778 0.9936 0.8508 0.9904
(0.8517) (0.8253) (0.4291) (0.8343)

7 0.9990 1.0000 0.9330 0.9996
(1.3531) (1.4418) (0.5792) (1.4654)

8 0.9680 0.9876 0.6782 0.9844
(0.9544) (0.9381) (0.4474) (0.9431)

5. Empirical Applications

The GCI, BS, and PB approaches discussed in Section 2 for constructing the confidence
interval for the mean of the DLN distribution based on left-censored data can be applied to
estimate the average daily rainfall of Chiang Mai and Lampang provinces. Additionally,
the GCI, BS, PB, and MOVER approaches presented in Section 3 for constructing the
confidence interval for the difference between the means of the DLN distributions based
on left-censored data can be used to compare the average daily rainfall in Chiang Mai and
Lampang provinces. Table 5 shows the daily rainfall data from 1 to 25 July 2022, reported
by the Thai Meteorological Department. The table includes 50 observations, out of which
20 of 25 (80.00%) and 14 of 25 (56.00%) represent positive observed values in Chiang Mai
and Lampang provinces, respectively. The log-transformed positive daily rainfall values in
Chiang Mai and Lampang provinces follow normal distributions. Thus, the daily rainfall
datasets in Chiang Mai and Lampang provinces fit the DLN distributions.

Table 5. The daily rainfall data of Chiang Mai and Lampang provinces.

Chiang Mai Province Lampang Province

2.0 14.2 2.6 0.3 13.3 1.3 0.1 0.0 0.0 7.7
0.2 1.6 0.5 0.0 45.7 0.0 0.0 1.6 0.0 23.6
0.0 10.9 18.6 0.0 7.1 0.0 0.4 5.0 0.0 0.4
0.0 1.7 16.8 4.6 0.0 0.0 2.8 36.6 38.3 0.0
7.7 0.5 2.0 0.3 0.8 1.4 29.2 1.2 0.0 0.0

Source: Thai Meteorological Department.

For Chiang Mai province, the statistics are n1 = 25, n1(1) = 6, n1(2) = 19, µ̂1 = 0.42,
σ̂2

1 = 4.07, and ω̂1 = 11.67. The 95% two-sided confidence intervals for the mean of the daily
rainfall data in Chiang Mai province were estimated using the GCI, BS, and PB approaches.
For the GCI approach, CIω.GCI = [4.1935, 326.4762] with an interval length of 322.2827. For
the BS approach, CIω.BS = [2.6455, 81.6410] with an interval length of 78.9955. For the PB
approach, CIω.PB = [3.7505, 31.3524] with an interval length of 27.6019.

For Lampang province, the statistics are n2 = 25, n2(1) = 12, n2(2) = 13, µ̂2 = −0.16,
σ̂2

2 = 6.78, and ω̂2 = 25.24. The 95% two-sided confidence intervals for the mean of the daily
rainfall data in Lampang province were constructed using the GCI, BS, and PB approaches.
For the GCI approach, CIω.GCI = [5.9458,4363.6820] with an interval length of 4357.7362.
For the BS approach, CIω.BS = [2.1516, 1971.9490] with an interval length of 1969.7974. For
the PB approach, CIω.PB = [3.6736, 150.9010] with an interval length of 147.2274.
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Based on the daily rainfall data from Chiang Mai and Lampang provinces, it was
found that the interval lengths of the PB confidence intervals were shorter compared to the
interval lengths of the GCI and BS credible intervals. This confirms the results of simulation
studies in terms of interval length. However, it should be noted that the confidence intervals
for the means of the daily rainfall data were computed using one sample, while the ALs
in the simulation studies were computed using 5000 random samples. Additionally, the
CPs of the PB confidence intervals in the simulation studies were less than 0.95. On the
other hand, the BS credible intervals had shorter interval lengths than the GCI, with CPs
greater than 0.95 in the simulation studies. Therefore, it is recommended to use the BS
approach for constructing the credible interval for the mean of the DLN distribution based
on left-censored data.

The difference between the means of the daily rainfall data in Chiang Mai province
and Lampang province is γ̂ = −13.57. The 95% two-sided confidence intervals for the
difference between the means of the daily rainfall data in Chiang Mai province and Lam-
pang province are estimated based on GCI, BS, PB, and MOVER approaches. For the GCI
approach, CIγ.GCI = [−7757.1400, 222.2289] with an interval length of 7979.3689. For the
BS approach, CIγ.BS = [−2071.8670, 422.0152] with an interval length of 2493.8822. For
the PB approach, CIγ.PB = [−108.4549, 59.8140] with an interval length of 168.2689. For
the MOVER approach, CIγ.MOVER = [−10,463.6900, 133.1321] with an interval length of
10,596.8221. Therefore, the PB confidence interval has the shortest interval length. These
results confirm the simulation studies. However, the CPs of the PB confidence interval
were less than 0.95. Therefore, the BS approach was suggested for estimating the credible
interval for the difference between means of DLN distributions based on left-censored data.

6. Discussion

Maneerat et al. [15] proposed credible intervals for the single mean and the difference
between two means of DLN distributions using the BS approach. However, in some situa-
tions, environmental and medical data may contain left-censored data, such as particulate
matter data and rainfall data. Owen and DeRouen [21] proposed point estimators for the
mean of LN distributions containing zeroes and left-censored values. This study extends to
confidence intervals for the mean and the difference between means of DLN distributions
that include left-censored data. First, the confidence intervals for the mean of the DLN
distribution containing left-censored data are constructed based on the GCI, BS, and PB
approaches. Second, the confidence intervals for the difference between the means of
DLN distributions containing left-censored data are estimated using the GCI, BS, PB, and
MOVER approaches. The GCI approach computes the GPQ for the parameter of interest;
the BS approach obtains the posterior distribution of the parameter of interest; the PB
approach resamples bootstrap samples for computing the estimator of the parameter of
interest; and the MOVER approach obtains the single confidence interval for the parameter
of interest.

The GCI and BS approaches for constructing confidence intervals for the mean yielded
CPs greater than 0.95. However, the BS approach had shorter ALs than the GCI approach.

The results for the confidence intervals of the difference between means showed that
the GCI, BS, and MOVER approaches had CPs greater than 0.95. The ALs of the GCI and BS
approaches were shorter than those of the MOVER approach. In addition, the PB approach
had CPs greater than 0.95, and its ALs were shorter than those of the other approaches for
(n1, n2) = (50, 50) in run 7 and (n1, n2) = (30, 50) in run 5.

The BS approach is recommended for constructing credible intervals for the mean and
the difference between means of DLN distributions containing left-censored data. This
result is consistent with those reported by Thangjai et al. [17,31]. Additionally, the GCI
approach can be used to estimate the confidence intervals for the difference between means
of DLN distributions based on left-censored data, which is similar to the findings reported
by Thangjai and Niwitpong [10] and Thangjai et al. [28].
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7. Conclusions

The confidence intervals for the single mean of the DLN distribution based on left-
censored data were estimated using the GCI, BS, and PB approaches. The BS approach was
found to perform the best in terms of CPs and ALs in all cases.

The confidence intervals for the difference between means of DLN distributions based
on left-censored data were estimated using the GCI, BS, PB, and MOVER approaches. The
GCI and BS approaches performed better than the PB and MOVER approaches in terms of
both CPs and ALs.
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