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Abstract: Bone age is the chronological age of human bones, which serves as a key indicator of
the maturity of bone development and can more objectively reflect the extent of human growth
and development. The prevalent viewpoint and research development direction now favor the
employment of deep learning-based bone age detection algorithms to determine bone age. Although
bone age detection accuracy has increased when compared to more established methods, more work
needs to be conducted to raise it because bone age detection is primarily used in clinical medicine,
forensic identification, and other critical and rigorous fields. Due to the symmetry of human hand
bones, bone age detection can be performed on either the left hand or the right hand, and the results
are the same. In other words, the bone age detection results of both hands are universal. In this
regard, the left hand is chosen as the target of bone age detection in this paper. To accomplish this,
the You Only Look Once-v5 (YOLOv5) and Residual Network-34 (ResNet34) integration techniques
are combined in this paper to create an innovative bone age detection model (YARN), which is
then combined with the RUS-CHN scoring method that applies to Chinese adolescent children to
comprehensively assess bone age at multiple levels. In this study, the images in the hand bone
dataset are first preprocessed with number enhancement, then YOLOv5 is used to train the hand bone
dataset to identify and filter out the main 13 joints in the hand bone, and finally, ResNet34 is used to
complete the classification of local joints and achieve the determination of the developmental level of
the detected region, followed by the calculation of the bone age by combining with the RUS-CHN
method. The bone age detection model based on YOLOv5 and ResNet34 can significantly improve
the accuracy and efficiency of bone age detection, and the model has significant advantages in the
deep feature extraction of key regions of hand bone joints, which can efficiently complete the task of
bone age detection. This was discovered through experiments on the public dataset of Flying Paddle
AI Studio.
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1. Introduction

The degree of human growth and development can be more accurately reflected by
bone age since the development of the human skeleton occurs in phases and is continuous.
Additionally, the physical properties of the bones at different stages vary. This is why
forensics, sports, and clinical medicine all frequently employ bone age. By taking X-rays
of the hand and wrist and then having the doctor review and interpret them, bone age
is traditionally determined. This process is time-consuming and subject to the doctor’s
subjective judgment. This work conducts bone age detection on the left-hand bone based
on the symmetry of the human hand bone, considerably reducing the time of bone age
detection. Additionally, significant progress has been made with the usage of convolutional
neural networks as artificial intelligence and deep learning in connection with this study.
There is still room for improvement. However, the final bone age data were separated and
evaluated using a computer, considerably improving the bone age detection accuracy.
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TW [1] is one of the latest international detection methods, which is proved by the
example that it does not apply to human bone age detection in China. YOLOv5 [2] is a
single-stage target detection algorithm for target identification and localization, which
is used to identify the major joints of hand bones in this paper. ResNet34 [3] is the 34th
layer of the ResNet network, which is a deep feed-forward neural network for completing
information transfer and circulation and is used to achieve the classification of minor
joints of hand bones in this paper. In this paper, we propose a bone age detection frame-
work (YARN) combining YOLOv5 and ResNet34, and we choose the RUS-CHN scoring
method [4], which is more suitable for the physiology of domestic adolescent children, as
the evaluation standard for bone age detection.

The “left-hand bone age X-ray” and “left-hand small joint X-ray classification” datasets
from Flying Paddle AI Studio [5] are used in this study as the research object because of
the symmetry of human bones. After preprocessing the left-hand bone data, YOLOv5
was trained to detect 21 hand-bone joints and filter out 13 significant hand-bone joints.
Following the classification of the joints using the enhanced ResNet34 network, the RUS-
CHN approach was used to determine bone age.

The rest of this paper is organized as follows: Section 2 introduces the related work;
Section 3 describes the design and implementation of the model; Section 4 describes how to
train and detect the data using both YOLOv5 and ResNet34 algorithms; Section 5 concludes
this study with outlooks for the future and also points out the shortcomings and areas for
improvement in this paper.

2. Related Works

Since deep learning and bone age detection were combined, many scholars have been
exploring the value of deep learning in the field of bone age detection, and all of them have
achieved good results.

Davis et al. [6] proposed a model combining image pre-processing and feature ex-
traction algorithms to automate bone age detection by building a predictive model, i.e.,
estimating bone age directly from radiographs without the need for a manual procedure.
The work achieved a leap from manual to automated, greatly saving time in bone age
detection and improving the accuracy of bone age detection.

In Ref. [7], Lee et al. proposed a fully automated bone age detection model based
on deep learning. The model incorporates ImageNet and a fine-tuned CNN with a fully
automated deep learning pipeline to segment the region of interest, normalize and pre-
process the X-ray images, and finally, in the test, obtained an accuracy of 57.32 and 61.40%
for the female and male groups, respectively. However, the experimental results are still
somewhat different from the actual values due to the Greulich–Pyle (GP) atlas’s choice to
provide time points only every 1 year and the lack of richness in the dataset.

Zhan et al. [8] proposed an improved structural model of the AlexNet network to
detect bone age, which improves the recognition rate of the network for hand bone image
features by expanding the size of the original image and the resolution of the image during
training. In addition, the rectified linear unit (ReLU) in the activation layer of the original
network was replaced with a parametric rectified linear unit (PreLU) to improve the
fitting ability of the model. Finally, the mean absolute error (MAE) between the predicted
and actual ages through an experiment for females and males was 0.72 and 0.90 years,
respectively, but there was still a degree of error in the experimental results because of the
small sample size.

In Ref. [9], Ari et al. proposed a region-based feature connectivity layer (RB-FCL)
deep learning model that uses Faster R-CNN to automatically segment important parts of
skeletal radiographs and sequentially selected DenseNet121, InceptionV3, and Inception-
ResNetV2 for the training of the critical regions. According to the evaluation results, the
experiments produced an MAE result of 6.97, which is much better than the standard deep
learning model.
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Zhang et al. [10] proposed an improved Xception regression network by introducing
deep separation convolution and residual connectivity, embedding a convolutional block
attention module (CBAM) in the Xception network to enhance attention in channel and
spatial supervision, extracting important features required for bone age assessment while
using gender as a distinction and detecting men and women separately, which resulted in
a reduction in MAE of 3.23 months.

In Ref. [11], Wang et al. used deep CNN for feature learning, fused low-level and
high-level features of hand bone images, and removed the Softmax layer in the Inception
ResNet V2 network to optimize the Inception ResNet V2 network structure. They then
compared with the bone age detection method using the BoNet network, and the MAE
between predicted and actual bone age was reduced by 0.4230 years.

Ding et al. [12] proposed a new bone age detection model different from the traditional
bilinear convolutional neural network, applied the fine-grained image recognition method
to bone age image recognition, integrated the attention mechanism and residual module in
each feature extraction sub-network, and used Resenet-50 to replace the visual geometry
group (VGG) network in the original model, which effectively improved the accuracy of
bone age assessment. The experimental results show that the MAE between the assessed
bone age and the true bone age is 0.57 years in the bone age stage from 9.0 to 13.0 years,
but due to the uneven distribution of samples in the dataset across age groups, the bone
age detection effect still needs to be improved.

In Ref. [13], Lee et al. proposed a deep learning-based bone age detection model
consisting of three steps: ROI detection, regional maturity classification, and integrated
bone age. First, the model automatically detects seven regions of the hand bone using a
CNN algorithm. Then, the maturity of each ROI and the overall hand image is automatically
classified using the CNN algorithm. Finally, the bone age results are objectively derived by
combining the physician scores. Experiments showed that the error between the model
and the reference standard was less than 0.5 years.

Mao et al. [14] added Harris features and a convolutional attention module to the
AlexNet network to assess the developmental stage of each reference bone, and they added
a normalization layer and ReLU activation function after the convolutional layer in the
model, which greatly improved the training speed of the bone age detection network
and, combined with the optimized CHN method, could eventually obtain an error within
±0.5 years of 94.6% of accuracy.

The aforementioned experimental methods, to a certain extent, boost the precision
and effectiveness of bone age detection, although they do not fully take into account the
impact of the type of optimizer on the training results during model training. As a result, it
is essential to train the common optimizers independently to achieve a more ideal bone
age detection effect, and the experiments in this paper compare the training effects of
two different optimizers, stochastic gradient descent (SGD) [15] and adaptive moment
estimation (Adam) [16], before selecting an SGD optimizer for ResNet34 training a small
joint dataset, which can produce training weight files that are both higher than 90%.

The main contributions of this work are as follows:

• Using the adaptable anchor frame in YOLOv5 makes it easier for the network to learn
the features of hand bone images, improves the efficiency of image pre-processing
work before training, and the selection of a suitable anchor frame also provides great
help to improve the accuracy of subsequent image feature extraction.

• ResNet34 is used to train the small joint dataset, which ensures that the accuracy of
each classification reaches more than 90%.

• A bone age detection framework based on YOLOv5 and ResNet34 combined with the
RUS-CHN scoring method (YARN) was proposed and implemented to construct a
targeted detection model for bone age detection in Chinese adolescent children.
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3. Model Design and Implementation

To perform bone age detection through target detection and classification regression in
the field of deep learning, a novel bone age detection model (YARN) combining YOLOv5
and ResNet34 is proposed in this paper. The RUS-CHN scoring method, which is appropri-
ate for the physiology of Chinese adolescent children, is chosen as the evaluation criterion
for bone age detection. The following are the design concepts:

(1) To improve the quality of the dataset used in model training and to speed up the
target detection, the hand bone images will be subjected to contrast-limited adap-
tive histogram equalization defogging, rotation augmentation, and adaptive scaling
expansion square operations as a way to enhance the data of the images themselves.

(2) To improve the accuracy and efficiency of hand bone joint recognition, the study uses
the YOLOv5 network structure for training, and 21 joints are identified based on the
dataset labels, and then 13 joints are obtained via screening.

(3) To solve the problems of gradient disappearance, gradient explosion, overfitting,
and degradation that often accompany deep networks, the study uses the ResNet34
network [3], which is more effective in solving the degradation problem, to weaken
the connection between layers of the network through its residual structure.

(4) To further improve the model accuracy, the SGD optimizer is selected for the training
of joint classification based on ResNet34 through experimental comparison.

(5) To more closely match the physiological characteristics of Chinese adolescent children,
the RUS-CHN scoring method is used as the evaluation marker for bone age detection.

The model was trained and tested on the public dataset of Flying Paddle AI Studio.

3.1. YOLOv5 Network

The structure of the YOLOv5 network is shown in Figure 1, which consists of five
main parts, namely the Input; the Backbone network for extracting image features; the
Neck layer; and the Prediction detection layer for outputting results [17].
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3.1.1. Input

The input side is mainly for image processing, including adaptive scaling of image
size, Mosai data enhancement [18], and adaptive anchor frame calculation; uniform image
size will make the speed of inference improve, and adaptive scaling ensures the stability
and integrity of the image. The effect is shown in Figure 2. After normal scaling and
filling, it is difficult to minimize the width of the black edges at the ends of the image,
and once too much is filled, there will be redundant information, which will greatly affect
the speed of algorithmic reasoning. The YOLOv5 adaptive scaling of the image, on the
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other hand, automatically adds black edges of minimum width according to the size of the
original image, which ensures a significant reduction in computation when the algorithm
is reasoning, thus speeding up target detection.
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As demonstrated in Figure 3, mosaic enhancement randomly chooses four photos
from the training set and then randomly scales and crops the images before pasting them
into a new image in a clockwise orientation. This method expands the dataset, strengthens
the network’s robustness, and increases the network’s sensitivity to the identification of
small targets. The anchor frame concept is carried over from the previous iteration, with
the main difference being the use of the K-means clustering algorithm [19] to increase the
distance between different classes and obtain the best anchor frame value before training,
which will make it simpler for the following network to learn the image features during
training. As opposed to the previous iteration of YOLOv5, this one embeds the calculation
of anchor frames into the code and automatically determines the recall on the dataset’s
label file to obtain the proper anchor frames before training [20]. The training and detection
stages of YOLOv5 can also choose whether to calculate anchor frames automatically by
adjusting the parameters.
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3.1.2. Backbone Network

Four modules comprise the Backbone network of YOLOv5: Focus, CBL, CSP, and
SPP. The Focus module is a new addition to YOLOv5 and is primarily used to broaden the
perceptual field of view, much like null convolution. As seen in Figure 4, the Focus module
enables the images to be “sliced” with a value for each pixel before entering the Backbone
network. Four pictures are chopped out of the picture since it has an NCHW [21] structure
with four channels. The four pictures complement one another, and the information from
the W and H channels is concentrated on the C channel without any information being lost,
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and the channel is increased four times. In YOLOv5, the CSP module is utilized in both the
Backbone and Neck layers, as illustrated in Figure 1. CSP1_X is used in the Backbone layer,
while CSP2_X is used in the Neck layer, whereas in YOLOv4, the CSP module was only
used in the Backbone layer.
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3.1.3. Neck Layer

To achieve multi-scale fusion, the Neck portion primarily employs the feature pyramid
network (FPN) and path aggregation network (PAN), two opposing procedures, as depicted
in Figure 5. PAN samples from the bottom up so that the top feature contains picture
location information and FPN samples from the top down so that the bottom feature map
contains stronger feature information. The two features are combined to improve the
network’s capacity to anticipate events.
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3.1.4. Prediction Detection Layer

Non-maximum suppression (NMS) and loss function are mainly used in the detection.
When a target is selected by several boxes at the same time, the box with the highest NMS
confidence is selected as the result. The loss function consists of three functions, namely
loss of classification, loss of localization, and loss of confidence.

To date, there are five versions of YOLOv5, namely YOLOv5n, YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. These five models are becoming larger and more accurate but
slower in turn, and for different projects, researchers can use different versions, as shown
in Figure 6, which shows the scales corresponding to the five different versions. Figure 7
shows the ratio of velocities for different versions of YOLOv5 on the COCO dataset [22].
Based on these two figures, it can be seen that YOLOv5l has a significant advantage in terms
of mAP values on the COCO dataset compared to YOLOv5n, YOLOv5s, and YOLOv5m,
and that YOLOv5l has a faster detection speed compared to YOLOv5x. Therefore, in this
paper, the relatively balanced YOLOv5l was chosen for experiments based on accuracy and
speed, two important metrics involving target detection.
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3.2. ResNet34 Network

A variety of breakthroughs in image processing have been rendered available by
deep convolutional neural networks. Deeper networks should, in theory, be better at
extracting features and obtaining better training outcomes, but they are also more prone to
degradation, as seen in Figure 8, along with gradient disappearance, gradient explosion,
and overfitting. The results at layer 56 are worse than those at layer 20 while training on
the Cifar-10 dataset.
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Furthermore, the layered structure of the proposed ResNet deepens the network layers
and increases detection accuracy while also resolving the issue of gradient deterioration and
disappearance. In the original publication of ResNet [3], it is suggested to employ the Batch
Normalization layer via data preprocessing as well as in the network to address the issue
of gradient disappearance or explosion in deep networks. Regarding the degradation issue,
ResNet suggests a residual structure (residual), which makes use of layer hopping and
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prevents information loss by weakening the connection between network levels through
short-cut connections [23]. The residual structure is formed by stacking multiple residual
blocks, and a residual block consists of two convolutional blocks. The convolutional block in
ResNet does not have only a single convolution but a layer of convolutional layers + batch
normalization layer (BN) + ReLU activation function together, and by setting the step size
of the convolution, the change in feature map size is realized, and downsampling feature
extraction is performed, which greatly improves the network performance.

As Figure 9 shows the two residual structures proposed in the original paper, the
structure on the left is for networks with fewer layers, such as ResNet18 and ResNet34, and
the one on the right is for networks with more layers, such as ResNet101 and ResNet152.

Symmetry 2023, 15, x FOR PEER REVIEW 8 of 19 
 

 

and the one on the right is for networks with more layers, such as ResNet101 and Res-
Net152. 

3×3, 64

3×3, 64

1×1, 64

3×3, 64

1×1, 256

+ +

256-d64-d

relu relu

relu
relu

relu

 
Figure 9. Structure of residuals. 

A comparison experiment between ResNet18, ResNet34, and Plain18 was conducted 
in the ResNet paper, and it was found that ResNet34 solves the degradation problem bet-
ter than the other two, as Table 1 shows the network structure of ResNet34, which contains 
33 convolutional layers, one maximum pooling layer and one average pooling layer, and 
a fully connected layer at the end of the network. 

Table 1. ResNet34 network structure. 

Network Layer 
Name Output Size Network Layer Structure 

Conv1 112 × 112 7 × 7, 64, stride 2 
3 × 3 Maxpooling, stride 2 

Conv2_x 56 × 56 
3 3,64
3 3,63

× 
 × 

 

Conv3_x 28 × 28 
3 3,128 3
3 3,128

× × × 
 

Conv4_x 14 × 14 
3 3, 256 3
3 3, 256

× × × 
 

Conv5_x 7 × 7 
3 3,512 3
3 3,512

× × × 
 

 1 × 1 Average pooling, 1000-d fc, softmax 

3.3. SGD-ResNet34 Optimization Network 
Through experimental comparison based on techniques, such as data augmentation 

and uniform image size, we select an SGD optimizer to aid ResNet34 network training to 
increase the model’s accuracy, and we ultimately achieve a weight file with more accu-
racy. The premise of gradient descent is to apply the iterative notion to acquire the mini-
mized loss function and model parameter values by finding the minimum of the loss func-
tion for it [24]. SGD is a stochastic gradient descent technique for altering weights to min-
imize the loss. Additionally, the “back and forth oscillation” feature of the SGD optimiza-
tion path efficiently prohibits the model from stabilizing into local optimal solutions when 
the loss function has numerous local minima. One sample gradient is used for each pa-
rameter update in the model, which allows it to effectively handle enormous datasets. 
This gradient is given by (as in Equation (1)): 

( ) ( ) ( )( ( ))i i i
j j jy h x xθθ θ α= + −  (1) 

  

Figure 9. Structure of residuals.

A comparison experiment between ResNet18, ResNet34, and Plain18 was conducted
in the ResNet paper, and it was found that ResNet34 solves the degradation problem better
than the other two, as Table 1 shows the network structure of ResNet34, which contains
33 convolutional layers, one maximum pooling layer and one average pooling layer, and a
fully connected layer at the end of the network.

Table 1. ResNet34 network structure.

Network Layer Name Output Size Network Layer Structure

Conv1 112 × 112 7 × 7, 64, stride 2
3 × 3 Maxpooling, stride 2

Conv2_x 56 × 56
[

3×3,64
3×3,63

]
Conv3_x 28 × 28

[
3×3,128
3×3,128

]
× 3

Conv4_x 14 × 14
[

3×3,256
3×3,256

]
× 3

Conv5_x 7 × 7
[

3×3,512
3×3,512

]
× 3

1 × 1 Average pooling, 1000-d fc, softmax

3.3. SGD-ResNet34 Optimization Network

Through experimental comparison based on techniques, such as data augmentation
and uniform image size, we select an SGD optimizer to aid ResNet34 network training to
increase the model’s accuracy, and we ultimately achieve a weight file with more accuracy.
The premise of gradient descent is to apply the iterative notion to acquire the minimized
loss function and model parameter values by finding the minimum of the loss function
for it [24]. SGD is a stochastic gradient descent technique for altering weights to minimize
the loss. Additionally, the “back and forth oscillation” feature of the SGD optimization
path efficiently prohibits the model from stabilizing into local optimal solutions when the
loss function has numerous local minima. One sample gradient is used for each parameter
update in the model, which allows it to effectively handle enormous datasets. This gradient
is given by (as in Equation (1)):

θj = θj + α(y(i) − hθ(x(i)))x(i)j (1)
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3.4. Bone Age Detection Model Based on YOLOv5 and ResNet34

Despite the fact that the YOLOv5 algorithm has the benefits of quick execution, high
accuracy, and a lightweight model structure, there are still a number of drawbacks, includ-
ing the following: The initial clustering centers of the K-means clustering algorithm are
frequently selected randomly by hand, which makes it extremely simple to select noisy
data and isolated points, which easily makes the network fall into the local optimal solution
dilemma [19], which results in a significant decrease in detection accuracy. The K-means
clustering algorithm is used at the input side of YOLOv5 to realize the adaptive calculation
of the anchor frame. Moreover, as the number of network layers increases during the
convolution operation, the YOLOv5 algorithm gradually begins to deteriorate network per-
formance, which is particularly unfavorable to the feature extraction of smaller targets and,
consequently, affects the detection accuracy of small targets. In contrast to dynamic neural
networks like the recurrent neural network (RNN), static neural networks like ResNet34
may be trained quickly and accurately [25]. In the original ResNet paper [3], it was shown
that ResNet34 outperforms ResNet18 and Plain18 in terms of solving network degradation,
and that ResNet34’s modest layer count decreases the risk of overfitting. The shortcoming
of ResNet34, on the other hand, is that both training and inference require a substantial
amount of data. We fused the optimized ResNet34 network to create a bone age detection
model (YARN) based on YOLOv5 and ResNet34 due to the fact that it is challenging to
accurately recognize and estimate the age of hand bone joints using just one algorithm
(YOLOv5) alone. In order to prevent YOLOv5 from entering a locally optimal solution
state, the model uses the SGD in the optimized ResNet34 network. It also makes use of
the residual structure within ResNet34 to reduce the phenomenon of YOLOv5’s network
degradation brought on by having too many network layers, and ultimately to increase
the accuracy of YOLOv5 for small target recognition and detection. The two networks’
strengths are successfully combined through their merging. Last but not least, MAE (as in
Equation (2)) demonstrates that the model considerably enhances the precision and efficacy
of bone age detection.

MAE =
1
N

N

∑
i=1

∣∣yj − ŷj
∣∣ (2)

The specific pseudo-code for this model is shown in Algorithm 1.

Algorithm 1 YARN Bone Age Detection Algorithm

1: def opt, label, yolov5(structure), resnet34(structure), model
2: opt = torch.randn(opt_name[0], opt_name[1])
3: batch reading and data enhancement based on bath_size
4: if opt.update: # update all models (to fix sourcechangewarning)
5: for opt.weights in [‘yolov5l.pt’]:
6: detect()
7: get(opt.weights)
8: else:
9: detect()
10: for key, value in all_labels:
11: if opt_name == key:
12: get(opt)
13: else:
14: next opt
15: for epoch in range(epochs):
16: resnet34.train()
17: for opt, label in enumerate(train_bar):
18: for outputs = model(opt):
19: get(outputs)
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The following are the specific steps of bone age detection using YOLOv5 and ResNet34
model (YARN), as shown in Figure 10.

(1) Input hand bone X-ray images for image pre-processing operation;
(2) Use the YOLOv5 network to first identify the 21 joints of the hand bone, and then

filter the 13 major joints that were focused by the RUS-CHN method based on the
testing parameters of YOLOv5;

(3) Train the minor joint dataset using ResNet34, finding the corresponding class of
each minor joint by weighting, and then classify these 13 minor joints into 9 major
classes precisely;

(4) Calculate the age of hand bones using the RUS-CHN method.
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Figure 10. Bone age detection model based on YOLOv5 and ResNet34 (YARN).

4. Experimental Results and Analysis

This experiment is based on the target detection algorithm YOLOv5 and the deep
residual network ResNet34. The programming language is Python 3.10. CPU configuration
is Intel(R) Core (TM) i3-10110U CPU @ 2.10 GHz 2.59 GHz, and the hardware is RTX3060.

4.1. Public Dataset Preparation

We performed joint recognition and joint classification experiments on the hand bone
dataset and the ResNet34 training small joint dataset, respectively, to verify the efficacy of
YOLOv5 and ResNet34 in bone age detection.

The Flying Paddle AI Studio open-source dataset, which has 881 original photos and
has been data upgraded and increased by a factor of 5, contains all of the hand X-ray images
utilized in this paper. High-quality data are needed for the medical project of bone age
detection. According to our observations, the images in this dataset varied in size and
clarity (as shown in Figure 11, and the quantity of each classification was not constant (as
shown in Table 2 and Figure 12), necessitating a number of image pre-processing actions.
In this study, we apply rotation enhancement, adaptive scaling extended square operations,
and adaptive histogram equalization with restricted contrast to data augmentation.
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Table 2. Summary of small joint data.

Joint Name DIP DIP
First MCP MCP

First MIP PIP PIP
First Radius Ulan

Number of
Levels 11 11 10 11 12 12 12 14 12
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Each image in the small joint dataset is randomly rotated by 45 degrees and per-
formed five times to increase the number of datasets and enhance generalization, taking 
into account that there are always variations in the placement of the hand when the 

Figure 12. Small joint dataset.

Contrast-limited adaptive histogram equalization, which differs from the frequently
used spatial domain image enhancement method, and histogram equalization integrate
the location and grayscale information of the pixel points, and the grayscale values of
the pixel points are expanded and reconstructed using the algorithm before the algorithm
is trained. The output image’s gray value is calculated using the bilinear interpolation
method [26], which prevents the gray value from being reduced or even losing image
details after histogram equalization, as illustrated in Figure 13. In this study, we executed
equal restriction equalization for the hand bone dataset and the tiny joint dataset. The
results are displayed in Figure 14 which significantly increased the contrast of the hand
bone X-ray images.
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Each image in the small joint dataset is randomly rotated by 45 degrees and performed
five times to increase the number of datasets and enhance generalization, taking into
account that there are always variations in the placement of the hand when the detector
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performs X-ray detection. This makes it easier for the ResNet34 network model to learn
more information about the data.

The experiments in this paper use black pixels to fill the empty part of the transfor-
mation, which significantly increases the accuracy of image recognition. The method used
in this paper also applies a square transformation to the small joint dataset to prevent
distortion of the image data.

The outcomes of the hand bone X-ray images following the three image pre-processing
techniques mentioned above are displayed in Figure 15.
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4.2. YOLOv5 Implementation of Joint Recognition
4.2.1. Model Training

The open-source YOLOv5 code is implemented based on the COCO dataset, which
has a total of 80 classifications. In this experiment, we use YOLOv5 to train our dataset. In
addition to modifying some training parameters, we also need to develop the following
series of preparatory operations.

(1) Divide the training set, validation set, and test set. The training set is used to estimate
the parameters in the model so that the model can learn the laws that are close to the
real environment and make predictions for real situations; the validation set is used to
make a preliminary assessment of the hyperparameters of the network and the ability
of the model to prevent overfitting while training; and the test set is used to evaluate
the prediction performance of the model. Among them, the data in the training set
and the test set should not overlap, and the amount of data in the training set should
be much larger than those in the test set.

(2) Modify the data path to prevent a situation where the training cannot be performed
due to the non-existence of the directory and the non-existence of the data. The paths
of the relevant datasets should be modified.

(3) Modify the categories. There are 80 categories in the COCO dataset, and 7 categories
are used to identify joints in this experiment.

(4) Write Yaml files to write these seven categories in Yaml file format.
(5) Adjust the hyperparameters for training. YOLOv5 defines many parameters, which

can be modified as needed during training and testing, and the parameters for this
experiment are shown in Table 3.

Table 3. YOLOv5l training parameters.

Parameter Name Value Role

weights YOLOv5l.pt Version weights used by YOLOv5
data ‘data/my_data.yaml’ Yaml files on categories and category numbers

epochs 200 Training rounds
batch-size −1 Automatic calculation of batches per round

4.2.2. Detection Results of YOLOv5

After running all rounds, YOLOv5 saves the results in the runs/train folder in the root
directory of the project, which contains the evaluation of training, training weights, and
training results, as shown in Figure 16. Regarding several files of major concern in it, as
shown in Table 4, the parameters to be modified during testing are shown in Table 5.
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Table 4. Description of the main files for YOLOv5 training.

Files/Folders Instructions

weights Best/worst weights for training
Confusion_matrix.png Confusion Matrix

F1_curve The relationship between the harmonic mean function of precision and recall and
the confidence level

train_batch Training results
val_bathch Validation results

Table 5. YOLOv5 test parameters.

Parameter Name Value Role

weights runs/train/exp/weights/best.pt The best weights obtained from YOLOv5 training
source ‘E:/code/Bone/Img’ Path of the dataset to detect
data ‘data/my_data.yaml’ Yaml files on categories and category numbers

conf-three 0.5 Confidence threshold
you-three 0.25 IOU threshold
save-txt true Retain target information txt file

The final 21 joints detected are obtained according to the dataset labels. Since only
13 joints are used in the RUS-CHN method, the experiment obtains the coordinates, classifi-
cation, and confidence of the upper-left and lower-right corners of each box via YOLOv5
detection of the saved txt files, and 13 joints are obtained through screening, as shown
in Figure 17. It is worth noting that both the number of training rounds and the model
selected may have an impact on the results, resulting in multiple or missed detections. In
addition, the confidence and IOU thresholds can be adjusted appropriately to ensure that
the 21 joints are detected correctly.
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4.3. ResNet34 Implementation of Joint Classification

After 13 joints are obtained from the above operation. It is necessary to classify these
13 joints into nine categories, as shown in Table 6. Since the medical project requires very
high results for the detection, this experiment uses ResNet34 to train the small joint dataset
so that each classification has an accuracy of more than 90% for the joints to be detected.

Table 6. Table showing 13 joints corresponding to 9 classifications.

13 Joints Joint Name 9 Categories Classifying Grades

MCPFirst Metacarpal bone I MCPFirst→11
MCPThird Metacarpal bone III MCP→10
MCPFifth Metacarpal bone V MCP→10
DIPFirst Distal phalange I DIPFirst→11
DIPThird Distal phalange III DIP→11
DIPFifth Distal phalange V DIP→11
PIPFirst Proximal phalange I PIPFirst→12
PIPThird Proximal phalange III PIP→12
PIPFifth Proximal phalange V PIP→12

MIPThird Middle phalange III MAP→12
MIPFifth Middle phalanges V MAP→12
Radius Radius Radius→14
Ulna Ulnar Ulna→12

4.4. Algorithm Comparison

To improve the model accuracy, in addition to the methods, such as data enhancement
and uniform image size, already used in this paper, the optimizers for training can be
selected according to the merits of the results. In this experiment, two optimizers, SGD and
Adam, are used for comparison. As Table 7 shows the implementation codes of the two
optimizers, SGD adds the learning rate, momentum, and weight decay parameters; Adam
adds the learning rate and exponential decay rate, and Table 8 shows a comparison of the
effect of training the two optimization algorithms. Based on the effect comparison, the SGD
optimizer is selected for training in this experiment.

Table 7. Optimizer implementation code.

SGD opt = torch.optim.SGD(model.parameters(),lr = 0.001,moment um = 0.9,
weight_decay = 0.005)

Adam opt = torch.optim.Adam(model.parameters(),lr = 0.001,be tas = (0.9,0.999))

Table 8. Comparison of the effects of the two optimizers.

SGD Adam

MCPFirst 0.952 MCPFirst 0.832
MCP 0.928 MCP 0.804

DIPFirst 0.917 DIPFirst 0.804
DIP 0.945 DIP 0.859

PIPFirst 0.974 PIPFirst 0.888
PIP 0.958 PIP 0.828
MIP 0.962 MIP 0.856

Radius 0.929 Radius 0.838
Ulna 0.931 Ulna 0.835

To further illustrate the superiority of the new model, Table 9 compares the accuracy
of bone age detection using only YOLOv5, ResNet34 alone, and YARN.
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Table 9. Comparison of accuracy of bone age detection by the algorithm.

Joint Bone YOLOv5 ResNet34 YARN

MCPFirst 0.942 0.905 0.951
MCP 0.934 0.912 0.960

DIPFirst 0.915 0.910 0.942
DIP 0.935 0.923 0.953

PIPFirst 0.927 0.916 0.948
PIP 0.956 0.914 0.965
MIP 0.961 0.907 0.962

Radius 0.931 0.911 0.939
Ulna 0.940 0.929 0.944

Average Accuracy Rate 0.938 0.914 0.952

4.5. Bone Age Detection Results

Figure 18 shows the specific calculation process. Firstly, 13 joints were classified, and
then the corresponding grade of each small joint could be found through the weight of
ResNet34 training. Then, the age of hand bones was calculated using the RUS-CHN method.
Figure 19 shows the RUS-CHN bone maturity score scale (percentile curve), in which 3rd,
10th, 25th, 50th, 75th, 90th, and 97th represent the percentiles of bone age scores in normal
subjects of the same age, and then the corresponding bone age is mapped together with the
grade score table.
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The final results of this experiment are shown by Pyqt5, and the steps are: (1) click
“Open Pictures”, (2) select “Gender”, and (3) click “Start Detection”; Figure 20 shows the
final detection results.
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Figure 20. Detection results.

From Figure 20, it can be seen that the bone age predicted by the model is 6.7 years,
which is equivalent to 80.4 months, while the bone age on the original hand bone image
is labelled as 84.6 months, i.e., the error between the predicted bone age and the actual
bone age is 4.2 months. In the experiment, 881 samples yielded an MAE of 4.18 months
using Equation (2), and the accuracy of bone age detection reached 95.2%. Comparing the
experimental results of this paper with those of [8,12,14], we found that the prediction error
of this paper was 6.62 months smaller than that of [8] and 2.66 months smaller than that
of [12], and the prediction accuracy was 0.6% higher than that of [14], indicating that the
YARN model can accurately detect bone age.

5. Conclusions

In this study, the RUS-CHN standard compatible with Chinese adolescent children
is adopted and is based on the two cutting-edge deep learning algorithms YOLOv5 and
ResNet34. The ResNet34 network is, among them, optimized, and a novel bone age
detection model (YARN), including YOLOv5 and ResNet34, is presented, which enhances
the precision and effectiveness of small target recognition to some extent. The RUS-CHN
method is only used in this paper to identify and detect 13 joints of the hand bones;
however, the identification method of each joint or some joints that have a greater impact
on the score can be optimized separately. These shortcomings call for additional research
and improvement in the future. This research does not go into extensive detail on the
relationship between the amount of YOLOv5l architectural nodes and the number of
prominent features extracted in normal skeleton vision. The benefits of YOLOv5l over
other versions can be further explained if this relationship is examined. The results of the
error of bone age detection for adolescents worldwide remain uncertain since the dataset
used in this study only comprised samples of Chinese adolescents. ResNet34 has a large
computational complexity; consequently, this can be optimized in the future to be better.
This study employs the less useful RUS-CHN scale. It is possible to investigate the existence
of a scale with wider applicability. We will address these problems in our forthcoming
study and believe they merit more research.
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Abbreviations
TW Tanner–Whitehouse
YOLOv5 You Only Look Once-v5
ResNet34 Residual Network-34
YARN A bone age detection framework combining YOLOv5 and ResNet34
RUS-CHN China 05 RUS–CHN
CNN Convolutional Neural Network
BAA Bone Age Assessment
GP Greulich–Pyle
ReLU Rectified Linear Units
PreLU Parametric Rectified Linear Units
MAE Mean Absolute Error
RB-FCL A region-based feature connectivity layer
R-CNN A region-based convolutional neural network
CBAM Convolutional Block Attention Module
VGG Visual Geometry Group
ROI Region Of Interest
CHN the standards of skeletal maturity of hand and wrist for Chinese method
SGD Stochastic Gradient Descent
Adam Adaptive Moment Estimation
CBL Conv Bn Leakyrelu
CPS Cyber Physical Systems
SPP Spatial Pyramid Pooling
NCHW Non-Coronal Hole Solar Wind
FPN Feature Pyramid Network
PAN Path Aggregation Network
NMS Non-Maximum Suppression
BN Batch Normalization
RNN Recurrent Neural Network
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