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Abstract: In numerous geometric and physical applications of complex analysis, estimating the sharp
bounds of coefficient-related problems of univalent functions is very important due to the fact that
these coefficients describe the core inherent properties of conformal maps. The primary goal of this
paper was to calculate the sharp estimates of the initial coefficients and some of their combinations
(the Hankel determinants, Zalcman’s functional, etc.) for the class of symmetric starlike functions
linked with the sigmoid function. Moreover, we also determined the bounds of second-order Hankel
determinants containing coefficients of logarithmic and inverse functions of the same class.
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1. Introduction and Definitions

In order to study the basic terminology that is used in our primary outcomes, here,
we have to provide some elementary ideas. Let us start with the set that indicates that the
region of open unit disc Ud = {z ∈ C : |z| < 1} as a domain and that the notation A stands
for the family of analytic (or holomorphic) functions normalized by g(0) = g′(0)− 1 = 0.
This shows that, if g ∈ A, then it has the Taylor’s series expansion:

g(z) = z +
+∞

∑
n=1

dnzn, (z ∈ Ud). (1)

In addition, remember that, by notation S , we denote the family of univalent functions
with series expansion (1). This family was first taken into account by Köebe in 1907. In 2012,
Aleman and Constantin [1] established an astonishing connection between fluid dynamics
and univalent function theory. They actually provided a simple method that shows how
to use a univalent harmonic map for finding explicit solutions to incompressible two-
dimensional Euler equations. It has several implications in a variety of applied scientific
disciplines, including modern mathematical physics, fluid dynamics, nonlinear integrable
system theory, and the theory of partial differential equations.

In 1916, Bieberbach [2] worked on the coefficients of family S and stated the most
well-known coefficient conjecture of function theory, known as the “Bieberbach conjecture”.
According to this conjecture, if g ∈ S , then |dn| ≤ n for all n ≥ 2. He also proved this
problem for n = 2. It is evident that several renowned researchers have adopted a variety
of approaches to address this problem, and a few of them [3–6] have succeeded in proving
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it for n = 3, . . . , 6. Numerous scholars attempted to prove this hypothesis for n ≥ 7 for
a very long time, but no one was successful. Finally, in 1985, de-Branges [7] proved this
conjecture for all n ≥ 2 by using hypergeometric functions. Lawrence Zalcman proposed
the inequality

∣∣a2
n − a2n−1

∣∣ ≤ (n− 1)2 with n ≥ 2 for g ∈ S in 1960 as a way of establishing
the Bieberbach conjecture. Due to this, a number of articles [8–10] have been published
on the Zalcman hypothesis and its generalised form

∣∣λa2
n − a2n−1

∣∣ ≤ λn2 − 2n + 1 (λ ≥ 0)
for different subclasses of the set S , however this conjecture has remained unsolved for
a long time. Last but not least, Krushkal established this hypothesis in [11] for n ≤ 6 and
subsequently resolved it in an unpublished article [12] for n ≥ 2 by using the holomorphic
homotopy of univalent functions. A broader Zalcman hypothesis for g ∈ S was proposed
by Ma [13] later, in 1999, and is given by

|anam − an+m−1| ≤ (n− 1)(m− 1) for n ≥ 2, m ≥ 2.

He proved it for one of the S subfamilies, however the challenge is still open for
S family.

The estimates of the nth coefficient bounds for numerous subfamilies of the univalent
function class, including starlike S∗, convex C, and many more, were determined between
1916 and 1985 in an effort to solve the aforementioned problem. In fact, because of that
problem, this field of study has become heavily researched, which explains why this topic
has gained so much popularity so rapidly. The notation S∗ contains the functions that
map the unit disk Ud onto a region that is star-shaped with respect to the origin. This idea
was generalized by Sakaguchi [14] in 1959 by introducing the class S∗s of starlike functions
with respect to symmetric points. In 1977, Das and Singh [15] developed the family Cs of
symmetric convex functions using this idea. In each of the above cited articles, the authors
provided the analytical formulations of these classes as follows:

S∗s =

{
g ∈ S : Re

2zg′(z)
g(z)− g(−z)

> 0, (z ∈ Ud)

}
,

Cs =

{
g ∈ S : Re

2(zg′(z))′

(g(z)− g(−z))′
> 0, (z ∈ Ud)

}
.

Furthermore, the authors asserted [14] that the class S∗s is a subclass of the set K of
close-to-convex functions and that, with reference to the origin, it encompasses the families
of convex and odd starlike functions. Following that, other mathematicians developed a
large number of new symmetrical point-relative univalent function subfamilies. Utilizing
this idea, Goel and Kumar [16] introduced a subfamily of starlike functions defined by

S∗SG =

{
g ∈ S :

zg′(z)
g(z)

≺ 2
1 + e−z , (z ∈ Ud)

}
.

Some intriguing aspects of the function f ∈ S∗SG were investigated in the article [17].
Motivated by the last definition, we now introduce a family SS∗SG of symmetric starlike
functions linked to the sigmoid function, which is given by

SS∗SG =

{
g ∈ S :

2zg′(z)
g(z)− g(−z)

≺ 2
1 + e−z , (z ∈ Ud)

}
.

The determinant Hλ,k(g) with λ, k ∈ N = {1, 2, . . .}, given below is known as the
Hankel determinant, and was investigated by Pommerenke [18,19] for the function g ∈ S
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Hλ,k(g) =

∣∣∣∣∣∣∣∣∣
dk dk+1 . . . dk+λ−1
dk+1 dk+2 . . . dk+λ
...

... . . .
...

dk+λ−1 dk+λ . . . dk+2λ−2

∣∣∣∣∣∣∣∣∣.
This determinant is very important in several studies, including those on power series

with integral coefficients by Polya [20] (p. 323) and Cantor [21], as well as singularities by
Hadamard [20] (p. 329) and Edrei [22].

There are not many publications in the literature that examine the bounds of the
Hankel determinant for the function g that belongs to the S family. The best estimate for
g ∈ S was determined by Hayman in [23] and is |H2,n(g)| ≤ |η|, where η is a constant.
Additionally, for g ∈ S , it was shown in [24] that the second-order Hankel determinant
|H2,2(g)| ≤ η for 0 ≤ η ≤ 11/3. After these findings, it was and is a difficult task for
scholars to determine the exact bounds of the Hankel determinants for a particular class
of functions. The first paper [25] that used the ideas of the Caratheodory functions to
accurately determine the sharp estimates of |H2,2(g)| for the two fundamental subclasses
of the set S of univalent functions appeared in 2007. The two determinants H2,1(g) and
H2,2(g) have been thoroughly investigated in the literature [26–35] for various subfamilies
of univalent functions; however, only a small number of works have been published [36–43]
in which the authors established the determinant’s sharp bounds. The objective of this
particular article was to compute the sharp estimates of initial coefficients, Fekete-Szegö,
Krushkal, and Zalcman inequalities, as well as the second-order Hankel determinant
|H2,2(g)| for the family SS∗SG of analytic functions by using a technique of subordination,
which proves the result in an easier way compared to the other methodology. Furthermore,
we established the sharp bounds for second-order Hankel determinants with coefficients of
logarithmic and inverse functions of the same class.

2. A Set of Lemmas

Let B0 be the family of Schwarz functions. Then, the function w ∈ B0 may be expressed
as a power series

w(z) =
+∞

∑
n=1

ξnzn. (2)

The subsequent Schwarz function lemmas are required for proving our primary
findings.

Lemma 1 ([44]). Let the Schwarz function w have the form (2). Then, for any real numbers α and
β such that

(α, β) =

{
|α| ≤ 1

2
, − 1 ≤ β ≤ 1

}
∪
{

1
2
≤ |α| ≤ 2,

4
27

(1 + |α|)3 − (1 + |α|) ≤ β ≤ 1
}

,

the following sharp estimate holds: ∣∣∣ξ3 + αξ1ξ2 + βξ3
1

∣∣∣ ≤ 1.

Lemma 2 ([45]). If w ∈ B0 is in the form of (2), then

|ξ2| ≤ 1− |ξ1|2, (3)

|ξn| ≤ 1, n ≥ 1. (4)

Furthermore, the inequality of (3) can be improved in the manner of∣∣∣ξ2 + ηξ2
1

∣∣∣ ≤ max{1, |η|}, for η ∈ C. (5)
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Lemma 3 ([46]). Let w ∈ B0 be the series expansion (2). Then,

|ξ3| ≤ 1− |ξ1|2 −
|ξ2|2

1 + |ξ1|
, (6)

|ξ4| ≤ 1− |ξ1|2 − |ξ2|2. (7)

Lemma 4 ([47]). Let w ∈ B0 be the series expansion (2). Then,∣∣∣ξ1ξ3 − ξ2
2

∣∣∣ ≤ 1− |ξ1|2.

3. Coefficient Bounds

We start with the coefficient bounds.

Theorem 1. If g ∈ SS∗SG has the series representation (1), then

|d2| ≤
1
4

,

|d3| ≤
1
4

,

|d4| ≤
1
8

,

|d5| ≤
1
8

.

All these bounds are sharp.

Proof. Assume that g ∈ SS∗SG. From the definition, it follows that there exists a Schwarz
function w such that

2zg′(z)
g(z)− g(−z)

=
2

1 + e−w(z)
. (8)

From Equation (2), we have

w(z) = ξ1z + ξ2z2 + ξ3z3 + ξ4z4 + · · · . (9)

Using (1), we achieve

2zg′(z)
g(z)− g(−z)

= 1 + 2d2z + 2d3z2 + (−2d2d3 + 4d4)z3 +
(
−2d2

3 + 4d5

)
z4 + · · · . (10)

Using a quick computation and the series expansion of (9), we arrive at

2
1 + e−w(z)

= 1 +
1
2

ξ1z +
1
2

ξ2z2 +

(
− 1

24
ξ3

1 +
1
2

ξ3

)
z3 +

(
−1

8
ξ2

1ξ2 +
1
2

ξ4

)
z4 + · · · . (11)

Now, by comparing (10) and (11), we obtain

d2 =
1
4

ξ1, (12)

d3 =
1
4

ξ2, (13)

d4 = − 1
96

ξ3
1 +

1
8

ξ3 +
1
32

ξ1ξ2, (14)

d5 =
1
8

ξ4 +
1

32
ξ2

2 −
1

32
ξ2

1ξ2. (15)
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Implementing (4) in (12), we achieve

|d2| ≤
1
4

.

Applying (4) in (13), we achieve

|d3| ≤
1
4

.

From (14), we deduce that

|d4| =
1
8

∣∣∣∣ξ3 +
1
4

ξ1ξ2 +

(
− 1

12

)
ξ3

1

∣∣∣∣.
From Lemma 1, let

α =
1
4

and β = − 1
12

.

It is clear that
|α| ≤ 1

2
and − 1 ≤ β ≤ 1.

Thus, all the conditions of Lemma 1 are satisfied. Hence, we have

|d4| ≤
1
8

.

To prove the last inequality, we can write(15), as

|d5| =
1
8

∣∣∣∣ξ4 +
1
4

ξ2
2 −

1
4

ξ2
1ξ2

∣∣∣∣
≤ 1

8

[
|ξ4|+

1
4
|ξ2|2 +

1
4
|ξ1|2|ξ2|

]
.

By using (3) and (7) plus the triangle inequality, we achieve

|d5| ≤
1
8

.

If ξ1 = 1, then d2 = 1
4 . If ξ2 = 1, then d3 = 1

4 . If ξ3 = 1 and ξk = 0 for k 6= 3, then
d4 = 1

8 . Similarly, if ξ4 = 1 and ξk = 0 for k 6= 4, then d5 = 1
8 . This indicates that, for the

functions provided by (8) with w(z) = z, w(z) = z2, w(z) = z3 and w(z) = z4, respectively,
the equality conditions in the theorem’s statement are true.

Theorem 2. If g ∈ SS∗SG is of the form (1), then, for η ∈ C,∣∣∣d3 − ηd2
2

∣∣∣ ≤ max
{

1
4

,
∣∣∣ η

16

∣∣∣}.

The Fekete–Szegö functional is sharp.

Proof. Using (12) and (13), we have∣∣∣d3 − ηd2
2

∣∣∣ =

∣∣∣∣14 ξ2 −
η

16
ξ2

1

∣∣∣∣.
=

1
4

∣∣∣ξ2 +
(
−η

4

)
ξ2

1

∣∣∣.
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The application of (5) leads us to∣∣∣d3 − ηd2
2

∣∣∣ ≤ max
{

1
4

,
∣∣∣ η

16

∣∣∣}.

The obtained bound of the Fekete–Szegö functional is sharp by considering that
w(z) = z2.

After putting η = 1 in Theorem 2, we arrive at the following consequence.

Corollary 1. If g ∈ SS∗SG and has the form (1), then the following sharp bound holds:∣∣∣d3 − d2
2

∣∣∣ ≤ 1
4

.

Theorem 3. If g ∈ SS∗SG has series representation (1), then the sharp bounds are

|d4 − d2d3| ≤
1
8

and
∣∣∣d5 − d2

3

∣∣∣ ≤ 1
8

.

Proof. Utilizing (12), (13) and (14), we easily achieve

|d4 − d2d3| =
1
8

∣∣∣∣ξ3 +

(
−1

4

)
ξ1ξ2 +

(
− 1

12

)
ξ3

1

∣∣∣∣.
From Lemma 1, let

α = −1
4

and β = − 1
12

.

It is clear that
|α| ≤ 1

2
and − 1 ≤ β ≤ 1.

Thus, all the conditions of Lemma 1 are satisfied. Hence,

|d4 − d2d3| ≤
1
8

.

To estimate d5 − d2
3, we write this expression as follows:∣∣∣d5 − d2

3

∣∣∣ =
1
8

∣∣∣∣ξ4 −
1
4

ξ2
2 −

1
4

ξ2
1ξ2

∣∣∣∣.
=

1
8

[
|ξ4|+

1
4
|ξ2|2 +

1
4
|ξ1|2|ξ2|

]
.

By using (3) and (7) plus the triangle inequality, we achieve∣∣∣d5 − d2
3

∣∣∣ ≤ 1
8

[
1− |ξ1|2 − |ξ2|2 +

1
4
|ξ2|2 +

1
4
|ξ1|2

(
1− |ξ1|2

)]
.

≤ 1
8

[
1− 3

4
|ξ1|2 −

3
4
|ξ2|2 −

1
4
|ξ1|4

]
,

which is clearly less than or equal to 1
8 .

By considering w(z) = z3 and w(z) = z4, the above-stated Zalcman functional cases
are sharp.

Theorem 4. If g ∈ SS∗SG and is given by (1), then∣∣∣d4 − d3
2

∣∣∣ ≤ 1
8

and
∣∣∣d5 − d4

2

∣∣∣ ≤ 1
8

.
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These outcomes are sharp.

Proof. From (12) and (14), we easily obtain∣∣∣d4 − d3
2

∣∣∣ = 1
8

∣∣∣∣ξ3 +

(
1
4

)
ξ1ξ2 +

(
−5

4

)
ξ3

1

∣∣∣∣.
From Lemma 1, let

α =
1
4

and β = −5
4

.

It is clear that
|α| ≤ 1

2
and − 1 ≤ β ≤ 1.

Thus, all the conditions of Lemma 1 are satisfied. Hence,∣∣∣d4 − d3
2

∣∣∣ ≤ 1
8

.

To estimate d5 − d4
2, we write this expression as follows:∣∣∣d5 − d4

2

∣∣∣ =
1
8

∣∣∣∣ξ4 +
1
4

ξ2
2 −

1
4

ξ2
1ξ2 −

1
32

ξ4
1

∣∣∣∣.
=

1
8

[
|ξ4|+

1
4
|ξ2|2 +

1
4
|ξ1|2|ξ2|+

1
32
|ξ1|4

]
.

By using (3) and (7) plus the triangle inequality, we achieve∣∣∣d5 − d4
2

∣∣∣ ≤ 1
8

[
1− |ξ1|2 − |ξ2|2 +

1
4
|ξ2|2 +

1
4
|ξ1|2

(
1− |ξ1|2

)
+

1
32
|ξ1|4

]
.

≤ 1
8

[
1− 3

4
|ξ1|2 −

3
4
|ξ2|2 −

7
32
|ξ1|4

]
,

which is clearly less than or equal to 1
8 .

Considering w(z) = z3 and w(z) = z4, we can observe that the estimates of the
Krushkal functionals are sharp.

Now, let us discuss the Hankel determinants for the SS∗SG class.

Theorem 5. If g ∈ SS∗SG has the series representation form (1), then

|H2,2(g)| ≤ 1
16

.

The obtained inequality is sharp.

Proof. The determinant |H2,2(g)| can be reconsidered as follows:

|H2,2(g)| =
∣∣∣d2d4 − d2

3

∣∣∣.
From (12)–(14), we obtain∣∣∣d2d4 − d2

3

∣∣∣ =
1
8

∣∣∣∣12 ξ2
2 −

1
4

ξ1ξ3 −
1

16
ξ2

1ξ2 +
1
48

ξ4
1

∣∣∣∣.
=

1
8

∣∣∣∣14(ξ2
2 − ξ1ξ3

)
+

1
4

(
ξ2

2 −
1
4

ξ2
1ξ2 +

1
12

ξ4
1

)∣∣∣∣.
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Since ∣∣∣∣ξ2
2 +

1
4

ξ2
1ξ2 +

1
12

ξ4
1

∣∣∣∣ ≤ (
1− |ξ1|2

)2
+

1
4

ξ2
1

(
1− |ξ1|2

)
+

1
12

ξ4
1.

= 1− 7
4
|ξ1|2 +

5
6
|ξ1|4.

and the function
1− 7

4
t +

5
6

t2,

is decreasing in [0, 1]. Hence, we deduce that∣∣∣∣ξ2
2 +

1
4

ξ2
1ξ2 +

1
12

ξ4
1

∣∣∣∣ ≤ 1.

Thus, by utilizing Lemma 4 along with the last inequality, we obtain the required
stated bound.

Moreover, the determinant |H2,2(g)| = 1
16 if ξ2 = 1 and ξk = 0 with k 6= 2; that is,

considering w(z) = z2 in (8).

4. Logarithmic Coefficient

The logarithmic coefficients µn are provided by the following formula:

Gg(z) := log
(

g(z)
z

)
= 2

+∞

∑
n=1

µnzn for z ∈ Ud. (16)

The theory of Schlicht functions is significantly impacted by these coefficients in
various estimations. In 1985, de-Branges [7] determined that

n

∑
k=1

k(n− k + 1)|µn|2 ≤
n

∑
k=1

n− k + 1
k

, for n ≥ 1,

and, for the particular function g(z) = z/
(
1− eiθz

)
with θ ∈ R, equality is attained. Evi-

dently, this inequality gives rise to the broadest formulation of the well-known Bieberbach–
Robertson–Milin conjectures involving Taylor coefficients of g that belong to S . For more
information on how de-Brange’s claim is explained, see [48–50]. Brennan’s conjecture for
conformal mappings was answered by Kayumov [51] in 2005 by taking the logarithmic
coefficients into account. Several works [52–54] that have significantly advanced the study
of logarithmic coefficients are included in this article.

It is easy to determine from the definition given above that the logarithmic coefficients
for g belonging to S are given by

µ1 =
1
2

d2, (17)

µ2 =
1
2

(
d3 −

1
2

d2
2

)
, (18)

µ3 =
1
2

(
d4 − d2d3 +

1
3

d3
2

)
, (19)

µ4 =
1
2

(
d5 − d2d4 + d2

2d3 −
1
2

d2
3 −

1
4

d4
2

)
. (20)



Symmetry 2023, 15, 1292 9 of 16

The Hankel determinantHq,n
(
Gg/2

)
with logarithmic coefficients was initially devel-

oped by Kowalczyk and Lecko in [55,56] and is given by

Hq,n
(
Gg/2

)
:=

∣∣∣∣∣∣∣∣∣
µn µn+1 . . . µn+q−1
µn+1 µn+2 . . . µn+q
...

... . . .
...

µn+q−1 µn+q . . . µn+2q−2

∣∣∣∣∣∣∣∣∣. (21)

It has been observed that

H2,1
(
Gg/2

)
=

∣∣∣∣ µ1 µ2
µ2 µ3

∣∣∣∣ = µ1µ3 − µ2
2,

H2,2
(
Gg/2

)
=

∣∣∣∣ µ2 µ3
µ3 µ4

∣∣∣∣ = µ2µ4 − µ2
3.

For further investigations of the Hankel determinant on logarithmic coefficients,
see [57–60]. In this section, we compute the sharp estimates of logarithmic coefficients
up to µ3 and Fekete–Szegö, Zalcman, and Krushkal inequalities along with the Hankel
determinant

∣∣H2,1
(
Gg/2

)∣∣ for the class SS∗SG.

Theorem 6. If g ∈ SS∗SG is of the form (1), then

|µ1| ≤
1
8

,

|µ2| ≤
1
8

,

|µ3| ≤
1
16

.

These bounds are sharp.

Proof. Applying (12)–(15) in (17)–(20), we obtain

µ1 =
1
8

ξ1, (22)

µ2 =
1
8

ξ2 −
1

64
ξ2

1, (23)

µ3 = − 1
384

ξ3
1 +

1
16

ξ3 −
1
64

ξ1ξ2, (24)

µ4 =
1
16

ξ4 −
3

256
ξ2

1ξ2 +
5

6144
ξ4

1 −
1
64

ξ1ξ3. (25)

Using (4) in (22), we achieve

|µ2| ≤
1
8

.

For the second inequality, we may write (23) by

|µ2| =
1
8

∣∣∣∣ξ2 +

(
−1

2

)
ξ2

1

∣∣∣∣.
Applying (5), we achieve

|µ2| ≤
1
8

.

For (24), we deduce that

|µ3| =
1

16

∣∣∣∣ξ3 +

(
−1

4

)
ξ1ξ2 +

(
− 1

24

)
ξ3

1

∣∣∣∣.
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From Lemma 1, let

α = −1
4

and β = − 1
24

.

It is clear that
|α| ≤ 1

2
and − 1 ≤ β ≤ 1.

Thus, Lemma 1’s assumptions are all satisfied, and, when we apply it, we obtain the
below desired outcome:

|µ3| ≤
1

16
.

If ξ1 = 1, then µ1 = 1
8 . If ξ2 = 1 and ξk = 0 for k 6= 2, then µ2 = 1

8 . Similarly, if ξ3 = 1
and ξk = 0 for k 6= 3, then µ3 = 1

16 . This indicates that, for the functions provided by (8)
with w(z) = z, w(z) = z2, w(z) = z3 and w(z) = z4, respectively, the equality conditions in
the theorem’s statement are true.

Theorem 7. If g ∈ SS∗SG and has the expansion (1), then, for η ∈ C,∣∣∣µ2 − ηµ2
1

∣∣∣ ≤ max
{

1
8

,
∣∣∣∣η + 1

64

∣∣∣∣}.

The Fekete–Szegö functional is sharp.

Proof. Using (22) and (23), we easily obtain∣∣∣µ2 − ηµ2
1

∣∣∣ =

∣∣∣∣18 ξ2 −
η

64
ξ2

1 −
1

64
ξ2

1

∣∣∣∣.
=

1
8

∣∣∣∣ξ2 +

(
−η − 1

8

)
ξ2

1

∣∣∣∣.
The application of (5) leads us to∣∣∣µ2 − ηµ2

1

∣∣∣ ≤ max
{

1
8

,
∣∣∣∣η + 1

64

∣∣∣∣}.

The obtained bound of the Fekete–Szegö functional is sharp by considering
w(z) = z2.

The below result is obtained by putting η = 1 in Theorem 7.

Corollary 2. If g ∈ SS∗SG has the expansion representation (1), then∣∣∣µ2 − µ2
1

∣∣∣ ≤ 1
8

.

This result is the best possible.

Theorem 8. If g ∈ SS∗SG has the series form (1), then sharp bounds are

|µ3 − µ1µ2| ≤
1

16
and

∣∣∣µ3 − µ3
1

∣∣∣ ≤ 1
16

.

Proof. Using (22)–(24), we achieve

|µ3 − µ1µ2| =
1

16

∣∣∣∣ξ3 +

(
−1

2

)
ξ1ξ2 +

(
− 1

96

)
ξ3

1

∣∣∣∣.
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From Lemma 1, let

α = −1
2

and β = − 1
96

.

It is clear that
|α| ≤ 1

2
and − 1 ≤ β ≤ 1.

Thus, all the conditions of Lemma 1 are satisfied. Hence,

|µ3 − µ1µ2| ≤
1

16
.

To estimate µ3 − µ3
1, we write this expression as follows:∣∣∣µ3 − µ3

1

∣∣∣ = 1
16

∣∣∣∣ξ3 +

(
−1

4

)
ξ1ξ2 +

(
− 7

96

)
ξ3

1

∣∣∣∣.
From Lemma 1, let

α = −1
4

and β = − 7
96

.

It is clear that
|α| ≤ 1

2
and − 1 ≤ β ≤ 1.

Thus, all the conditions of Lemma 1 are satisfied. Hence,∣∣∣µ3 − µ3
1

∣∣∣ ≤ 1
16

.

Considering w(z) = z3, we can observe that the above two estimates are sharp.

Theorem 9. If g ∈ SS∗SG has the expansion form (1), then

∣∣H2,1
(
Gg/2

)∣∣ ≤ 1
64

.

The above stated inequality is sharp.

Proof. The determinant
∣∣H2,1

(
Gg/2

)∣∣ might be reconsidered as follows:∣∣H2,1
(
Gg/2

)∣∣ = ∣∣∣µ1µ3 − µ2
2

∣∣∣.
From (22)–(24), we obtain

∣∣H2,1
(
Gg/2

)∣∣ =
1

64

∣∣∣∣ 7
192

ξ4
1 −

1
2

ξ1ξ3 −
1
8

ξ2
1ξ2 + ξ2

2

∣∣∣∣.
=

1
64

∣∣∣∣12(ξ2
2 − ξ1ξ3

)
+

1
2

(
7

96
ξ4

1 −
1
4

ξ2
1ξ2 + ξ2

2

)∣∣∣∣.
Since∣∣∣∣ 7

96
ξ4

1 +
1
4

ξ2
1ξ2 + ξ2

2

∣∣∣∣ ≤ 7
96
|ξ1|4 +

1
4
|ξ1|2

(
1− |ξ1|2

)
+
(

1− |ξ1|2
)2

.

=
79
96
|ξ1|4 + 1− 7

4
|ξ1|2.

and so the function
79
96

t4 + 1− 7
4

t2,



Symmetry 2023, 15, 1292 12 of 16

is decreasing in [0, 1]. Thus, we conclude that∣∣∣∣ 7
96

ξ4
1 +

1
4

ξ2
1ξ2 + ξ2

2

∣∣∣∣ ≤ 1,

and hence by utilizing Lemma 4 along with the last inequality, we obtain the required
stated bound.

Moreover, the determinant
∣∣H2,1

(
Gg/2

)∣∣ = 1
64 if ξ2 = 1 and ξk = 0 with k 6= 2; that is;

considering w(z) = z2 in (8).

5. Inverse Coefficient

For each univalent function g defined in Ud, the well-known Köebe 1/4-theorem
guarantees that its inverse g−1 exists at least on a disc of radius 1/4 with the following
Taylor’s series expansion:

g−1(w) = w +
+∞

∑
n=2

ζnwn,
(
|w| < 1

4

)
. (26)

By the virtue of g
(

g−1(w)
)
= w, we obtain

ζ2 = −d2, (27)

ζ3 = −d3 + 2d2
2, (28)

ζ4 = −d4 + 5d2d3 − 5d3
2, (29)

ζ5 = −d5 + 3d2
3 + 14d4

2 + 6d2d4 − 21d2
2d3. (30)

Many authors studied Hankel determinants for the inverse functions; see [61–64].
Here, in this portion, we study the sharp estimates of some initial coefficient, Fekete–Szegö
functional, and Hankel determinant

∣∣H2,2
(

g−1)∣∣ for the inverse functions of the class SS∗SG.

Theorem 10. If g ∈ SS∗SG has the series form (1), then

|ζ2| ≤
1
4

,

|ζ3| ≤
1
4

.

These bounds are sharp.

Proof. Applying (12)–(15) in (27)–(30), we obtain

ζ2 = −1
4

ξ1, (31)

ζ3 = −1
4

ξ2 +
1
8

ξ2
1, (32)

ζ4 = − 13
192

ξ3
1 −

1
8

ξ3 +
9

32
ξ1ξ2, (33)

ζ5 =
5
32

ξ2
2 −

1
4

ξ2
1ξ2 +

5
128

ξ4
1 −

1
8

ξ4 +
3
16

ξ1ξ3. (34)

Implementing (4) in (31), we achieve

|ζ2| ≤
1
4

.
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For the proof of the second inequality, we consider (32) as:

|ζ3| =
1
4

∣∣∣∣ξ2 +

(
−1

2

)
ξ2

1

∣∣∣∣.
Applying (5), we achieve

|ζ3| ≤
1
4

.

If ξ1 = 1, then ζ2 = 1
4 . Similarly, if ξ2 = 1 and ξk = 0 for k 6= 2, then ζ3 = 1

4 . This
demonstrates that the functions produced by (8) with w(z) = z and w(z) = z2, respectively,
satisfy the equalities in the statement of this theorem.

Theorem 11. If g ∈ SS∗SG has the representation (1), then∣∣∣ζ3 − ηζ2
2

∣∣∣ ≤ max
{

1
4

,
∣∣∣∣η − 2

16

∣∣∣∣}.

The Fekete–Szegö functional is sharp.

Proof. Using (31) and (32), we easily obtain∣∣∣ζ3 − ηζ2
2

∣∣∣ =

∣∣∣∣−1
4

ξ2 −
η

16
ξ2

1 +
1
8

ξ2
1

∣∣∣∣.
=

1
4

∣∣∣∣ξ2 +

(
η

4
− 1

2

)
ξ2

1

∣∣∣∣.
The application of (5) leads us to∣∣∣ζ3 − ηζ2

2

∣∣∣ ≤ max
{

1
4

,
∣∣∣∣η − 2

16

∣∣∣∣}.

Considering that w(z) = z2, we can observe that the estimate of the Fekete–Szegö
functional is sharp.

Putting η = 1 in Theorem 11, we deduce the following corollary.

Corollary 3. If g ∈ SS∗SG and has the form (1), then the sharp bound is∣∣∣ζ3 − ζ2
2

∣∣∣ ≤ 1
4

.

Theorem 12. If g ∈ SS∗SG and has the series form (1), then∣∣∣H2,2

(
g−1

)∣∣∣ ≤ 1
16

.

The stated inequality is sharp.

Proof. The determinant
∣∣H2,2

(
g−1)∣∣ might be rearranged as:∣∣∣H2,2

(
g−1

)∣∣∣ = ∣∣∣ζ2ζ4 − ζ2
3

∣∣∣.
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From (31)–(33), we achieve∣∣∣H2,2

(
g−1

)∣∣∣ =
1

16

∣∣∣∣− 1
48

ξ4
1 −

1
2

ξ1ξ3 +
1
8

ξ2
1ξ2 + ξ2

2

∣∣∣∣.
=

1
16

∣∣∣∣12(ξ2
2 − ξ1ξ3

)
+

1
2

(
− 1

24
ξ4

1 +
1
4

ξ2
1ξ2 + ξ2

2

)∣∣∣∣.
Since∣∣∣∣ 1

24
ξ4

1 +
1
4

ξ2
1ξ2 + ξ2

2

∣∣∣∣ ≤ 1
24
|ξ1|4 +

1
4
|ξ1|2

(
1− |ξ1|2

)
+
(

1− |ξ1|2
)2

.

=
19
24
|ξ1|4 + 1− 7

4
|ξ1|2.

and, for t ∈ [0, 1], the below function

19
24

t4 + 1− 7
4

t2,

is decreasing, it thus follows that∣∣∣∣ 1
24

ξ4
1 +

1
4

ξ2
1ξ2 + ξ2

2

∣∣∣∣ ≤ 1.

We may thus obtain the necessary stated inequality by applying Lemma 4 and the
final inequality.

Moreover, the determinant
∣∣H2,1

(
g−1)∣∣ = 1

16 if ξ2 = 1 and ξk = 0 with k 6= 2; that is,
considering that w(z) = z2 in (8).

6. Conclusions

One of the most challenging tasks in geometric function theory is to determine how to
acquire the sharp estimates of the functionals consisting of coefficients that appear in the
Taylor–Maclaurin series of analytic or univalent functions. One of such coefficient-related
problems is to determine the sharp bounds of the Hankel determinants. Our goal in this
study was to compute the sharp bounds of the second-order Hankel determinant, Zalcman’s
functional, and Fekete–Szegö inequalities for the class of symmetric starlike functions
connected with the sigmoid function. Furthermore, we calculated the sharp bounds of
second-order Hankel determinants, which consist of the coefficients of logarithmic and
inverse functions of the same defined class. This work may be extended to obtain the sharp
bounds of third, fourth, and fifth-order Hankel determinants for the same class as well as
for some novel classes of analytic functions. The obtained results can also be studied for
classes of meromophic functions.
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37. Ebadian, A.; Bulboacă, T.; Cho N.E.; Adegani, E.A. Coefficient bounds and differential subordinations for analytic functions
associated with starlike functions. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. Mat. 2020, 114, 128. [CrossRef]

38. Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions.
J. Inequalities Appl. 2013, 281, 1–17. [CrossRef]

39. Sim, Y.J.; Thomas, D.K.; Zaprawa, P. The second Hankel determinant for starlike and convex functions of order alpha. Complex
Var. Elliptic Equ. 2020, 67, 2423–2443. [CrossRef]
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